UNIVERSITÉ NICE SOPHIA ANTIPOLIS

2014/2015

Faculté des Sciences

Département de Mathématiques

Algèbre 2 Feuille 2

Page web: http://math.unice.fr/~parus/A2_2013.html

Exercice 1.

On considère les matrices

$$A = \begin{pmatrix} 4 & 2 \\ -1 & 0 \\ 0 & 1 \end{pmatrix} \quad B = \begin{pmatrix} -1 & 2 \\ 2 & 0 \\ 1 & 1 \\ 0 & 2 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \end{pmatrix}$$

- 1.1. Peut-on former les produits ABC, CAB, CBA, BAC et BCA?
- 1.2. Lorsque c'est le cas, calculer le produit de deux manières afin de vérifier l'associativité du produit matriciel.

- Exercice 2 : Problèmes de commutativité du produit matriciel.

 2.1. On considère les matrices $A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Calculer AB et BA.
 - 2.2. On suppose que $A, B \in \mathcal{M}_n(\mathbb{R})$ commutent et que A est inversible. Montrer que A^{-1} et B commutent.
- 2.3. Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ vérifiant AB = BA et $B^p = 0$ pour un certain entier $p \ge 1$. On veut montrer que A est inversible si et seulement si A + B l'est.
 - a. Montrer que si $N \in \mathcal{M}_n(\mathbb{R})$ vérifie $N^p = 0$ pour un certain entier $p \geq 1$ alors $I_n N$ est inversible d'inverse $I_n + N + \cdots + N^{p-1}$.
 - b. On suppose A inversible. Montrer que $(A^{-1}B)^p = 0$ (On pourra utiliser la question 2.2.). En déduire que $I_n + A^{-1}B$ et A + B sont inversibles.
 - c. On suppose A + B inversible. Déduire de la question précédente que A est inversible.

Exercice 3.

On considère $U_1 = (1, 1, 1)$ et $U_2 = (1, -1, 1)$ dans \mathbb{R}^3 .

- 3.1. Vérifier que la famille (U_1, U_2) est libre.
- 3.2. Est-ce que les vecteurs suivants appartiennent au sous-espace vectoriel engendré par U_1 et U_2 ?

$$(0,2,1)$$
 $(-1,5,-1)$ $(1,2,3)$

- 3.3. Compléter la famille (U_1, U_2) en une base de \mathbb{R}^3 .
- 3.4. Donner les coordonnées des vecteurs de \mathbb{R}^3 suivants dans cette base

$$(1,0,0)$$
 $(1,1,1)$ $(-1,5,-1)$ $(1,2,3)$

Exercice 4.

- 4.1. Montrer que $\mathcal{M}_2(\mathbb{R})$ est un espace vectoriel.
- 4.2. On définit les matrices élémentaires par $E_{kl} = (\delta_{ik}\delta_{jl})_{i,j=1,2}$ où δ_{mn} est le symbole de Kronecker défini par $\delta_{mn} = \begin{cases} 1 & \text{si } m = n \\ 0 & \text{sinon} \end{cases}$.
 - a. Écrire les matrices élémentaires E_{kl} .
 - b. Vérifier que $\mathcal{B} = (E_{11}, E_{12}, E_{21}, E_{22})$ est une base de $\mathcal{M}_2(\mathbb{R})$.
- 4.3. Soit $P = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}).$
 - a. Rappeler la définition d'un endomorphisme d'espace vectoriel.
 - b. Vérifier que $f: A \mapsto PA$ est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$.
 - c. Écrire la matrice $\mathrm{Mat}_{\mathcal{B},\mathcal{B}}(f)$ de f dans la base \mathcal{B} .

Exercice 5.

- Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant $\operatorname{tr}(A^t A) = 0$.
 - 5.1. Calculer les coefficients de la diagonale de A^tA .
 - 5.2. Que peut-on dire de A?

Exercice 6.

On considère la matrice
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}$$
.

- 6.1. Calculer $A^3 A$.
- 6.2. En déduire que A est inversible et déterminer son inverse.

Exercice 7.

- 7.1. On note (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 .
 - a. Déterminer la matrice A_{θ} de la rotation directe $f_{\theta}: \mathbb{R}^3 \to \mathbb{R}^3$ d'angle θ autour de l'axe défini par e_3 .
 - b. Déterminer la matrice $A'_{\theta'}$ de la rotation directe $g_{\theta'}: \mathbb{R}^3 \to \mathbb{R}^3$ d'angle θ' autour de l'axe défini par e_1 .
 - c. Est-ce que ces deux rotations commutent?
- 7.2. Vérifier que $B_{\theta} = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$ est la matrice de la symétrie orthogonale du plan \mathbb{R}^2 par rapport à l'axe défini par le vecteur $(\cos \theta, \sin \theta)$.