## Linear algebra and scientific programming.

Let us consider a matrix $\underline{\mathcal{C}}$ define as :

$$
\underline{\mathcal{C}}=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right]
$$

The aim here is to solve analytically and numericaly the ordinary differential equation (ODE)

$$
\frac{d \boldsymbol{X}}{d t}=\underline{\mathcal{C}} \boldsymbol{X} \quad \text { with } \quad \boldsymbol{X}(t=0)=\boldsymbol{X}^{0}
$$

At the time $T=3$ the solution of this equation is $\boldsymbol{X}(3)=\exp (3 \underline{\mathcal{C}}) \boldsymbol{X}^{0}$. For $\boldsymbol{X}^{0}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$

- Compute $\underline{\mathcal{C}}^{2}, \underline{\mathcal{C}}^{3}$ and $\underline{\mathcal{C}}^{4}$.

$$
\underline{\mathcal{C}}^{2}=\left(\begin{array}{rrr}
1 & 1 & -2 \\
-2 & 2 & 1 \\
1 & -2 & 1
\end{array}\right), \quad \underline{\mathcal{C}}^{3}=\left(\begin{array}{rrr}
0 . & -3 . & 3 . \\
3 . & 0 . & -3 . \\
-3 . & 3 . & 0 .
\end{array}\right) \quad \underline{\mathcal{C}}^{4}=\left(\begin{array}{rrr}
-3 . & 6 . & -3 . \\
-3 . & -3 . & 6 . \\
6 . & -3 . & -3 .
\end{array}\right)
$$

- Compute $\tilde{\boldsymbol{X}}^{(k)}(3)=\sum_{m=0}^{k} \frac{3^{m}}{m!} \underline{\mathcal{C}}^{m} \boldsymbol{X}^{0}$ for $\mathrm{k}=1,2,3$ and 4.

$$
\tilde{\boldsymbol{X}}^{(1)}(3)=\left(\begin{array}{c}
0 . \\
-2 . \\
3 .
\end{array}\right), \quad \tilde{\boldsymbol{X}}^{(2)}(3)=\left(\begin{array}{c}
4.5 \\
2.5 \\
-6 .
\end{array}\right), \quad \tilde{\boldsymbol{X}}^{(3)}(3)=\left(\begin{array}{c}
-9 . \\
2.5 \\
7.5
\end{array}\right), \quad \tilde{\boldsymbol{X}}^{(4)}(3)=\left(\begin{array}{c}
11.25 \\
-7.625 \\
-2.625
\end{array}\right),
$$

- Compute $\boldsymbol{X}(3)=\exp (3 \underline{\mathcal{C}}) \boldsymbol{X}^{0}$ and errors $e^{(k)}(3)=\boldsymbol{X}(3)-\tilde{\boldsymbol{X}}^{(k)}(3)$ and is norm $\left\|e^{(k)}(3)\right\|_{2}$.

$$
\underline{\mathcal{C}}=\left(\begin{array}{ccc}
1 & 1 & 1 . \\
1 & \left(\frac{1-\imath \sqrt{3}}{2}\right)^{2} & \left(\frac{1+2 \sqrt{3}}{2}\right)^{2} \\
1 & -\frac{1-\imath \sqrt{3}}{2} & -\frac{1+\imath \sqrt{3}}{2}
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{-3+2 \sqrt{3}}{2} & 0 \\
0 & 0 & \frac{-3-2 \sqrt{3}}{2}
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{-1+2 \sqrt{3}}{6} & \frac{-1-2 \sqrt{3}}{6} \\
\frac{1}{3} \frac{-1-2 \sqrt{3}}{6} & \frac{-1+2 \sqrt{3}}{6}
\end{array}\right), \quad \boldsymbol{X}(3)=\left(\begin{array}{c}
0.3331 \\
0.3269 \\
0.3398
\end{array}\right)
$$

Let us now approximate the solution at the time $T=3$ as follows :

$$
\left.\tilde{\boldsymbol{X}}(3)\right|_{\delta t}=\tilde{\boldsymbol{X}}^{K} \quad \text { where } \quad \delta t=\frac{3}{K}, \quad \tilde{\boldsymbol{X}}^{n+1}=\tilde{\boldsymbol{X}}^{n}+\delta t \underline{\mathcal{C}} \tilde{\boldsymbol{X}}^{n}, \quad 0 \leq n \leq K-1
$$

- Compute $\tilde{\boldsymbol{X}}^{K}$ for $K=1,2,3,4, \ldots .$. (take care of the case $K=3$ )

$$
\tilde{\boldsymbol{X}}^{K=1}=\left(\begin{array}{c}
0 \\
-2 . \\
3 .
\end{array}\right), \quad \tilde{\boldsymbol{X}}^{K=2}=\left(\begin{array}{c}
2.25 \\
0.25 \\
-1.5
\end{array}\right), \quad \tilde{\boldsymbol{X}}^{K=3}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad \tilde{\boldsymbol{X}}^{K=6}=\left(\begin{array}{c}
0.328 \\
0.344 \\
0.328
\end{array}\right),
$$

$$
\tilde{\boldsymbol{X}}^{K=10}=\left(\begin{array}{c}
0.338 \\
0.322 \\
0.33
\end{array}\right)
$$

- What is the limit $\lim _{K \longrightarrow \infty} \tilde{\boldsymbol{X}}^{K}$, compare it to $\boldsymbol{X}(3)$.

For $\mathrm{T}=100,1000,10000, \ldots$

- Compute, numerically with a Fortran 90 language and scilab : $\tilde{\boldsymbol{X}}^{(k)}(T)$ for differents $k$ and compare it to the exact solution.
- Compute, numerically with a Fortran 90 language and scilab : $\tilde{X}^{K}$ for differents $K$ (with $\delta t=\frac{T}{K}$ ) and compare it to the exact solution.
- plot the evolution of $\left\|\tilde{\boldsymbol{X}}^{n}\right\|_{2}$ as a function of $n$,
- for $T=100$ and $K=100$.
- for $T=100$ and $K=1000$.
- for $T=100$ and $K=10000$.
- for $T=10000$ and $K=10000$.

```
PROGRAM Simple
    IMPLICIT NONE
    INTEGER :: Nx, ix
    REAL :: Lx, Dx, Pi
    REAL, DIMENSION(:), POINTER :: Coor, Var, VarNew
    ! Opening and rewind the file "DataFile.data" and
    ! associated it to the unit number 10
    ! Units 5 (keeboard) and 6 (sceen) are reserved
    ! -------------------------------------------------------
    OPEN(UNIT=10, FILE="DataFile.data")
    ! By this declaration data in "DataFile.data" are assumed
    ! to be in formatted form (readable).
    ! read the first line of the file and go to the next line
    ! The values readed are of the type of Nx and Lx (INTEGER and REAL)
    ! -----------------------------------------------------------
    READ (10,*) Nx, Lx
    ! Close the Unit 10 and the associated file
    ! -------------------------------------------
    CLOSE(10)
    ! set the value of Dx to the result of the operation
    ! at the right of equality symbol.
    ! ----------------------------------------------------------
    Dx = Lx/(Nx-1)
    Pi = 4.0*ATAN(1.0)
    ! ALLOCATE the vectors Coor and Var to the range 1 to Nx
    ! =============================================================
    ALLOCATE( Coor(1:Nx), Var(1:Nx), VarNew(1:Nx) )
    ! The memory to store the components of these variables
    ! is now up to date : we can make operations on it.
    ! =========================================================
    ! Loop to Define coordinates of points
    DO ix = 1, Nx
        Coor(ix) = (ix-1)*Dx
    END DO
```

```
! Loop to Define an initial value Var
DO ix = 1, Nx
    Var(ix) = SIN( 2.0*PI*Coor(ix) )
END DO
! Open a file to an other unit 11
! (but it an be 10 because this unit is now free after close(10))
! To save the initial solution in a formatted form.
! -----------------------------------------------------------------
OPEN(UNIT=11, FILE="InitVar.gnu")
DO ix = 1, Nx
    WRITE(11, *) Coor(ix), Var(ix)
END DO
Write(6,*) " This is the actual end of the program"
```

END PROGRAM Simple
Compiling and executing a fortran file program. It is assume that the previous program is in a file name "Simple1.f90"

```
bash-3.2$ echo " 100 1" >DataFile.data
bash-3.2$ ifort -C Simple1.f90 -o Run
bash-3.2$ ./Run
    This is the actual end of the program
bash-3.2$
```

The program has been run and now the file "InitVar.gnu" contain the last initialiZation. We can view this formatted file with the software "gnuplot.

```
bash-3.2$ gnuplot
G N U P L O T
    Version 4.2 patchlevel 3
    last modified Mar 2008
    System: Darwin 9.6.0
    Copyright (C) 1986 - 1993, 1998, 2004, 2007, 2008
    Thomas Williams, Colin Kelley and many others
    Type 'help` to access the on-line reference manual.
    The gnuplot FAQ is available from http://www.gnuplot.info/faq/
    Send bug reports and suggestions to <http://sourceforge.net/projects/gnu
```

gnuplot> quit
bash-3.2\$

