Numerical approximation of Elliptic PDE : 2D

Numerical approximation is not an elegant subject. It is a collection of technical details and dirty work. However, is the more convenient way to solve real world problems.

The aim here is to define a numerical scheme for the 2D Laplace equation with Dirichlet boundary conditions :

$$-\frac{\partial^2 T}{\partial x^2} - \frac{\partial^2 T}{\partial y^2} = F(\boldsymbol{x}, T) \quad \text{ for any } \quad \boldsymbol{x} = (x, y)^T \in \Omega = (0, 1) \times (0, 1)$$

with
$$T(x = 0, y) = T_{x0}(y)$$
, $T(x = 1, y) = T_{x1}(y)$, for any $y \in [0, 1]$

with
$$T(x, y = 0) = T_{y0}(x), \quad T(x, y = 1) = T_{y1}(x), \text{ for any } x \in]0, 1[$$

Function $F(\boldsymbol{x}, T)$, $T_{x0}(y)$, $T_{x1}(y)$, $T_{y0}(x)$ and $T_{y1}(x)$ are given.

The numerical approximation use discrete points $\boldsymbol{x}_{i,j}$, localized in the domain Ω , defined as

$$\boldsymbol{x}_{i,j} = \begin{pmatrix} i * \delta x \\ j * \delta y \end{pmatrix}$$
 for $i = 1, \dots, N_x$ and $j = 1, \dots, N_y$ with $\delta x = \frac{1}{N_x + 1}$, $\delta y = \frac{1}{N_y + 1}$,

The numerical solution is defined by the values $T_{i,j}$ solutions of :

$$-\frac{\tilde{T}_{i+1,j} - 2\tilde{T}_{i,j} + \tilde{T}_{i-1,j}}{\delta x^2} - \frac{\tilde{T}_{i,j+1} - 2\tilde{T}_{i,j} + \tilde{T}_{i,j-1}}{\delta y^2} = F(\boldsymbol{x}_{i,j}, \tilde{T}_{i,j}) \quad \text{for} \quad \begin{cases} i = 1, \cdots, N_x \\ j = 1, \cdots, N_y \end{cases}$$
(0.1)

For $j = 0, \dots, N_y + 1$ we have $\tilde{T}_{0,j} = T_{x0}(y_j)$ and $\tilde{T}_{N_x+1,j} = T_{x1}(y_j)$. For $i = 1, \dots, N_x$ we have $\tilde{T}_{i,0} = T_{y0}(x_i)$ and $\tilde{T}_{i,N_y+1} = T_{y1}(x_i)$.

- 1. Compute the truncation error of (0.1) and show that it is of order of δh^2 where $\delta h = \max(\delta x, \delta y)$
- 2. Arrange the system (0.1) into a linear system of the form

$$\underline{A}\tilde{T} = S, \quad \text{where} \quad \tilde{T} = \left(\tilde{T}_1, \cdots, \tilde{T}_{is}, \cdots \tilde{T}_{Ns}\right)^T, \quad \text{with} \quad \tilde{T}_{is} \equiv \tilde{T}_{i,j} \quad \text{where} \quad is(i,j) = i + (i-1) * N_x$$

and define <u>A</u> and **S**. As a simple example, consider the case with $N_x = N_y = 3$.

3. The solution of the previous system is assume to be defined as $\tilde{T} = \lim_{k \to \infty} \tilde{T}^k$, $k > 0 \in \mathbb{N}$, where \tilde{T}^{k+1} are defined by Jacobi relaxations :

$$\tilde{\boldsymbol{T}}_{is}^{k+1} = \frac{\delta x^2 \delta y^2}{2(\delta x^2 + \delta y^2)} \left(\frac{\tilde{T}_{i+1,j}^k + \tilde{T}_{i-1,j}^k}{\delta x^2} + \frac{\tilde{T}_{i,j+1}^k + \tilde{T}_{i,j-1}^k}{\delta y^2} + F(\boldsymbol{x}_{i,j}, \tilde{T}_{i-1,j}^k) \right)$$

for any initial \tilde{T}^0 . Consider the case of $F(x, T) = \frac{\pi^2}{2} \sin(\pi x) \sin(\pi y)$ and $\tilde{T}_{i,0} = T_{y0}(x_i) = \tilde{T}_{i,N_y+1} = T_{y1}(x_i) \equiv 0$. Then, for $\tilde{T}^0 \equiv 0$, Compute (with a fortran or scilab program) program \tilde{T}^K for $N_x = N_y = 100$ and $N_x = N_y = 200$, then gives a numerical estimation of the truncation error when K = 10, K = 100, K = 10000. Make the same analysis when \tilde{T}^{k+1} is computed by Gauss-Seidel, Conjugate-Gradient methods.

Radiatif transfert case

In this case fte function $F(\boldsymbol{x}, T)$ is defined as

$$F(\boldsymbol{x},T) = -\alpha (T - \theta_e)^4$$
, $\tilde{T}_{i,0} = T_{y0}(x_i) = \tilde{T}_{i,N_y+1} = T_{y1}(x_i) = \theta_i$

where θ_e , θ_i and α are given constants. For example use $\theta_e = 20$ for different values of $\frac{\theta_i}{\theta_e}$ and α .

$$\frac{\theta_i}{\theta_e} = 2, \quad 4, \quad 6 \quad 8, \dots \quad \text{and} \quad \alpha = 10^{-1}, \quad 10^{-2}, \quad 10^{-4}, \quad 10^{-6}, \dots$$

Gauss-Seidel Relaxation

$$\tilde{\boldsymbol{T}}_{is}^{k+1} = \frac{\delta x^2 \delta y^2}{2(\delta x^2 + \delta y^2)} \left(\frac{\tilde{T}_{i+1,j}^k + \tilde{T}_{i-1,j}^{k+1}}{\delta x^2} + \frac{\tilde{T}_{i,j+1}^k + \tilde{T}_{i,j-1}^{k+1}}{\delta y^2} + F(\boldsymbol{x}_{i,j}) \right)$$

Conjugate Gradient relaxation

$$\tilde{T}^{k+1} = \tilde{T}^k + \alpha_k d_k$$
, and $d^{k+1} = r^{k+1} + \beta_k d_k$,
where $\alpha_k = \frac{r^k \cdot r^k}{d^k \cdot \underline{A} d^k}$ and $\beta_k = \frac{r^{k+1} \cdot r^{k+1}}{r^k \cdot r^k}$

with $r^k = S - \underline{A} \tilde{T}^k$ (the residual) and the initial descent direction $d^0 = r^0$