UNIVERSITÉ DE NICE SOPHIA ANTIPOLIS

2011/2012

Faculté des Sciences Département de Mathématiques L3 de Mathématiques
Algèbre et Géométrie
Interrogation écrite. Durée 30 minutes.

Exercice 1.

- a) Rappeler la définition du polynôme minimal d'une matrice carrée à coefficients dans \mathbb{R} . On appele polynôme minimal de A, et on le note par π_A , le polynôme unitaire de plus bas degré qui annule $A: \pi_A(A) = 0$. Tout autre polynôme annulant A est un multiple de π_A .
- b) Donner exemple d'une matrice $A \in M_2(\mathbb{R})$ dont le polynôme minimal n'est pas égale à son polynôme caractéristique.

Par exemple $A = I_2$. Le polynôme caractéristique est $(X-1)^2$ et le polynôme minimal X-1.

Exercice 2. Soit $A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$.

- a) Quel est le polynôme minimal de A?

 Le polynôme caractéristique de A est $X^2 2X 8 = (X + 2)(X 4)$. Il est scindé de racines simples donc, par un resultat du cours, il est égale au polynôme caractéristique de A.
- b) Trouver une matrice carrée P telle que $P^{-1}AP$ soit diagonale. $Par\ exemple\ P=\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$
- c) Trouver une matrice carrée $B \in M_2(\mathbb{C})$ telle que $B^2 = A$.

$$B = P \begin{pmatrix} 2 & 0 \\ 0 & \sqrt{2}i \end{pmatrix} P^{-1} = \begin{pmatrix} 1 + \frac{\sqrt{2}}{2}i & 1 - \frac{\sqrt{2}}{2}i \\ 1 - \frac{\sqrt{2}}{2}i & 1 + \frac{\sqrt{2}}{2}i \end{pmatrix}.$$

- d) Montrer qu'il n'existe pas de matrice $B \in M_2(\mathbb{R})$ telle que $B^2 = A$. Si $B^2 = A$ alors $(\det B)^2 = \det A = -8$. Cette équation n'a pas de solutions réelles.
- e) Proposer une matrice carrée $C \in M_2(\mathbb{C})$ telle que $AC \neq CA$. Par exemple $P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.
- f) Calculer P(A) pour $P = X^5$ puis pour $P = X^5 + 2X 1$. Par la division euclidienne $X^5 = (X^2 - 2X - 8)(Q(X) + 176X + 320$. Alors $A^5 = 176A + 320I_2 = \begin{pmatrix} 496 & 528 \\ 528 & 496 \end{pmatrix}$. De même $A^5 = 178A + 319I_2 = \begin{pmatrix} 497 & 534 \\ 534 & 497 \end{pmatrix}$.