Minimization in \mathbb{R}^{N} : Gradient Methods

Let us consider a functional $\mathcal{J}(\boldsymbol{X}): \mathbb{R}^{N} \mapsto \mathbb{R}$, defined as $\mathcal{J}(\boldsymbol{X})=\frac{1}{2} \boldsymbol{X} \cdot[\underline{\mathcal{C}} \boldsymbol{X}]+\boldsymbol{B}_{0} \cdot \boldsymbol{X}$, where $\underline{\mathcal{C}}$ is a $N \times N$ matrix and \boldsymbol{B}_{0} is a vector of size N. For example

$$
\underline{\mathcal{C}}=-(N+1)\left(\begin{array}{ccccc}
-2 & 1 & 0 & \cdots & 0 \\
1 & -2 & 1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & 1 & -2 & 1 \\
0 & \cdots & 0 & 1 & -2
\end{array}\right) \quad \text { and } \quad \boldsymbol{B}_{0}=-\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
(N+1)
\end{array}\right)
$$

and in this case the minimum of \mathcal{J} is $\boldsymbol{U} \in \mathbb{R}^{N}$ with $\boldsymbol{U}_{j}=\frac{j}{N+1}$ In order to solve the minimization problem in \mathbb{R}^{N} it is defined, step by step from a gigen vector \boldsymbol{V}^{0} (for example $\boldsymbol{V}^{0} \equiv 0$), positions $\boldsymbol{V}^{k} \in \mathbb{R}^{N}$ such as $\mathcal{J}\left(\boldsymbol{V}^{k+1}\right) \leq \mathcal{J}\left(\boldsymbol{V}^{k}\right)$
For the gradient methods

$$
\boldsymbol{V}^{k+1}=\boldsymbol{V}^{k}+\alpha_{k} \boldsymbol{d}^{k} \quad \text { where } \quad \boldsymbol{d}^{k}=-\nabla \mathcal{J}\left(\boldsymbol{V}^{k}\right) .
$$

In the curent case, the gradient can be computed either analiticaly or numerically.
Gradient method with Constant step $\alpha_{k}=\alpha$. In a fortran program, compute $\boldsymbol{V}_{\alpha}^{K}$, for $N=200, K=$ $N / 2$, using values $\alpha=10,1,10^{-1}, 10^{-2}, \ldots$, For the defined example, plot $\left\|\boldsymbol{U}-\boldsymbol{V}_{\alpha}^{K}\right\|$ as a function of α and define, in this case, an approximated convergence criteria.
Gradient method with optimal step. For a given vector V_{k} and a descent direction $\boldsymbol{d}_{k} \in \mathbb{R}^{N}$, we define a functional $f_{k}(\rho): \mathbb{R} \mapsto \mathbb{R}$ as $f_{k}(\rho)=\mathcal{J}\left(\boldsymbol{V}_{k}+\rho \boldsymbol{d}_{k}\right)$ Then for the optimal step, α_{k} is the minimum of $f_{k}(\rho)$ on an interval $[0, b]$ with $0<b$. In a fortran program, compute V_{b}^{K}, for $N=200, K=N / 2$, using values $b=10^{-2}, 10^{-1}, 1,10^{2}, 10^{3}, \ldots$, For the defined example, plot $\left\|\boldsymbol{U}-\boldsymbol{V}_{b}^{K}\right\|$ as a function of b.

Gradient method with optimal step and equality constraint. In this item we consider the minimization in a sub-space \mathcal{E} defined by vector \boldsymbol{O}_{e} the normal \boldsymbol{n} with $\|\boldsymbol{n}\| \neq 0: \mathcal{X} \in \mathcal{E} \Longleftrightarrow\left(\mathcal{X}-\boldsymbol{O}_{e}\right) \cdot \boldsymbol{n}=0$. Propose a modification of the optimal step method to approximate the minimum of J on \mathcal{E}.
Gradient method with optimal step and inequality constraint. In this item we consider the minimization in a half space \mathcal{E} defined by vector \boldsymbol{O}_{e} the normal n with $\|n\| \neq 0: \mathcal{X} \in \mathcal{E} \Longleftrightarrow\left(\mathcal{X}-\boldsymbol{O}_{e}\right) \cdot \boldsymbol{n} \geq 0$. Propose a modification of the optimal step method to approximate the minimum of J on \mathcal{E}.

Gradient method with optimal step and strict inequality constraint. What about the case of \mathcal{E} defined by vector \boldsymbol{O}_{e} the normal \boldsymbol{n} with $\|\boldsymbol{n}\| \neq 0: \mathcal{X} \in \mathcal{E} \Longleftrightarrow\left(\mathcal{X}-\boldsymbol{O}_{e}\right) \cdot \boldsymbol{n}>0$?
for the minimization of $f_{k}(\rho)$ use the Dichotomous or the GoldSect ion algorithm.

