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Abstract
Let (𝑓, g)∶ (ℂ2, 0)⟶ (ℂ2, 0) be a holomorphic map-
ping with an isolated zero.We show that the initial New-
ton polynomial of its discriminant is determined, up to
rescaling variables, by the ideals (𝑓) and (g).
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1 INTRODUCTION

Let ℝ⩾0 (ℤ⩾0) be the set of all nonnegative real (integer) numbers. For a power series
𝑓 =

∑
(𝑖,𝑗)∈ℤ2

⩾0
𝑎𝑖,𝑗𝑥

𝑖𝑦𝑗 ∈ ℂ[[𝑥, 𝑦]] we define its Newton diagram Δ(𝑓) as the convex hull of
the union

⋃
𝑎𝑖,𝑗≠0

((𝑖, 𝑗) + ℝ2
⩾0
). If 𝑆 is the union of all compact edges of Δ(𝑓), then the polynomial

𝑓|𝑆 ∶= ∑
(𝑖,𝑗)∈𝑆 𝑎𝑖,𝑗𝑥

𝑖𝑦𝑗 is called the initial Newton polynomial of 𝑓. We say that power series
𝑓1, 𝑓2 ∈ ℂ[[𝑥, 𝑦]] are equal up to rescaling variables if 𝑓2(𝑥, 𝑦) = 𝑓1(𝑎𝑥, 𝑏𝑦) for some nonzero
constants 𝑎, 𝑏.
Let 𝜙 = (𝑓, g)∶ (ℂ2, 0) → (ℂ2, 0) be the germ of a holomorphic mapping with an isolated zero

at the origin. To any germ 𝜉 of an analytic curve in (ℂ2, 0) one associates its direct image 𝜙∗(𝜉),
see, for example, [3, 4]. The direct image of 𝜉 by 𝜙 is an analytic curve germ in the target space
uniquely determined by the following two properties.

(i) If 𝜉 ⊂ (ℂ2, 0) is an irreducible curve then 𝜙∗(𝜉) is the curve of equation𝐻𝑑 = 0, where𝐻 = 0

is a reduced equation of the curve 𝜙(𝜉) in the target space and 𝑑 is the topological degree of
the restriction 𝜙|𝜉 ∶ 𝜉 → 𝜙(𝜉).

(ii) If ℎ = ℎ1⋯ℎ𝑠 is a factorization of a power series ℎ to the product of irreducible factors in
ℂ{𝑥, 𝑦}, then 𝜙∗({ℎ = 0}) is the curve 𝐻1⋯𝐻𝑠 = 0, where the curves 𝐻𝑖 = 0 are the direct
images of the branches ℎ𝑖 = 0 for 𝑖 = 1, … , 𝑠.

The direct image can be also characterized as follows. The direct image of a curve germ ℎ = 0

is the only curve germ 𝐻 = 0 that satisfies the projection formula: For any analytic curve 𝑤 = 0
in the target space we have the equality of intersection multiplicities 𝑖0(𝑤◦𝜙, ℎ) = 𝑖0(𝑤,𝐻).
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Let 𝐻 = 0 be the direct image of ℎ = 0. Any factorization 𝐻1⋯𝐻𝑟 of 𝐻 such that 𝐻𝑖 and 𝐻𝑗
are coprime for 𝑖 ≠ 𝑗 induces a factorization ℎ1⋯ℎ𝑟 of ℎ such that 𝐻𝑖 = 0 is the direct image of
ℎ𝑖 = 0 for 𝑖 = 1, … , 𝑟.
Suppose that the Newton diagram of 𝐻 has 𝑟 edges which are not contained in the coordinate

axes. Then 𝐻 can be written as a product 𝐻1⋯𝐻𝑟, where the Newton diagram of each 𝐻𝑖 is
elementary, that is, has exactly one edge not contained in the coordinate axes. If follows from the
projection formula that for every irreducible factor 𝑝 of ℎ𝑖 , theHironaka quotient 𝑖0(g , 𝑝)∕𝑖0(𝑓, 𝑝)
is the inclination of the edge of Δ(𝐻𝑖). Moreover the intersection multiplicities 𝑖0(𝑓, ℎ𝑖), 𝑖0(g , ℎ𝑖)
determine and are determined by Δ(𝐻𝑖). In this case we will call ℎ1⋯ℎ𝑟 a minimal Hironaka
factorization of ℎ and any finer factorization of ℎ will be called a Hironaka factorization of ℎ.
In this article, we deal with the problem of factorization of Jac(𝜙) = 𝜕𝑓

𝜕𝑥

𝜕g

𝜕𝑦
−
𝜕𝑓

𝜕𝑦

𝜕g

𝜕𝑥
. The curve

Jac(𝜙) = 0 is called the Jacobian curve of 𝜙 and the direct image of the Jacobian curve is called the
discriminant curve. The Newton diagram of the discriminant, called the JacobianNewton diagram
of (𝑓, g) and denoted 𝑄(𝑓, g) was introduced by Teissier in [15, 16].
The Jacobian curve in the case of 𝑓 = 0 smooth and transverse to g = 0 is called the generic

polar curve of g . In this case the Hironaka quotients 𝑖0(g , ℎ)∕𝑖0(𝑓, ℎ) where ℎ is an irreducible
factor of Jac(𝜙), are called the polar quotients.
The polar case has been widely studied. The polar quotients are invariants of singularity as

shown in [8]. Teissier [15, 16] proved that the Jacobian Newton diagram in the polar case is also a
singularity invariant. Merle [13] found the minimal Hironaka decomposition of a polar curve for
g irreducible. Eggers [5] found a Hironaka decomposition of a polar curve for any g .
The case where both curves 𝑓 = 0 and g = 0 are singular ismore complicated. The set of Hiron-

aka quotients for the Jacobian curve was characterized in [11, 12]. Michel [14] found a certain
Hironaka factorization of Jac(𝜙) and gave formulas for 𝑖0(𝑓, ℎ𝑖), 𝑖0(g , ℎ𝑖) using topological meth-
ods. Hence, 𝑄(𝑓, g) depends only on the equisingularity type of pair of curves 𝑓 = 0, g = 0. This
property was proved independently in [7] using Casas-Alvero formula.
Recall that pairs of curves 𝑓 = 0, g = 0 and 𝑓 = 0, g̃ = 0 are equisingular if there exist factor-

izations 𝑓 = ℎ1⋯ℎ𝑠, g = ℎ𝑠+1⋯ℎ𝑟, 𝑓 = ℎ̃1⋯ ℎ̃𝑠, g̃ = ℎ̃𝑠+1⋯ ℎ̃𝑟 into the product of irreducible
factors in ℂ{𝑥, 𝑦} such that

∙ 𝑠 = 𝑠, 𝑟 = 𝑟;
∙ for 𝑖 = 1, … , 𝑟, the semigroups Γ(ℎ𝑖) ∶= {𝑖0(ℎ𝑖, 𝑤) ∶ 𝑤 ∉ (ℎ𝑖)} and Γ(ℎ̃𝑖) ∶= {𝑖0(ℎ̃𝑖, 𝑤) ∶ 𝑤 ∉
(ℎ̃𝑖)} are equal; and

∙ 𝑖0(ℎ𝑖, ℎ𝑗) = 𝑖0(ℎ̃𝑖, ℎ̃𝑗) for 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑟.

In the reduced case, the above definition is equivalent to the definition of topological equisingu-
larity, that is, there exists a homeomorphism Φ∶ (ℂ2, 0)⟶ (ℂ2, 0) such that Φ({𝑓 = 0}) = {𝑓 =
0} and Φ({g = 0}) = {g̃ = 0}.
For such equisingular pairs of curves𝑄(𝑓, g) = 𝑄(𝑓, g̃). However, the initial Newton polynomi-

als of discriminants do not coincide in general.We prove that they are equal undermore restrictive
assumptions. The main result of this paper is the following theorem.

Theorem 1.1. Let 𝑓, g , 𝑢′, 𝑢′′ ∈ ℂ{𝑥, 𝑦} be convergent power series vanishing at zero such that 𝑓
and g are coprime and let 𝑓 = (1 + 𝑢′)𝑓, g̃ = (1 + 𝑢′′)g . Then the initial Newton polynomials of
discriminants of mappings (𝑓, g) ∶ (ℂ2, 0) → (ℂ2, 0) and (𝑓, g̃) ∶ (ℂ2, 0) → (ℂ2, 0) are equal.

Hence, under assumptions of Theorem 1.1 there exists a factorization 𝐷 = 𝐷1⋯𝐷𝑟 of the
discriminant 𝐷 of the mapping 𝜙 = (𝑓, g) (respectively, a factorization �̃� = �̃�1⋯ �̃�𝑟 of the
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discriminant �̃� of the mapping �̃� = (𝑓, g̃)) such that the Newton diagram of each 𝐷𝑖 is elemen-
tary, the initial Newton polynomial of 𝐷𝑖 is a power of an irreducible polynomial, Δ(𝐷𝑖) = Δ(�̃�𝑖),
and the initial Newton polynomials of 𝐷𝑖 and �̃�𝑖 are equal. This induces Hironaka factorizations
of Jac(𝜙) and Jac(�̃�) which are usually more subtle than minimal Hironaka factorizations.
The structure of the paper is as follows. In Section 2 we study the initial weighted form of a

nonzero power series. We establish in Lemma 2.1 a relation between the intersection multiplici-
ties of this power series with certain test polynomials and the multiplicities of the irreducible fac-
tors of its initial weighted form. In Corollary 3.2, thanks to Casas’ formula, that we recall for the
reader convenience, these multiplicities are expressed in terms of classical equisingularity invari-
ants (Milnor numbers). This allows us in Section 4 to show the key lemma, Lemma 4.2. It states
that some specific plane curve singularities, constructed in terms of 𝑓, g , 𝑓, g̃ , and the test polyno-
mials, are equisingular. The key lemma follows from a classical Zariski equisingularity criterion
of [18]. The main result, Theorem 1.1, is proven in Section 4.1. Finally, we give several corollaries
of the main result. This includes a characterization of the atypical values of the pencils 𝑓𝑘 = 𝑡g 𝑙
and of the asymptotic critical values of the meromorphic functions 𝑓𝑘∕g 𝑙. We also propose an
alternative proof of [6, Theorem 6.6] by an argument similar to the proof of the main result.

2 FACTORIZATION OF THE INITIALWEIGHTED FORM

Let𝐷(𝑢, 𝑣) be a nonzero complex power series and let𝑤 = (𝑘, 𝑙) be a weight vector, where 𝑘, 𝑙 are
coprime positive integers. Then 𝐷 can be written as the sum of quasi-homogeneous polynomials
𝐷 = 𝐷𝑚 + 𝐷𝑚+1 + ⋯, where 𝐷𝑚 ≠ 0 and deg𝑤 𝐷𝑖 = 𝑖 for 𝑖 ⩾ 𝑚. Write 𝐷𝑚 as a product

𝐷𝑚(𝑢, 𝑣) = 𝐶𝑢
𝜈0𝑣𝜈𝑛+1

𝑛∏
𝑖=1

(𝑣𝑘 − 𝑡𝑖𝑢
𝑙)𝜈𝑖 , (2.1)

where 𝑡𝑖 ≠ 0 and 𝑡𝑖 ≠ 𝑡𝑗 for 𝑖 ≠ 𝑗.
The aim of this section is to express the multiplicities 𝜈𝑖 for 1 ⩽ 𝑖 ⩽ 𝑛 by the intersection multi-

plicities of 𝐷 with test polynomials.

Lemma 2.1. Let 𝐻𝑡 = (𝑣𝑘 − 𝑡𝑢𝑙)𝑁 − 𝑢𝑙(𝑁+1). Then for a sufficiently large integer 𝑁 and for every
𝑡 ∈ ℂ∗ such that 𝑡 ≠ 𝑡𝑖 for 1 ⩽ 𝑖 ⩽ 𝑛, one has

𝜈𝑗𝑘𝑙 = 𝑖0(𝐷,𝐻𝑡𝑗 ) − 𝑖0(𝐷,𝐻𝑡).

Proof. For any power series 𝐹(𝑢, 𝑣) denote by in𝑤𝐹 its weighted initial form with respect to the
weight vector 𝑤. By the quasi-homogeneous version of Hensel’s lemma (see, for example, [1,
Lemma A.1]) the power series 𝐷 factors to a product 𝑃𝑄, where in𝑤𝑃 = (𝑣𝑘 − 𝑡𝑗𝑢𝑙)

𝜈𝑗 and in𝑤𝑄 is
not divisible by 𝑣𝑘 − 𝑡𝑗𝑢𝑙.
Take any 𝑁 > 𝜈𝑗𝑘𝑙. In order to compute the intersection multiplicity 𝑖0(𝑃,𝐻𝑡𝑗 ) we will use

the classical Zeuten’s rule 𝑖0(𝑃,𝐻𝑡𝑗 ) =
∑
ord𝑃(𝑢, 𝛼𝑖(𝑢)), where the sum runs over all Newton–

Puiseux roots 𝑣 = 𝛼𝑖(𝑢) of𝐻𝑡𝑗 (𝑢, 𝑣) = 0.
Solving the equation 𝐻𝑡𝑗 (𝑢, 𝑣) = 0 with respect to 𝑣 we get 𝑁𝑘 Newton–Puiseux roots of the

form 𝑣 = 𝛼𝑖(𝑢) = 𝜔 𝑘
√
𝑡𝑗𝑢

𝑙∕𝑘 + higher order terms, where 𝜔𝑘 = 1 and 𝑘
√
𝑡𝑗 is a fixed root of a
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polynomial 𝑌𝑘 − 𝑡𝑗 . We have 𝛼𝑖(𝑢)
𝑘 − 𝑡𝑗𝑢

𝑙 = 𝜖𝑢𝑙(𝑁+1)∕𝑁 , where 𝜖𝑁 = 1. Hence
ord in𝑤𝑃(𝑢, 𝛼𝑖(𝑢)) = 𝜈𝑗𝑙(𝑁 + 1)∕𝑁.
For any quasi-homogeneous polynomial 𝐹(𝑢, 𝑣) with respect to the weight vector 𝑤 we have

ord𝐹(𝑢, 𝛼𝑖(𝑢)) ⩾ (1∕𝑘) deg𝑤 𝐹. Writing 𝑃 as a sum in𝑤𝑃 +
∑∞
𝑑=𝑣𝑗𝑘𝑙+1

𝑃𝑑 of quasi-homogeneous
polynomials and observing that for any 𝑑 ⩾ 𝑣𝑗𝑘𝑙 + 1 we have ord𝑃𝑑(𝑢, 𝛼𝑖(𝑢)) ⩾ (1∕𝑘)𝑑 ⩾
𝜈𝑗𝑙(𝜈𝑗𝑘𝑙 + 1)∕(𝜈𝑗𝑘𝑙) > 𝜈𝑗𝑙(𝑁 + 1)∕𝑁, we get ord𝑃(𝑢, 𝛼𝑖(𝑢)) = 𝜈𝑗𝑙(𝑁 + 1)∕𝑁. By Zeuten’s rule;
𝑖0(𝑃,𝐻𝑡𝑗 ) = (𝑁 + 1)𝜈𝑗𝑘𝑙.
Computing the intersection multiplicity 𝑖0(𝑄,𝐻𝑡𝑗 ) is simpler. Since the polynomials

in𝑤𝑄 and in𝑤𝐻𝑡𝑗 = (𝑣
𝑘 − 𝑡𝑗𝑢

𝑙)𝑁 are coprime, we have ord𝑄(𝑢, 𝛼𝑖(𝑢)) = ord in𝑤𝑄(𝑢, 𝛼𝑖(𝑢)) =
(1∕𝑘) deg𝑤(in𝑤𝑄) for any Newton–Puiseux root 𝛼𝑖(𝑢) of 𝐻𝑡𝑗 (𝑢, 𝑣) = 0. By Zeuten’s rule we get
𝑖0(𝑄,𝐻𝑡𝑗 ) = 𝑁 deg𝑤(in𝑤𝑄).
Analogously, we obtain 𝑖0(𝑃,𝐻𝑡) = 𝑁 deg𝑤(in𝑤𝑃) = 𝑁𝜈𝑗𝑘𝑙 and 𝑖0(𝑄,𝐻𝑡) = 𝑁 deg𝑤(in𝑤𝑄).

Finally 𝑖0(𝐷,𝐻𝑡𝑗 ) − 𝑖0(𝐷,𝐻𝑡) = 𝑖0(𝑃,𝐻𝑡𝑗 ) + 𝑖0(𝑄,𝐻𝑡𝑗 ) − 𝑖0(𝑃,𝐻𝑡) − 𝑖0(𝑄,𝐻𝑡)) = 𝜈𝑗𝑘𝑙 which ends
the proof. □

3 CASAS’ FORMULA

Consider the following result of Casas-Alvero, which provides a very useful formula.

Theorem3.1 [3, Theorem 3.2]. Let (𝑓, g) ∶ (ℂ2, 0) → (ℂ2, 0) be the germ of a holomorphicmapping
such that (𝑓, g)−1(0, 0) = {(0, 0)}. Let𝐷(𝑢, 𝑣) = 0 be the discriminant of (𝑓, g). Take any curve germ
𝐻(𝑢, 𝑣) = 0 and let ℎ(𝑥, 𝑦) = 𝐻(𝑓(𝑥, 𝑦), g(𝑥, 𝑦)). Then

𝜇(ℎ) − 1 = 𝑖0(𝑓, g)[𝜇(𝐻) − 1] + 𝑖0(𝐷,𝐻),

where 𝜇(ℎ) denotes the Milnor number of the curve ℎ = 0 at the origin.

From the above theorem we obtain a crucial corollary, which is used in the proof of the main
result of this article.

Corollary 3.2. Let (𝑓, g) ∶ (ℂ2, 0) → (ℂ2, 0) be the germ of a holomorphic mapping such that
(𝑓, g)−1(0, 0) = {(0, 0)}. Let 𝐷(𝑢, 𝑣) = 0 be the discriminant curve of (𝑓, g) and ℎ𝑡 = (g𝑘 − 𝑡𝑓𝑙)𝑁 −
𝑓𝑙(𝑁+1) for 𝑁 > 1. Then, under the notation of (2.1), for 𝑁 ≫ 1 and 𝑡 ∈ ℂ∗ different from 𝑡1, … , 𝑡𝑛,
we have 𝜈𝑗𝑘𝑙 = 𝜇(ℎ𝑡𝑗 ) − 𝜇(ℎ𝑡).

Proof. It is enough to apply Casas’ formula to 𝐻𝑡𝑗 and𝐻𝑡 as defined in Lemma 2.1. □

4 KEY LEMMAAND THE PROOF OF THEMAIN RESULT

The proof of themain result is based on Lemma 4.2 that says that for𝑁 sufficiently large the curves
ℎ = (g − 𝑓)𝑁 − 𝑓𝑁+1 = 0 and ℎ̃ = (g̃ − 𝑓)𝑁 − 𝑓𝑁+1 = 0 are equisingular. To show this, it is suf-
ficient to establish that ℎ and ℎ̃ can be resolved or just simplified by combinatorially equivalent
modifications in the sense that we now recall.
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By Zariski [18, Section 3], two reduced plane curve singularities 𝐶 and 𝐷 at the origin are equi-
singular, or equivalent in Zariski’s terminology, if there is a pairing 𝜋 between their branches
𝜋(𝛾𝑖) = 𝛿𝑖 , where 𝛾1, … , 𝛾𝑠 are the branches of 𝐶 and 𝛿1, … , 𝛿𝑠 the ones of 𝐷, that makes both
their proper and total transforms by the blowing-up of the origin equivalent; see [18, Definition
3]. This pairing has to be tangentially stable, that is two branches 𝛾𝑖, 𝛾𝑗 are tangent at the origin if
and only if so are the corresponding branches 𝛿𝑖, 𝛿𝑗 . It is easy to see that this equivalence extends
to the nonreduced plane curve singularities just requiring that the multiplicities of branches are
preserved by the pairing.
We call amodification the composition of a finite sequence of point blowings-up of (ℂ2, 0), that

is, all the centers live over the origin. Let us order the centers in the order the blowings-up are
performed (this order may be not unique, the blowings-up of different points on the same space
can be performed in any order), and hence order the irreducible components of the exceptional
divisors by their age. We call two such modifications combinatorily equivalent if at the process of
blowings-up the 𝑘th centers of bothmodifications belong to the divisors with corresponding ages.

Lemma 4.1. Two plane curve singularities 𝐶 and 𝐷 are equisingular if there exists combinatorily
equivalentmodifications of𝐶 and𝐷 anda bijection between the singularities of their total transforms
(�̃�) and (�̃�), such that the corresponding singularities �̃�, 𝑝, �̃�, 𝑞 are equivalent by pairings that sends
the irreducible components of exceptional divisors to the components of the same age.

Proof. It follows by the descending induction on the number of blowings-up in the modifications
and therefore it suffices to show it for a single blowing-up. Then it follows from [18, Definition
3]. Indeed, a bijection between the singularities of �̃�, �̃�, and the pairings between their branches
sending the exceptional divisor to the exceptional divisor, gives a pairing between the branches of
𝐶 and 𝐷. This pairing is tangentially stable by construction, two branches are tangent if and only
if their strict transforms belong to the same singularity of the blow-up space. The other conditions
of [18, Definition 3] are immediate. □

Lemma 4.2 (Key lemma). Let 𝑓, g , 𝑢′, 𝑢′′ ∈ ℂ{𝑥, 𝑦} be convergent power series vanishing at zero
such that 𝑓 and g are coprime and let 𝑓 = (1 + 𝑢′)𝑓, g̃ = (1 + 𝑢′′)g . Then for sufficiently large inte-
ger𝑁 the curves (g − 𝑓)𝑁 − 𝑓𝑁+1 = 0 and (g̃ − 𝑓)𝑁 − 𝑓𝑁+1 = 0 are equisingular.

Proof. Let 𝑅 ∶ 𝑀 → (ℂ2, 0) be a resolution of singularities of the curve 𝑓g(g − 𝑓)(g̃ − 𝑓) = 0.
We show, for 𝑁 sufficiently large, that the total transforms of ℎ ∶= (g − 𝑓)𝑁 − 𝑓𝑁+1 = 0 and
ℎ̃ ∶= (g̃ − 𝑓)𝑁 − 𝑓𝑁+1 = 0 by 𝑅 have locally equivalent singularities by pairings that preserve the
components of the exceptional divisor. Then the lemma will follow from Lemma 4.1.
The total transform 𝑅−1({𝑓g(g − 𝑓)(g̃ − 𝑓) = 0}) can be written as the union of irreducible

components 𝐸1 ∪⋯ ∪ 𝐸𝑛 ∪ 𝐸𝑛+1 ∪⋯ ∪ 𝐸𝑚, where 𝐸 = 𝐸1 ∪⋯ ∪ 𝐸𝑛 is the exceptional divisor
𝑅−1(0) and 𝐸𝑛+1, ..., 𝐸𝑚 are the components of the proper transform of the curve 𝑓g(g − 𝑓)(g̃ −
𝑓) = 0. By abuse of notation we will use the same symbols for germs of functions on (ℂ2, 0) and
for their pull-backs to𝑀.
For 𝑖 = 1, … ,𝑚 we denote the orders of 𝑓, g , g − 𝑓, 𝑓, g̃ , g̃ − 𝑓 along 𝐸𝑖 by

𝑎𝑖, 𝑏𝑖, 𝑐𝑖, �̃�𝑖 , �̃�𝑖 , 𝑐𝑖 , respectively.
Take any point 𝑃 of 𝐸𝑖 , where 𝑖 ∈ {1, … ,𝑚}. If 𝑃 is a smooth point of the total divisor, and 𝐸𝑖 in a

neighborhood of 𝑃 has a local equation 𝑥 = 0, then 𝑓 = 𝐴𝑥𝑎𝑖 and 𝑓 = (1 + 𝑢′)𝑓 = �̃�𝑥�̃�𝑖 , where𝐴
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and �̃� do not vanish at 𝑃. Hence �̃�𝑖 = 𝑎𝑖 . Moreover, if 𝐸𝑖 is a component of the exceptional divisor,
then �̃�|𝐸𝑖 = 𝐴|𝐸𝑖 , since 𝑢′|𝐸𝑖 = 0. Similarly, we obtain �̃�𝑖 = 𝑏𝑖 .
Choose 𝑁 big enough so that for all 𝑖 ∈ {1, … , 𝑛} we have 𝑁𝑐𝑖 > (𝑁 + 1)𝑎𝑖 if 𝑐𝑖 > 𝑎𝑖 and 𝑁𝑐𝑖 >

(𝑁 + 1)𝑎𝑖 if 𝑐𝑖 > 𝑎𝑖 . This is for instance the case if 𝑁 > max{𝑎𝑖 ∶ 1 ⩽ 𝑖 ⩽ 𝑛}. Under this assump-
tion the orders of meromorphic functions 𝐹 = (g − 𝑓)𝑁∕𝑓𝑁+1 and �̃� = (g̃ − 𝑓)𝑁∕𝑓𝑁+1 along the
components of the exceptional divisor are different from zero. Hence the proper preimage of the
curve ℎ = 0 (respectively, ℎ̃ = 0), which, in the complement of the exceptional divisor, coincides
with 𝐹 = 1 (respectively, �̃� = 1), does not intersect the exceptional divisor at the smooth points of
the total transform.
Take the intersection point 𝑃 of a component 𝐸𝑖 of the exceptional divisor with 𝐸𝑗 , where

1 ⩽ 𝑗 ⩽ 𝑚, 𝑗 ≠ 𝑖. Choose a local analytic coordinate system (𝑥, 𝑦) centered at 𝑃 such that 𝐸𝑖
has equation 𝑥 = 0 and 𝐸𝑗 has equation 𝑦 = 0. In these coordinates 𝑓 = 𝐴𝑥𝑎𝑖𝑦

𝑎𝑗 , g = 𝐵𝑥𝑏𝑖𝑦𝑏𝑗 ,
g − 𝑓 = 𝐶𝑥𝑐𝑖𝑦𝑐𝑗 , 𝑓 = �̃�𝑥𝑎𝑖𝑦𝑎𝑗 , g̃ = �̃�𝑥𝑏𝑖𝑦𝑏𝑗 , and g̃ − 𝑓 = �̃�𝑥𝑐𝑖 𝑦𝑐𝑗 , where𝐴, 𝐵, 𝐶, �̃�, �̃�, �̃� are germs
of holomorphic functions that do not vanish at 𝑃. It follows from [20], the first paragraph of proof
of Proposition 2.1, see also [2, Lemma 4.7], that the set of pairs {(𝑎𝑖, 𝑎𝑗), (𝑏𝑖, 𝑏𝑗), (𝑐𝑖, 𝑐𝑗)} is totally
ordered, with respect to the partial order (𝑎, 𝑎′) ⩽ (𝑏, 𝑏′) if 𝑎 ⩽ 𝑏 and 𝑎′ ⩽ 𝑏′, and two of these
pairs are equal and are less than or equal to the third one.
In the sequel we denote by 𝑜— any nonvanishing germ of a holomorphic function.
Let us write the equation of

ℎ = (g − 𝑓)𝑁 − 𝑓𝑁+1 = 𝑜—𝑥𝑁𝑐𝑖𝑦𝑁𝑐𝑗 − 𝑜—𝑥(𝑁+1)𝑎𝑖 𝑦(𝑁+1)𝑎𝑗

in a neighborhood of 𝑃.
We have the following possibilities.

(I) (𝑏𝑖, 𝑏𝑗) > (𝑎𝑖, 𝑎𝑗)
Then (𝑐𝑖, 𝑐𝑗) = (𝑐𝑖, 𝑐𝑗) = (𝑎𝑖, 𝑎𝑗) and we get

ℎ = 𝑜— ℎ̃ = 𝑜—𝑥𝑁𝑎𝑖𝑦𝑁𝑎𝑗 .

(II) (𝑏𝑖, 𝑏𝑗) < (𝑎𝑖, 𝑎𝑗)
Then (𝑐𝑖, 𝑐𝑗) = (𝑐𝑖, 𝑐𝑗) = (𝑏𝑖, 𝑏𝑗) and we get

ℎ = 𝑜— ℎ̃ = 𝑜—𝑥𝑁𝑏𝑖𝑦𝑁𝑏𝑗 .

(III) (𝑏𝑖, 𝑏𝑗) = (𝑎𝑖, 𝑎𝑗)
Then (𝑐𝑖, 𝑐𝑗) ⩾ (𝑎𝑖, 𝑎𝑗) and (𝑐𝑖, 𝑐𝑗) ⩾ (𝑎𝑖, 𝑎𝑗) and we get

ℎ = 𝑥𝑁𝑎𝑖𝑦𝑁𝑎𝑗 ( 𝑜—𝑥𝑁(𝑐𝑖−𝑎𝑖)𝑦𝑁(𝑐𝑗−𝑎𝑗) − 𝑜—𝑥𝑎𝑖𝑦𝑎𝑗 )

and similarly for ℎ̃.

Write g − 𝑓 = (𝐵 − 𝐴)𝑥𝑎𝑖𝑦𝑎𝑗 and g̃ − 𝑓 = (�̃� − �̃�)𝑥𝑎𝑖𝑦𝑎𝑗 .
Let us consider two subcases of (III).
First, assume that 𝐸𝑗 is a component of the exceptional divisor. Then 𝑎𝑗 = 𝑏𝑗 > 0. Since 𝐴 and

�̃� are equal on the exceptional divisor, we have𝐴(0, 𝑦) = �̃�(0, 𝑦) and𝐴(𝑥, 0) = �̃�(𝑥, 0). The same
equations hold for𝐵 and �̃�. It follows that theNewton diagrams of𝐵 − 𝐴 and �̃� − �̃� have the same
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intersection points with the coordinate axes. Moreover, 𝐵 − 𝐴 and �̃� − �̃� are factors of g − 𝑓 or
g̃ − 𝑓 and hence their Newton diagrams have only one vertex.
If (0,0) is the vertex of the Newton diagram Δ of �̃� − �̃�, then 𝑐𝑖 = 𝑐𝑖 = 𝑎𝑖 and 𝑐𝑗 = 𝑐𝑗 = 𝑎𝑗 ,

what implies that ℎ = 𝑜—𝑥𝑁𝑎𝑖𝑦𝑁𝑎𝑗 . If (𝑎, 0) is the vertex of Δ for some 𝑎 > 0, then 𝑐𝑖 = 𝑐𝑖 > 𝑎𝑖
and 𝑐𝑗 = 𝑐𝑗 = 𝑎𝑗 , what means that ℎ = 𝑥(𝑁+1)𝑎𝑖 𝑦

𝑁𝑎𝑗 ( 𝑜—𝑥𝑁(𝑐𝑖−𝑎𝑖)−𝑎𝑖 − 𝑜— 𝑦𝑎𝑗 ). Similarly we have
in the case, when (0, 𝑏) is the vertex of Δ for some 𝑏 > 0. The last possibility is, when the vertex
of Δ is of the form (𝑎, 𝑏) for some 𝑎, 𝑏 > 0. In this case we have that 𝑐𝑖 > 𝑎𝑖 , 𝑐𝑖 > 𝑎𝑖 , 𝑐𝑗 > 𝑎𝑗 and
𝑐𝑗 > 𝑎𝑗 . Consequently, by the assumption on𝑁, both ℎ and ℎ̃ are of the form 𝑜—𝑥(𝑁+1)𝑎𝑖 𝑦(𝑁+1)𝑎𝑗 ,
and hence they are equisingular.
Next, assume that 𝐸𝑗 is not a component of the exceptional divisor. Then 𝐸𝑗 is a component

of the proper transform of (g − 𝑓)(g̃ − 𝑓) = 0 and 𝑎𝑗 = 𝑏𝑗 = 0. Without loss of generality we may
assume that 𝐸𝑗 ⊂ {g − 𝑓 = 0}. Then 𝑐𝑗 > 0 and 𝑐𝑗 ⩾ 0. Write 𝐵 − 𝐴 = 𝑜—𝑥𝑎𝑦𝑐𝑗 , where 𝑎 = 𝑐𝑖 − 𝑎𝑖 ,
and �̃� − �̃� = 𝑜—𝑥�̃�𝑦𝑐𝑗 , where �̃� = 𝑐𝑖 − �̃�𝑖 . Since 𝐴|𝐸𝑖 = �̃�|𝐸𝑖 , we have 𝐴(0, 𝑦) = �̃�(0, 𝑦) and sim-
ilarly 𝐵(0, 𝑦) = �̃�(0, 𝑦). Therefore, 𝑎 = 0 if and only if �̃� = 0 and if this is the case 𝑐𝑗 = 𝑐𝑗 . Then
ℎ = 𝑥𝑁𝑎𝑖 ( 𝑜— 𝑦𝑁𝑐𝑗 − 𝑜—𝑥𝑎𝑖 ) and a similar formula holds for ℎ̃. Therefore they are equisingular.
If 𝑎 and �̃� are both strictly positive then, by the assumption on𝑁, both ℎ and ℎ̃ are of the form

𝑥(𝑁+1)𝑎𝑖 ( 𝑜—𝑥𝑁(𝑐𝑖−𝑎𝑖)−𝑎𝑖 𝑦𝑁𝑐𝑗 − 𝑜— ) = 𝑜—𝑥(𝑁+1)𝑎𝑖 and hence equisingular. □

Corollary 4.3. Let 𝑓, g , 𝑢′, 𝑢′′ ∈ ℂ{𝑥, 𝑦} be convergent power series vanishing at zero such that 𝑓
and g are coprime and let𝑓 = (1 + 𝑢′)𝑓, g̃ = (1 + 𝑢′′)g . Then for any positive integers 𝑘 and 𝑙, 𝑡 ≠ 0,
and sufficiently large integer𝑁, depending on𝑘 and 𝑙, the curvesℎ𝑡 = (g𝑘 − 𝑡𝑓𝑙)𝑁 − 𝑓𝑙(𝑁+1) = 0and
ℎ̃𝑡 = (g̃𝑘 − 𝑡𝑓𝑙)𝑁 − 𝑓𝑙(𝑁+1) = 0 are equisingular.

Proof. It is enough to apply Lemma 4.2 to 𝑓1 = 𝑡𝑓𝑙, g1 = g𝑘 and 𝑓1 = 𝑡𝑓𝑙, g̃1 = g̃𝑘. □

Now, we are ready to prove the main result.

4.1 Proof of Theorem 1.1

Let 𝐷(𝑢, 𝑣) = 0 be the discriminant of (𝑓, g) ∶ (ℂ2, 0) → (ℂ2, 0) and let �̃�(𝑢, 𝑣) = 0 be the dis-
criminant of (𝑓, g̃) ∶ (ℂ2, 0) → (ℂ2, 0). Let 𝑤 = (𝑘, 𝑙) be an arbitrary weight vector, where
𝑘, 𝑙 are coprime positive integers. Write in𝑤𝐷 = 𝐶𝑢𝜈0𝑣𝜈𝑛+1

∏𝑛
𝑖=1(𝑣

𝑘 − 𝑡𝑖𝑢
𝑙)𝜈𝑖 and in𝑤�̃� =

�̃�𝑢𝜂0𝑣𝜂𝑛+1
∏𝑛
𝑖=1(𝑣

𝑘 − 𝑡𝑖𝑢
𝑙)𝜂𝑖 . By [7, Theorem 2.1] theNewton diagrams of𝐷 and �̃� coincide. Hence

𝜈0 = 𝜂0, 𝜈𝑛+1 = 𝜂𝑛+1 and it is enough to prove that 𝜈𝑖 = 𝜂𝑖 for 1 ⩽ 𝑖 ⩽ 𝑛. This follows from Corol-
lary 3.2 since by Corollary 4.3 for 𝑡 ≠ 0 one has 𝜇(ℎ𝑡) = 𝜇(ℎ̃𝑡). This ends the proof.

5 COROLLARIES

As a direct consequence we obtain the following result.

Corollary 5.1. Under assumptions of Theorem 1.1 the discriminants of (𝑓, g) and (𝑓, g̃) have the
same tangents.

The next corollary concerns the atypical values of the pencils g𝑘 − 𝑡𝑓𝑙 = 0 and the asymptotic
critical values of the meromorphic functions g𝑘∕𝑓𝑙.
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Corollary 5.2. Under the assumptions of Theorem 1.1, for every pair of coprime positive integers 𝑘, 𝑙
we have

(i) the pencils g𝑘 − 𝑡𝑓𝑙 = 0 and g̃𝑘 − 𝑡𝑓𝑙 = 0, where 𝑡 ∈ ℂ is a parameter, have the same sets of
atypical values;

(ii) the meromorphic functions g𝑘∕𝑓𝑙 and g̃𝑘∕𝑓𝑙 have the same asymptotic critical values; and
(iii) the generic fibers of g𝑘∕𝑓𝑙 and g̃𝑘∕𝑓𝑙 are equisingular.

Proof. To verify (i) we apply Casas’ formula to 𝐻𝑡 = 𝑣𝑘 − 𝑡𝑢𝑙 to show that these families are 𝜇-
constant for 𝑡 ≠ 𝑡𝑖 , 𝑖 = 1, … , 𝑛.
To show (ii) let us recall after [10, Section 5], that 𝑡0 ∈ ℂ ∪∞ is an assymptotic critical value of

𝐹 = 𝑓∕g at the origin if there is a sequence of points (𝑥𝑘, 𝑦𝑘)
𝑘→∞
VVVVV→ (0, 0), (𝑥𝑘, 𝑦𝑘) ≠ (0, 0), such

that ‖(𝑥𝑘, 𝑦𝑘)‖‖∇𝐹‖→ 0 and𝐹(𝑥𝑘, 𝑦𝑘) → 𝑡0. Therefore if �̃� = 𝑢𝐹, with 𝑢(0) = 1, then an elemen-
tary computation shows that the asymptotic critical values of �̃� and 𝐹 coincide.
Now we show the equivalence of (i) and (ii) thus providing for both of them alternative proofs.

That is, we show that the set of asymptotic critical values of 𝐹 = 𝑓∕g coincide with the atypical
values 𝑡 of the pencil 𝑓 − 𝑡g . Indeed, an elementary computation, see [10, Proposition 5.1], shows
that 𝑡0 is the asymptotic critical value if and only if the Kuo–Verdier condition (w) fails at (0, 0, 𝑡0)
for the strata (𝑅𝑒g𝑋, 𝑇), where 𝑅𝑒g𝑋 is the regular part of 𝑋 = 𝑉(𝑓 − 𝑡g) and 𝑇 is the 𝑡-axis. On
the other hand, it is well known that for families of isolated plane curve singularities that their
equisingularity is equivalent toWhitney equisingularity, see [19, Theorem 8.1], and in the complex
domain the Kuo–Verdier condition is equivalent to Whitney’s conditions; see [17]. For a direct
elementary proof that 𝜇-constant condition is equivalent to Verdier condition for the families of
curve singularities 𝑓 − 𝑡g ; see [9, Theorem 4.1].
Finally, to show (iii) we may again apply Casas’ formula to the deformations 𝑠(g𝑘 − 𝑡𝑓𝑙) + (1 −

𝑠)(g̃𝑘 − 𝑡𝑓𝑙) with the parameter 𝑠 ∈ ℂ. □

Corollary 5.3. Let (𝑓, g)∶ (ℂ2, 0)⟶ (ℂ2, 0) be a holomorphic mapping with an isolated zero.
Then the initial Newton polynomial of its discriminant is determined, up to rescaling variables, by
the ideals (𝑓) and (g) in ℂ{𝑥, 𝑦}.

Proof. Let 𝑢1, 𝑢2 ∈ ℂ{𝑥, 𝑦} be power series with nonzero constant terms. Let 𝑎 = 𝑢1(0, 0) and
𝑏 = 𝑢2(0, 0). If 𝐷 (respectively, 𝐷1) is the discriminant of (𝑓, g)∶ (ℂ2, 0)⟶ (ℂ2, 0) (respec-
tively, (𝑎𝑓, 𝑏g)∶ (ℂ2, 0)⟶ (ℂ2, 0)) then 𝐷(𝑎𝑢, 𝑏𝑣) = 𝐷1(𝑢, 𝑣). Hence by Theorem 1.1 applied
to (𝑎𝑓, 𝑏g) and (𝑢1𝑓, 𝑢2g), the initial Newton polynomials of the discriminants of (𝑓, g) and
(𝑢1𝑓, 𝑢2g) are equal up to rescaling variables. □

As an application of themethods used in this paper we present a new proof of [6, Theorem 6.6].

Theorem 5.4 [6, Theorem 6.6]. Let ℎ = 0 be a unitangent singular curve and let 𝓁1 = 0, 𝓁2 = 0 be
smooth curves transverse to ℎ = 0. Then there exists a nonzero constant 𝑑 ∈ ℂ such that the ini-
tial Newton polynomials of discriminants of mappings (𝑑𝓁1, ℎ) ∶ (ℂ2, 0) → (ℂ2, 0) and (𝓁2, ℎ) ∶
(ℂ2, 0) → (ℂ2, 0) are equal.

Keep the assumptions of Theorem 5.4 and let 𝑑 be the limit at the origin of the meromor-
phic function 𝓁2∕𝓁1 restricted to the tangent to the curve ℎ = 0. Fix positive integers 𝑘, 𝑙 and
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a nonzero complex constant 𝑡. Let 𝑓 = 𝑡ℎ𝑙, g = (𝑑𝓁1)𝑘, and g̃ = 𝓁𝑘
2
. In order to prove Theorem 5.4

it is enough to have the following counterpart of Lemma 4.2 (see the proof of Theorem 1.1).

Lemma 5.5. For sufficiently large integer 𝑁 the curves (g − 𝑓)𝑁 − 𝑓𝑁+1 = 0 and (g̃ − 𝑓)𝑁 −
𝑓𝑁+1 = 0 are equisingular.

Proof. Let 𝜎 ∶ 𝑀 → (ℂ2, 0) be the blowing-up of ℂ2 at the origin. Then the proper transforms of
the curves 𝑓 = 0, g = 0, g̃ = 0 intersect the exceptional divisor 𝐸 at points 𝑃, 𝑄, �̃�, respectively (if
g = 0 and g̃ = 0 have the same tangent, then 𝑄 = �̃�).
Let 𝑅 ∶ 𝑀1 → 𝑀 be a resolution of singularities of the curve 𝑓g(g − 𝑓)(g̃ − 𝑓) = 0 at 𝑃. By

Zariski’s criterion, Lemma 4.1, it is enough to prove that the total and the proper transforms of
the curves (g − 𝑓)𝑁 − 𝑓𝑁+1 = 0 and (g̃ − 𝑓)𝑁 − 𝑓𝑁+1 = 0 by 𝑅◦𝜎 are equisingular. To prove the
equisigularity on 𝑅−1(𝑃) ⧵ 𝐸 it is enough to use the arguments from the proof of Lemma 4.2 since
the meromorphic function g̃∕g is constant and equal to 1 on the set 𝑅−1(𝑃). Thus it remains to
show that the equisingularity classes of these curves are the same on the component 𝐸 of the
exceptional divisor.
Denote now by 𝐸 the strict transform of the original exceptional divisor 𝐸 of 𝜎 and let now 𝑃

denote the intersection of 𝐸 and another component 𝐸′ of the exceptional divisor of 𝑅◦𝜎. Choose
a local analytic coordinate system (𝑥, 𝑦) centered at 𝑃 such that 𝐸 has equation 𝑥 = 0 and 𝐸′
has equation 𝑦 = 0. In these coordinates 𝑓 = 𝑜—𝑥𝑎𝑦𝑎

′ , g = 𝑜—𝑥𝑏𝑦𝑏
′ , g̃ = 𝑜—𝑥𝑏𝑦𝑏

′ , and g − 𝑓 =
𝑜—𝑥𝑐𝑦𝑐

′ . The set {(𝑎, 𝑎′), (𝑏, 𝑏′), (𝑐, 𝑐′)} is again totally ordered as in the proof of Key Lemma, and
two of these pairs are equal and are less than or equal to the third one.
The case (𝑎, 𝑎′) = (𝑏, 𝑏′) is impossible. Indeed, if (𝑎, 𝑎′) = (𝑏, 𝑏′) then g∕𝑓 restricted to 𝐸 is a

meromorphic function which has a zero of order 𝑏 > 0 at 𝑄 and has no poles – contradiction.
If (𝑎, 𝑎′) < (𝑏, 𝑏′) then (𝑐, 𝑐′) = (𝑎, 𝑎′) and we get

(g − 𝑓)𝑁 − 𝑓𝑁+1 = 𝑜—𝑥𝑁𝑎𝑦𝑁𝑎
′
.

If (𝑏, 𝑏′) < (𝑎, 𝑎′) then (𝑐, 𝑐′) = (𝑏, 𝑏′) and we get

(g − 𝑓)𝑁 − 𝑓𝑁+1 = 𝑜—𝑥𝑁𝑏𝑦𝑁𝑏
′
.

Now, we will determine the class of equisingularity of (g − 𝑓)𝑁 − 𝑓𝑁+1 = 0 at points of 𝐸 dif-
ferent from 𝑃 and 𝑄. Choose a local analytic coordinate system (𝑥, 𝑦) centered at one of such a
point such that 𝐸 has equation 𝑥 = 0. Then 𝑓 = 𝑜—𝑥𝑎 and g = 𝑜—𝑥𝑏.
If 𝑎 < 𝑏 then

(g − 𝑓)𝑁 − 𝑓𝑁+1 = 𝑜—𝑥𝑁𝑎.

If 𝑏 < 𝑎 then

(g − 𝑓)𝑁 − 𝑓𝑁+1 = 𝑜—𝑥𝑁𝑏.

If 𝑎 = 𝑏 then the meromorphic function 𝐹 = g∕𝑓 restricted to 𝐸 has exactly one zero of order 𝑏
at 𝑄 and exactly one pole at 𝑃. Hence every nonzero complex number, in particular 1, is a regular
value of 𝐹|𝐸 . As a consequence the set (𝐹|𝐸)−1(1) consists of 𝑏 points 𝑃𝑖 , 1 ⩽ 𝑖 ⩽ 𝑏 and at each of
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these points the curve 𝐹 = 1 intersects 𝐸 transversally. Thus, for every 𝑖 ∈ {1, … 𝑏} we may find a
local analytic coordinate system (𝑥, 𝑦) centered at 𝑃𝑖 such that g − 𝑓 = 𝑥𝑎𝑦. We get in the neigh-
borhood of 𝑃𝑖 a local equation

(g − 𝑓)𝑁 − 𝑓𝑁+1 = 𝑥𝑁𝑎(𝑦𝑁 − 𝑜—𝑥𝑎).

Finally, wewill determine the equisingularity class of (g − 𝑓)𝑁 − 𝑓𝑁+1 = 0 at𝑄. Choose a local
analytic coordinate system (𝑥, 𝑦) centered at 𝑄 such that 𝑓 = 𝑥𝑎 and g = 𝑥𝑏𝑦𝑏 in the neighbor-
hood of 𝑄.
If 𝑎 ⩽ 𝑏 then

(g − 𝑓)𝑁 − 𝑓𝑁+1 = 𝑜—𝑥𝑁𝑎.

If 𝑎 > 𝑏 then

(g − 𝑓)𝑁 − 𝑓𝑁+1 = 𝑥𝑁𝑏[(𝑦𝑏 − 𝑥𝑎−𝑏)𝑁 − 𝑥(𝑎−𝑏)𝑁+𝑎]

and its equisingularity type is uniquely determined by 𝑎, 𝑏,𝑁. □

Corollary 5.6. Let 𝑓 = 0 be a unitangent singular curve and let 𝓁 = 0 be a smooth curve transverse
to 𝑓 = 0. Then the initial Newton polynomial of the discriminant of the mapping (𝓁, 𝑓) ∶ (ℂ2, 0) →
(ℂ2, 0) is determined, up to rescaling variables by the ideal (𝑓) ⊂ ℂ{𝑥, 𝑦}.
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