UNIVERSITÉ NICE SOPHIA ANTIPOLIS

Faculté des Sciences

Département de Mathématiques

2017/2018

Algèbre 2 Feuille 2

On rappelle que les valeurs propres et espaces propres d'une matrice $A \in M_n(\mathbb{R})$ sont ceux de l'endomorphisme de matrice A dans la base canonique de \mathbb{R}^n .

Exercice 1

On désigne par T l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique \mathcal{B}_0 est $\begin{pmatrix} 3 & 1 & -2 \\ 1 & 3 & 2 \\ -2 & 2 & 0 \end{pmatrix}$

- 1.1 Montrer que $\vec{u} = (1, -1, 2)$ est un vecteur propre de T. Déterminer l'espace propre de sa valeur propre.
- 1.2 Montrer que 4 est une valeur propre de T et déterminer l'espace propre correspondant.
- 1.3 Est-ce que 0 est une valeur propre de T?
- 1.4 Diagonaliser T, c.-à.-.d. proposer une base \mathcal{B} de \mathbb{R}^3 formée de vecteurs propres de T. Trouver la matrice $Mat_{\mathcal{B}}(T)$.

Exercice 2

2.1. On considère la matrice
$$A=\left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right)\in M_3(\mathbb{R}).$$

Déterminer les valeurs propres et les espaces propres de A. Est-ce que A est diagonalisable?

Même question pour $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix} \in M_3(\mathbb{R}).$

- 2.2. Soit $f: \mathbb{R}_3[X] \to \mathbb{R}_3[X]$ donné par la formule f(P(X)) = XP'(X). Trouver les valeurs propres et les vecteurs propres de l'application f.
- 2.3. Proposer un exemple d'une matrice $A \in M_2(\mathbb{R})$ dont les valeurs propres sont 2 et 3 et qui n'est pas triangulaire. Est-ce que cette matrice est diagonalisable?

Exercice 3.

On travaille dans \mathbb{R}^4 . On désigne par T l'endomorphisme de \mathbb{R}^4 dont la matrice dans la base canonique \mathcal{B}_0 est :

$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ -1 & 3 & 2 & 3 \\ 3 & -3 & -4 & -9 \\ -1 & 1 & 2 & 5 \end{pmatrix}$$

- 3.1 Vérifier que le vecteur (1,1,-3,2) est un vecteur propre de A. Pour quelle valeur propre? On désigne alors par E l'espace propre associé à cette valeur propre. Déterminer une base de E.
- 3.2 Vérifier si $\lambda=1$ est valeur propre de A? Si oui déterminer une base de l'espace propre associé. Même question pour $\lambda=0$.
- 3.3 Donner une base de \mathbb{R}^4 formée de vecteurs propres de A. On la désigne par \mathcal{B} . Calculer les coordonnées dans \mathcal{B} du vecteur $\vec{v} := (3, 1, -1, 0)$. Pour n entier positif, donner une expression de $T^n(\vec{v})$.

Exercice 4.

On considère l'espace vectoriel $V = \mathbb{R}_2[X]$ des polynômes de degré au plus 2 à coefficients réels.

- 4.1 Quelle est la dimension de V? En donner une base. On la désignera désormais par \mathcal{B} .
- 4.2 On considère l'application $f: V \to V$ définie par

$$f(P)(X) = P(X+1).$$

Montrer que c'est une application linéaire et écrire sa matrice dans la base \mathcal{B} .

- 4.3 Déterminer tous les vecteurs propres de f. L'endomorphisme f est-il diagonalisable?
- 4.4 Sauriez-vous généraliser ce résultat lorsque $V = \mathbb{R}_n[X]$ (espace vectoriel des polynômes de degré au plus n)?
- 4.5 Sauriez-vous généraliser ce résultat lorsque $V = \mathbb{R}[X]$ (espace vectoriel des polynômes)?

Exercice 5

Les valeurs propres de la matrice $A \in M(4,\mathbb{R})$ sont les nombres 1, 2, 3, 5. Quels sont les valeurs propres de la matrice $A^2 + A$, de la matrice A^{-1} ?

Exercice 6

Soit E un espace vectoriel. On appelle projecteur de E tout endomorphisme p de E tel que $p \circ p = p$.

6.1 Vérifier que l'endomorphisme T de \mathbb{R}^3 dont la matrice dans la base canonique est $\frac{1}{3}\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ est un

projecteur. Calculer l'image et le noyau de T.

- 6.2 Soit \mathcal{B} une base de E. Montrer qu'un endomorphisme T est un projecteur si et seulement si la matrice A de T dans \mathcal{B} satisfait $A^2 = A$.
- 6.3 Montrer que si p est un projecteur de E et λ est une valeur propre de p alors $\lambda = 0$ ou $\lambda = 1$. Vérifier que $\ker(p)$ est égale à l'espace propre de $\lambda = 0$ et Im(p) est égale à l'espace propre de $\lambda = 1$.
- 6.4 Proposer une matrice $A \in M_2(\mathbb{R})$ qui est la matrice (dans la base canonique) d'un projecteur de \mathbb{R}^2 sur Vect((1,-1)).

Exercice 7

On considère la matrice $R = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$.

- 7.1 Calculer R^3 .
- 7.2. On suppose qu'il existe un vecteur $\vec{v} \neq \vec{0}$ dans \mathbb{R}^2 tel que $R\vec{v} = \lambda \vec{v}$ pour une valeur $\lambda \in \mathbb{R}$. Que peut-on déduire pour λ ?
- 7.3. Prouver que R n'a pas de valeur propre réelle.
- 7.4. Préciser la nature de l'endomorphisme ρ de \mathbb{R}^2 dont la matrice dans la base canonique est R.

Exercice 8*

Soit $A \in M_4(\mathbb{R})$ telle que $(A-2I_4)^3=0$ et $A-2I_4\neq 0$. Montrer que A n'est pas diagonalisable.