Numerical approximation of Elliptic PDE : 2D

Numerical approximation is not an elegant subject. It is a collection of technical details and dirty work. However, is the more convenient way to solve real world problems.

The aim here is to define a numerical scheme for the 2D Laplace equation with Dirichlet boundary conditions :

$$
\begin{aligned}
& \quad-\frac{\partial^{2} T}{\partial x^{2}}-\frac{\partial^{2} T}{\partial y^{2}}=F(x, T) \quad \text { for any } \quad x=(x, y)^{T} \in \Omega=(0,1) \times(0,1) \\
& \text { with } \quad T(x=0, y)=T_{x 0}(y), \quad T(x=1, y)=T_{x 1}(y), \quad \text { for any } \quad y \in[0,1] \\
& \text { with } \left.\quad T(x, y=0)=T_{y 0}(x), \quad T(x, y=1)=T_{y 1}(x), \quad \text { for any } \quad x \in\right] 0,1[
\end{aligned}
$$

Function $F(\boldsymbol{x}, T), T_{x 0}(y), T_{x 1}(y), T_{y 0}(x)$ and $T_{y 1}(x)$ are given.
The numerical approximation use discrete points $\boldsymbol{x}_{i, j}$, localized in the domain Ω, defined as
$\boldsymbol{x}_{i, j}=\binom{i * \delta x}{j * \delta y} \quad$ for $\quad i=1, \cdots, N_{x} \quad$ and $\quad j=1, \cdots, N_{y} \quad$ with $\quad \delta x=\frac{1}{N_{x}+1}, \quad \delta y=\frac{1}{N_{y}+1}$,
The numerical solution is defined by the values $\tilde{T}_{i, j}$ solutions of :

$$
-\frac{\tilde{T}_{i+1, j}-2 \tilde{T}_{i, j}+\tilde{T}_{i-1, j}}{\delta x^{2}}-\frac{\tilde{T}_{i, j+1}-2 \tilde{T}_{i, j}+\tilde{T}_{i, j-1}}{\delta y^{2}}=F\left(\boldsymbol{x}_{i, j}, \tilde{T}_{i, j}\right) \quad \text { for } \quad\left\{\begin{array}{l}
i=1, \cdots, N_{x} \tag{0.1}\\
j=1, \cdots, N_{y}
\end{array}\right.
$$

For $j=0, \cdots, N_{y}+1$ we have $\tilde{T}_{0, j}=T_{x 0}\left(y_{j}\right)$ and $\tilde{T}_{N_{x}+1, j}=T_{x 1}\left(y_{j}\right)$.
For $i=1, \cdots, N_{x}$ we have $\tilde{T}_{i, 0}=T_{y 0}\left(x_{i}\right)$ and $\tilde{T}_{i, N_{y}+1}=T_{y 1}\left(x_{i}\right)$.

1. Compute the truncation error of (0.1) and show that it is of order of δh^{2} where $\delta h=\max (\delta x, \delta y)$
2. Arrange the system (0.1) into a linear system of the form

$$
\underline{A} \tilde{\boldsymbol{T}}=\boldsymbol{S}, \quad \text { where } \quad \tilde{\boldsymbol{T}}=\left(\tilde{T}_{1}, \cdots, \tilde{T}_{i s}, \cdots \tilde{T}_{N s}\right)^{T}, \quad \text { with } \quad \tilde{T}_{i s} \equiv \tilde{T}_{i, j} \quad \text { where } \quad i s(i, j)=i+(i-1) * N_{x}
$$ and define \underline{A} and S. As a simple example, consider the case with $N_{x}=N_{y}=3$.

3. The solution of the previous system is assume to be defined as $\tilde{T}=\lim _{k \rightarrow \infty} \tilde{T}^{k}, \quad k>0 \in \mathbb{N}$, where \tilde{T}^{k+1} are defined by Jacobi relaxations :

$$
\tilde{\boldsymbol{T}}_{i s}^{k+1}=\frac{\delta x^{2} \delta y^{2}}{2\left(\delta x^{2}+\delta y^{2}\right)}\left(\frac{\tilde{T}_{i+1, j}^{k}+\tilde{T}_{i-1, j}^{k}}{\delta x^{2}}+\frac{\tilde{T}_{i, j+1}^{k}+\tilde{T}_{i, j-1}^{k}}{\delta y^{2}}+F\left(\boldsymbol{x}_{i, j}, \tilde{T}_{i-1, j}^{k}\right)\right)
$$

for any initial $\tilde{\boldsymbol{T}}^{0}$. Consider the case of $F(\boldsymbol{x}, T)=\frac{\pi^{2}}{2} \sin (\pi x) \sin (\pi y)$ and $\tilde{T}_{i, 0}=T_{y 0}\left(x_{i}\right)=\tilde{T}_{i, N_{y}+1}=$ $T_{y 1}\left(x_{i}\right) \equiv 0$. Then, for $\tilde{\boldsymbol{T}}^{0} \equiv 0$, Compute (with a fortran or scilab program) program \tilde{T}^{K} for $N_{x}=$ $N_{y}=100$ and $N_{x}=N_{y}=200$, then gives a numerical estimation of the truncation error when $K=10, K=100, K=10000$. Make the same analysis when \tilde{T}^{k+1} is computed by Gauss-Seidel, Conjugate-Gradient methods.

Radiatif transfert case

In this case fte function $F(\boldsymbol{x}, T)$ is defined as

$$
F(\boldsymbol{x}, T)=-\alpha\left(T-\theta_{e}\right)^{4}, \quad \tilde{T}_{i, 0}=T_{y 0}\left(x_{i}\right)=\tilde{T}_{i, N_{y}+1}=T_{y 1}\left(x_{i}\right)=\theta_{i}
$$

where θ_{e}, θ_{i} and α are given constants. For example use $\theta_{e}=20$ for different values of $\frac{\theta_{i}}{\theta_{e}}$ and α.

$$
\frac{\theta_{i}}{\theta_{e}}=2, \quad 4, \quad 6 \quad 8, \ldots \quad \text { and } \quad \alpha=10^{-1}, \quad 10^{-2}, \quad 10^{-4}, \quad 10^{-6}, \ldots
$$

Gauss-Seidel Relaxation

$$
\tilde{T}_{i s}^{k+1}=\frac{\delta x^{2} \delta y^{2}}{2\left(\delta x^{2}+\delta y^{2}\right)}\left(\frac{\tilde{T}_{i+1, j}^{k}+\tilde{T}_{i-1, j}^{k+1}}{\delta x^{2}}+\frac{\tilde{T}_{i, j+1}^{k}+\tilde{T}_{i, j-1}^{k+1}}{\delta y^{2}}+F\left(\boldsymbol{x}_{i, j}\right)\right)
$$

Conjugate Gradient relaxation

$$
\begin{aligned}
& \tilde{\boldsymbol{T}}^{k+1}=\tilde{\boldsymbol{T}}^{k}+\alpha_{k} \boldsymbol{d}_{k}, \quad \text { and } \quad \boldsymbol{d}^{k+1}=\boldsymbol{r}^{k+1}+\beta_{k} \boldsymbol{d}_{k} \\
& \text { where } \quad \alpha_{k}=\frac{\boldsymbol{r}^{k} \cdot \boldsymbol{r}^{k}}{\boldsymbol{d}^{k} \cdot \underline{A} \boldsymbol{d}^{k}} \quad \text { and } \quad \beta_{k}=\frac{\boldsymbol{r}^{k+1} \cdot \boldsymbol{r}^{k+1}}{\boldsymbol{r}^{k} \cdot \boldsymbol{r}^{k}}
\end{aligned}
$$

with $\boldsymbol{r}^{k}=\boldsymbol{S}-\underline{A} \tilde{\boldsymbol{T}}^{k}$ (the residual) and the initial descent direction $\boldsymbol{d}^{0}=\boldsymbol{r}^{0}$

