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Abstract
We investigate connections between Lipschitz geometry of real algebraic varieties and
properties of their arc spaces. For this purpose we develop motivic integration in the
real algebraic set-up.We construct amotivicmeasure on the space of real analytic arcs.
We use thismeasure to define a realmotivic integralwhich admits a change of variables
formula not only for the birational but also for generically one-to-one Nash maps. As
a consequence we obtain an inverse mapping theorem which holds for continuous
rational maps and, more generally, for generically arc-analytic maps. These maps
appeared recently in the classification of singularities of real analytic function germs.
Finally, as an application, we characterize in terms of the motivic measure, germs of
arc-analytic homeomorphism between real algebraic varieties which are bi-Lipschitz
for the inner metric.
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Adam.Parusinski@unice.fr

Extended author information available on the last page of the article

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00208-019-01805-8&domain=pdf
http://orcid.org/0000-0002-8203-2561


212 J.-B. Campesato et al.

1 Introduction

In this paper we establish relations between the arc space and the Lipschitz geometry
of a singular real algebraic variety.

The interest in the Lipschitz geometry of real analytic and algebraic spaces emerged
in the 70’s of the last century by a conjecture of Siebenmann and Sullivan: there are
only countably many local Lipschitz structures on real analytic spaces. Subsequently
the Lipschitz geometry of real and complex algebraic singularities attracted much
attention and various methods have been developed to study it: stratification theory
[34,38], L-regular decompositions [24,26,39,43], Lipschitz triangulations [47], non-
archimedean geometry [16], and recently, in the complex case, resolution and low
dimensional topology [4]. In the algebraic case Siebenmann and Sullivan’s conjecture
was proved in [37]. The general analytic case was solved in [48].

In this paper we study various versions of Lipschitz inversemapping theorems, with
respect to the inner distance, for homeomorphisms f : X → Y between (possibly
singular) real algebraic set germs. Recall that a connected real algebraic, and more
generally a connected semialgebraic, subset X ⊂ R

N is path-connected (by rectifiable
curves), so we have an inner distance on X , defined by the infimum over the length
of rectifiable curves joining two given points in X .

We assume that the homeomorphism f is semialgebraic and generically arc-
analytic. For instance the recently studied continuous rational maps [20–22] are of
this type.

Arc-analytic mappings were introduced to real algebraic geometry in [23]. Those
are the mappings sending by composition real analytic arcs to real analytic arcs. It was
shown in [2,40] that the semialgebraic arc-analytic mappings coincide with the blow-
Nash mappings. Moreover, by [42], real algebraic sets admit algebraic stratifications
with local semialgebraic arc-analytic triviality along each stratum.

What we prove can be stated informally as follows: if f −1 is Lipschitz, then so is
f itself. The problem is non-trivial even when the germs (X , x) and (Y , y) are non-
singular [14]. When these germs are singular, then the problem is much more delicate.
In fact we have to assume that the motivic measures of the real analytic arcs drawn on
(X , x) and (Y , y) are equal.

Developing a rigorous theory of motivic measure on the space of real analytic arcs
for real algebraic sets is another main goal of this paper.

We state below a concise version of our main results. For more precise and more
general statements see Theorems 4.13 and 5.10.

Theorem Let f : (X , x) → (Y , y) be the germ of a semialgebraic generically arc-
analytic homeomorphism between two real algebraic set germs, that are of pure
dimension1 d. Assume that the motivic measures of the real analytic arcs centered
at x in X and of the real analytic arcs centered at y in Y are equal (see Sect. 3 for the
definition of the motivic measure). Then

1. If the Jacobian determinant of f is bounded from below then it is bounded from
above and f −1 is generically arc-analytic.

1 For ease of reading, in the introduction we avoid varieties admitting points which have a structure of
smooth submanifold of smaller dimension as in the handle of the Whitney umbrella {x2 = zy2} ⊂ R

3.
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2. If the inverse f −1 of f is Lipschitz with respect to the inner distance then so is f .

The proof of this theorem is based on motivic integration. Recall that in the case
of complex algebraic varieties, motivic integration was introduced by Kontsevitch for
non-singular varieties in order to avoid the use of p-adic integrals. Then the theory was
developped and extended to the singular case in [1,10,11,29]. The motivic measure
is defined on the space of formal arcs drawn on an algebraic variety and takes values
in a Grothendieck ring which encodes all the additive invariants of the underlying
category. One main ingredient consists in reducing the study to truncated arcs in order
to work with finite dimensional spaces. Notice that since the seminal paper of Nash
[36], it has been established that the arc space of a variety encodes a great deal of
information about its singularities.

In the real algebraic set-up, arguments coming from motivic integration were used
in [8,9,12,19] to study and classify the singularities of real algebraic function germs.

In the present paper we construct a motivic measure and a motivic integral for
possibly singular real algebraic varieties. Similarly to the complex case, the motivic
integral comes together with a change of variables formula which is convenient to
do actual computations in terms of resolution of singularities. In our real algebraic
set-up this formula holds for generically one-to-one Nash maps and not merely for the
birational ones.

A first difference of the present construction compared to the complex one, is that
we work with real analytic arcs and not with all formal arcs. However, thanks to Artin
approximation theorem, this difference is minor. More importantly, it is not possible
to follow exactly the construction of the motivic measure in the complex case because
of several additional difficulties arising from the absence in the real set-up of the
Nullstellensatz and of the theorem of Chevalley (the image of a Zariski-constructible
set by a regular mapping is Zariski-constructible).

The real motivic measure and the real motivic integral are constructed and studied
in Sect. 3.

2 Geometric framework

Throughout this paper, we say that a subset X ⊂ R
N is an algebraic set if it is closed

for the Zariski topology, i.e. X may be described as the intersection of the zero sets
of polynomials with real coefficients. We denote by I (X) the ideal of R[x1, . . . , xN ]
consistingof thepolynomials vanishingon X . Bynoetherianity,wemayalways assume
that the above intersection is indexed by a finite set2 and that I (X) = ( f1, . . . , fs) is
finitely generated. The dimension dim X of X is the dimension of the ring P(X) =
R[x1, . . . , xN ]/I (X) of polynomial functions on X .

The ringR(X) of regular functions on X is given by the localization of P(X) with
respect to the multiplicative set {h ∈ P(X), h−1(0) = ∅}. Regular maps are the
morphisms of real algebraic sets.

2 Actually, noticing that f1 = · · · = fs = 0 ⇔ f 21 + · · · + f 2s = 0, we may always describe a real
algebraic set as the zero-set of only one polynomial.

123

Author's personal copy



214 J.-B. Campesato et al.

Unless otherwise stated, we will always use the Euclidean topology and not the
Zariski one (for instance for the notions of homeomorphism, map germ or closure).

We say that a d-dimensional algebraic set X is non-singular at x ∈ X if there exist
g1, . . . , gN−d ∈ I (X) and an Euclidean open neighborhood U of x in R

N such that

U∩X = U∩V (g1, . . . , gN−d) and rank
(

∂gi
∂x j

(x)
)
= N−d. Then there exists an open

semialgebraic neighborhood of x in V which is a d-dimensional Nash submanifold.
Notice that the converse doesn’t hold [6, Example 3.3.12.b.].We denote by Reg(X) the
set of non-singular points of X . We denote by Xsing = X\Reg(X) the set of singular
points of X , it is an algebraic subset of strictly smaller dimension, see [6, Proposition
3.3.14].

A semialgebraic subset of R
N is the projection of an algebraic subset of R

N+m

for some m ∈ N≥0. Actually, by a result of Motzkin [35], we may always assume
that m = 1. Equivalently, a subset S ⊂ R

N is semialgebraic if and only if there exist
polynomials fi , gi,1, . . . , gi,si ∈ R[x1, . . . , xN ] such that

S =
r⋃

i=1

{
x ∈ R

N , fi (x) = 0, gi,1(x) > 0, . . . , gi,si (x) > 0
}

.

Notice that semialgebraic sets are closed under union, intersection and cartesian prod-
uct. They are also closed under projection by the Tarski–Seidenberg Theorem. A
function is semialgebraic if so is its graph.

We refer the reader to [6] for more details on real algebraic geometry.
Let X be a non-singular real algebraic set and f : X → R. We say that f is a

Nash function if it is C∞ and semialgebraic. Since a semialgebraic function satisfies
a non-trivial polynomial equation and since a smooth function satisfying a non-trivial
real analytic equation is real analytic [5,30,46], we obtain that f is Nash if and only
if f is real analytic and satisfies a non-trivial polynomial equation.

A subset of a real analytic variety is said to be arc-symmetric in the sense of [23]
if, given a real analytic arc, either the arc is entirely included in the set or it meets
the set at isolated points only. We are going to work with a slightly different notion
defined in [41]. We define ASN as the boolean algebra generated by semialgebraic3

arc-symmetric subsets of P
N
R
. We set

AS =
⋃

N∈N≥0

ASN .

Formally, a subset A ⊂ P
N
R
is an AS-set if it is semialgebraic and if, given a real

analytic arc γ : (−1, 1) → P
N
R
such that γ (−1, 0) ⊂ A, there exists ε > 0 such that

γ (0, ε) ⊂ A.
Notice that closed AS-subsets of P

N
R

are exactly the closed sets of a noetherian
topology.

For more on arc-symmetric and AS sets we refer the reader to [27].

3 A subset of P
N
R

is semialgebraic if it is for P
N
R

seen as an algebraic subset of some R
M , or, equivalently,

if the intersection of the set with each canonical affine chart is semialgebraic.
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Arc spaces, motivic measure and Lipschitz geometry of real algebraic sets 215

One important property of the AS sets that we rely on throughout this paper is
that it admits an additive invariant richer than the Euler characteristic with compact
support, namely the virtual Poincaré polynomial presented later in Sect. 3.2. This is
in contrast to the semialgebraic sets, for which, by a theorem of Quarez [45], every
additive homeomorphism invariant of semialgebraic sets factorises through the Euler
characteristic with compact support.

Let E, B, F be three AS-sets. We say that p : E → B is an AS piecewise trivial
fibration with fiber F if there exists a finite partition B = 	Bi into AS-sets such that
p−1(Bi ) 
 Bi × F where 
 means bijection with AS-graph.

Notice that, thanks to the noetherianity of theAS-topology, if p : E → B is locally
trivial with fiber F for the AS-topology,4 then it is an AS piecewise trivial fibration.

3 Real motivic integration

This section is devoted to the construction of a real motivic measure. Notice that a first
step in this direction was done by Quarez in [45] using the Euler characteristic with
compact support for semialgebraic sets. The measure constructed in this section takes
advantage of theAS-machinery in order to use the virtual Poincaré polynomial which
is a real analogue of the Hodge–Deligne polynomial in real algebraic geometry. This
additive invariant is richer than the Euler characteristic since it encodes, for example,
the dimension.

Since real algebraic geometry is quite different from complex algebraic geometry
as there is, for example, no Nullstellensatz or Chevalley’s theorem, the classical con-
struction of the motivic measure does not work as it is in this real context and it is
necessary to carefully handle these differences.

3.1 Real arcs and jets

We follow the notations of [8, §2.4].

Definition 3.1 The space of real analytic arcs on R
N is defined as

L(RN ) =
{
γ : (R, 0) → R

N , γ real analytic
}

Definition 3.2 For n ∈ N≥0, the space of n-jets on R
N is defined as

Ln(R
N ) = L(RN )

/∼n

where γ1 ∼n γ2 ⇔ γ1 ≡ γ2 mod tn+1.

Notation 3.3 For m > n, we consider the following truncation maps:

πn : L(RN ) → Ln(R
N )

4 i.e. for every x ∈ B there is U ⊂ B an AS-open subset containing x such that p−1(U ) 
 U × F .
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216 J.-B. Campesato et al.

and

πm
n : Lm(RN ) → Ln(R

N ).

Definition 3.4 For an algebraic set X ⊂ R
N , we define the space of real analytic arcs

on X as

L(X) =
{
γ ∈ L(RN ), ∀ f ∈ I (X), f (γ (t)) = 0

}

and the space of n-jets on X as

Ln(X) =
{
γ ∈ Ln(R

N ), ∀ f ∈ I (X), f (γ (t)) ≡ 0 mod tn+1
}

.

The truncation maps induce the maps

πn : L(X) → Ln(X)

and

πm
n : Lm(X) → Ln(X).

Remark 3.5 Notice that Ln(X) is a real algebraic variety. Indeed, let f ∈ I (X) and
a0, . . . , an ∈ R

N , then we have the following expansion

f (a0 + a1t + · · · + ant
n)

= P f
0 (a0, . . . , an) + P f

1 (a0, . . . , an)t + · · · + P f
n (a0, . . . , an)t

n + · · ·

where the coefficients P f
i are polynomials. Hence Ln(X) is the algebraic sub-

set of R
N (n+1) defined as the zero-set of the polynomials P f

i for f ∈ I (X) and
i ∈ {0, . . . , n}.
In the same way, we may think of L(X) as an infinite-dimensional algebraic variety.

Remark 3.6 When X is non-singular the following equality holds:

Ln(X) = πn(L(X))

Indeed, using Hensel’s lemma, we may always lift an n-jet to a formal arc on X
and then use Artin approximation theorem to find an analytic arc whose expansion
coincides up to the degree n+1. However this equality doesn’t hold anymore when X
is singular as highlighted in [8, Example 2.30]. Hence it is necessary to distinguish the
space Ln(X) of n-jets on X and the space πn(L(X)) ⊂ Ln(X) of n-jets on X which
may be lifted to real analytic arcs on X . We have the following exact statement.

Proposition 3.7 ([8, Proposition 2.31]) Let X be an algebraic subset of R
N . Then the

following are equivalent :
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(i) X is non-singular.
(ii) ∀n ∈ N≥0, πn : L(X) → Ln(X) is surjective.
(iii) ∀n ∈ N≥0, πn+1

n : Ln+1(X) → Ln(X) is surjective.

Proposition 3.8 ([8, Proposition 2.33]) Let X be a d-dimensional algebraic subset of
R

N . Then

(1) For m ≥ n, the dimensions of the fibers of

πm
n |πm (L(X)) : πm (L(X)) → πn (L(X))

are smaller than or equal to (m − n)d.

(2) The fiber
(
πn+1
n

)−1
(γ ) of πn+1

n : Ln+1(X) → Ln(X) is either empty or isomor-
phic to T Zar

γ (0)X.

Theorem 3.9 (A motivic corollary of Greenberg Theorem) Let X ⊂ R
N be an alge-

braic subset. There exists c ∈ N>0 (depending only on I (X)) such that

∀n ∈ N≥0, πn(L(X)) = πcn
n (Lcn(X))

Proof Assume that I (X) = ( f1, . . . , fs). By the main theorem of [15], there exist
N ∈ N>0, l ∈ N>0 and σ ∈ N≥0, which depend only on the ideal of R{t}[x1, . . . , xN ]
generated by fi ∈ R[x1, . . . , xN ] ⊂ R{t}[x1, . . . , xN ], and such that ∀ν ≥ N , ∀γ ∈
R{t}N , if f1(γ (t)) ≡ · · · ≡ fs(γ (t)) ≡ 0 mod tν , then there exists η ∈ R{t}N such
that η(t) ≡ γ (t) mod t� ν

l �−σ and f1(η(t)) = · · · = fs(η(t)) = 0.
Fix c = max (l(σ + 2), N ). We are going to prove that

∀n ∈ N≥0, πn(L(X)) = πcn
n (Lcn(X))

It is enough to prove that πcn
n (Lcn(X)) ⊂ πn(L(X)) for n ≥ 1.

Let n ≥ 1. Let γ̃ ∈ Lcn(X). Then there exists γ ∈ R{t}N such that γ (t) ≡ γ̃ (t)
mod tcn+1 and

f1(γ (t)) ≡ · · · ≡ fs(γ (t)) ≡ 0 mod tcn+1

Notice that cn + 1 ≥ N so that there exists η ∈ R{t}N such that η(t) ≡ γ (t)

mod t

⌊
cn+1
l

⌋
−σ

and f1(η(t)) = · · · = fs(η(t)) = 0.
Since

⌊
cn + 1

l

⌋
− σ > n

we have that πcn
n (γ̃ ) = πn(η) ∈ πn(L(X)). �	

Remark 3.10 By Tarski–Seidenberg theorem, πn(L(X)) = πcn
n (Lcn(X)) is semialge-

braic as the projection of an algebraic set. However, πn(L(X)) may not be AS (and
thus not Zariski-constructible) as shown in [8, Example 2.32].
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218 J.-B. Campesato et al.

This is a major difference with the complex case where πn(L(X)) is Zariski-
constructible by Chevalley theorem as the projection of a complex algebraic variety.

Definition 3.11 Let X be an algebraic subset of R
N . We define the ideal HX of

R[x1, . . . , xN ] by

HX =
∑

f1,..., fN−d∈I (X)

Δ( f1, . . . , fN−d)(( f1, . . . , fN−d) : I (X))

where

• d = dim X
• Δ( f1, . . . , fN−d) is the ideal generated by the N−d minors of the Jacobianmatrix

(
∂ fi
∂x j

)

i=1,...,N−d
j=1,...,N

• (( f1, . . . , fN−d) : I (X)) = {g ∈ R[x1, . . . , xN ], gI (X) ⊂ ( f1, . . . , fN−d)} is
the ideal quotient of the ideal ( f1, . . . , fN−d) by the ideal I (X)

Remark 3.12 By [8, Lemma 4.1], V (HX ) = Xsing.

Definition 3.13 Let X ⊂ R
N be an algebraic subset and e ∈ N≥0. We set

L(e)(X) =
{
γ ∈ L(X), ∃h ∈ HX , h(γ (t)) �≡ 0 mod te+1

}

Remark 3.14 From now on, we set

L(Xsing) =
{
γ ∈ L(RN ), ∀h ∈ HX , h(γ (t)) = 0

}

and

Ln(Xsing) =
{
γ ∈ Ln(R

N ), ∀h ∈ HX , h(γ (t)) ≡ 0 mod tn+1
}

.

Notice that
{
γ ∈ L(RN ), ∀h ∈ HX , h(γ (t)) = 0

}

=
{
γ ∈ L(RN ), ∀ f ∈ I (Xsing), f (γ (t)) = 0

}

but in general

{
γ ∈ Ln(R

N ), ∀h ∈ HX , h(γ (t)) ≡ 0 mod tn+1
}

�=
{
γ ∈ Ln(R

N ), ∀ f ∈ I (Xsing), f (γ (t)) ≡ 0 mod tn+1
}
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Notice also that since the proof of Greenberg Theorem 3.9 is algebraic, it holds for
L(Xsing) (just use the ideal HX in the proof).

Remark 3.15 L(X) =
(⋃

e∈N≥0
L(e)(X)

)⊔L(Xsing)

The following proposition is a real version of [10, Lemma 4.1]. Its proof is quite
similar to the one of [8, Lemma 4.5].

Proposition 3.16 Let X be a d-dimensional algebraic subset of R
N and e ∈ N≥0.

Then, for n ≥ e,

(i) πn
(L(e)(X)

) ∈ AS
(ii) πn+1

n : πn+1
(L(e)(X)

) → πn
(L(e)(X)

)
is anAS piecewise trivial fibration with

fiber R
d .

Proof By [8, Lemma 4.7], L(e)(X) is covered by finitely many sets of the form

Af,h,δ =
{
γ ∈ L(RN ), (hδ)(γ (t)) �≡ 0 mod te+1

}

where f = ( f1, . . . , fN−d) ∈ I (X)N−d , δ is a N − d minor of the Jacobian matrix(
∂ fi
∂x j

)
i=1,...,N−d
j=1,...,N

and h ∈ (( f1, . . . , fN−d) : I (X)). Moreover,

L(X) ∩ Af,h,δ =
{
γ ∈ L(RN ),

f1(γ (t)) = · · · = fN−d(γ (t)) = 0,
(hδ)(γ (t)) �≡ 0 mod te+1

}
,

so that L(e)(X) = L(X) ∩⋃
finite Af,h,δ = ⋃

finite

(L(X) ∩ Af,h,δ

)
.

For e′ ≤ e, we set

Af,h,δ,e′ =
{
γ ∈ Af,h,δ,

ordt δ(γ (t)) = e′,
ordt δ′(γ (t)) ≥ e′, for all N − d minor δ′ of

(
∂ fi
∂x j

)}

in order to refine the above cover: L(e)(X) = ⋃
finite

(L(X) ∩ Af,h,δ,e′
)
.

Fix some set A = Af,h,δ,e′ ∩L(X). Notice that if πn(γ ) ∈ πn(A) and if πn+1(η) ∈
πn+1(L(e)(X)) is in the preimage of πn(γ ) by πn+1

n then πn+1(η) ∈ πn+1(A).
Indeed, η ∈ L(X) so f1(η) = · · · = fN−d(η) = 0 and since πn(η) = πn(γ ), we also
get that (hδ)(η(t)) �≡ 0 mod te+1, ordt δ(η(t)) = e′ and ordt δ′(η(t)) ≥ e′.
Hence it is enough to prove the lemma for πn+1

n : πn+1(A) → πn(A).
We are first going to prove that the fibers of πn+1

n : πn+1(A) → πn(A) are d-
dimensional affine subspaces of R

N . We can reorder the coordinates so that δ is

the determinant of the first N − d columns of Δ =
(

∂ fi
∂x j

)
. Then, similarly to the

proof of [8, Lemma 4.5], there is a matrix P such that PΔ = (δ IN−d ,W ) and
∀γ ∈ A, W (γ (t)) ≡ 0 mod te

′
.

Fix γ ∈ A. The elements of the fiber of πn+1(A) → πn(A) over πn(γ ), γ ∈ A,
are exactly the

πn+1
(
γ (t) + tn+1ν(t)

)
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for ν ∈ R{t}d such that f(γ (t) + tn+1ν(t)) = 0.
Using Taylor expansion, this last condition becomes

f(γ (t)) + tn+1Δ(γ (t))ν(t) + t2(n+1)(· · · ) = 0

Or equivalently, since γ ∈ A,

tn+1Δ(γ (t))ν(t) + t2(n+1)(· · · ) = 0

Multiplying by t−n−1−e′ P , we get

t−e′(δ(γ (t))IN−d ,W (γ (t))
)
ν(t) + tn+1−e′(· · · ) = 0

Notice that ordt (δ(γ (t)) = e′. Hence, by Hensel’s lemma and Artin approximation
theorem, the sought fiber is the set of

πn+1
(
γ (t)

)+ tn+1ν0

with ν0 satisfying the linear system induced by

t−e′(δ(γ (t))IN−d ,W (γ (t))
)
ν0 ≡ 0 mod t

Let ν0 be a solution, then its first N − d coefficients are expressed as linear com-
binations of the last d. Therefore each fiber of πn+1

n : πn+1(A) → πn(A) is a
d-dimensional affine subspace of R

N .
By Greenberg Theorem 3.9, there is a c ∈ N≥0 such that πcn(A) is anAS-set. Then

πn(A) is an AS-set as the image of πcn
n : πcn(A) → πn(A) whose fibers have odd

Euler characteristic with compact support, see [41, Theorem 4.3].
Finally, notice that πn+1(A) ⊂ πn(A) × R

N and that πn+1
n : πn+1(A) → πn(A)

is simply the first projection. Then, according to the following lemma, πn+1
n :

πn+1(A) → πn(A) is an AS piecewise trivial fibration. �	
Lemma 3.17 Let A be an AS-set, Ω ⊂ A × R

N be an AS-set and π : Ω → A be
the natural projection.

Assume that for all x ∈ A, the fiber Ωx = π−1(x) is a d-dimensional affine
subspace of R

N .
Then π : Ω → A is an AS piecewise trivial fibration.

Proof Up to embedding the space of d-dimensional affine subspaces of R
N into the

space of d + 1-dimensional vector suspaces of R
N+1, we may assume that the fibers

are linear subspaces.
Denote by G = GN ,d the Grassmannian of d-dimensional linear subspaces of R

N

and let E → G be the tautological bundle; i.e. for g ∈ G, the fiber Eg is the subspace
given by g.

We are first going to prove that the following set is AS ,

Ã = {
(x, g) ∈ A × G, Ωx = Eg

}
.
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Identifying G with the set of symmetric idempotent (N × N )-matrices of trace d, see
[6, Proof of Theorem3.4.4], for i = 1, . . . , N wedefine the regularmapwi : G → R

N

as the projection to the coordinates corresponding to the i th-column of such matrices.
Then Eg is linearly spanned by (wi (g)). Hence Li =

{
(v, g) ∈ R

N × G, v = wi (g)
}

is AS. Thus
{
(x, v, g) ∈ A × R

N × G, v = wi (g) ∈ Ωx

}
= (Ω × G) ∩ (A × Li )

is AS and its projection

Xi = {(x, g) ∈ A × G, wi (g) ∈ Ωx }

is alsoAS as the image of anAS-set by an injectiveAS-map, see [41, Theorem 4.5].
Then Ã = ⋂

i Xi is AS as claimed.
Let x0 ∈ A. Fix a coordinate system on R

N such that

Ωx0 = {xd+1 = · · · = xN = 0}

and fix the projection � : R
N → R

d defined by �(x1, . . . , xN ) = (x1, . . . , xd).

Let ω : Ã → R(Nd ) be such that the coordinates of ω(x, g) are the d-minors of
(�(wi (g)))i=1,...,N . Then

Ã0 =
{
(x, g) ∈ Ã, � : Ωx → R

d is of rank d
}

is an AS-set as the complement of ω−1(0). Therefore

A0 =
{
x ∈ A, � : Ωx → R

d is of rank d
}

is AS as the image of the AS-set Ã0 by the projection to the first factor which is an
injective AS-map.

Thus Φ(x, v) = (x,�(v)) is a bijection whose graph is AS.

π−1(A0)
Φ

π

A0 × R
d

prA0

A0

Consequently π : Ω → A is locally trivial for the AS-topology and hence it is an
AS piecewise trivial fibration. �	

3.2 The Grothendieck ring ofAS-sets

Definition 3.18 Let K0(AS) be the free abelian group generated by [X ], X ∈ AS,
modulo
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(i) Let X ,Y ∈ AS. If there is a bijection X → Y with AS-graph, then

[X ] = [Y ].

(ii) If Y ⊂ X are two AS-sets, then

[X ] = [X\Y ] + [Y ].

We put a ring structure on K0(AS) by adding the following relation:

(iii) If X ,Y ∈ AS, then

[X × Y ] = [X ][Y ].

Notation 3.19 We set 0 = [∅], 1 = [pt] and L = [R].
Remark 3.20 Notice that 0 is the unit of the addition and 1 the unit of themultiplication.

Remark 3.21 If p : E → B is an AS piecewise trivial fibration with fiber F , then
[E] = [B][F].
Definition 3.22 We setM = K0(AS)

[
L
−1

]
.

The authors of [32] proved there exists a unique additive (andmultiplicative) invari-
ant of real algebraic varieties up to biregular morphisms which coincides with the
Poincaré polynomial for compact non-singular varieties. This construction relies on
the weak factorization theorem. Then Fichou [12] extended this construction to AS-
sets up to Nash isomorphisms.

Next, in [33], they gave a new construction of the virtual Poincaré polynomial,
related to the weight filtration they introduced in real algebraic geometry. They proved
it is an invariant of AS-sets up to homeomorphism with AS-graph. Actually, using
the additivity, they proved it is an invariant of AS-sets up to AS-bijections (see [9,
Remark 4.15]).

Theorem 3.23 [12,32,33] There is a unique ring morphism

β : K0(AS) → Z[u]

such that if X is compact and non-singular then

β([X ]) =
∑

i≥0

dim Hi (X , Z2)u
i .

We say that β([X ]) is the virtual Poincaré polynomial of X.
Moreover, if X �= ∅, degβ(X) = dim X and the leading coefficient ofβ(X) is positive.

Theorem 3.24 ([13, Theorem 1.16]) The virtual Poincaré polynomial is a ring iso-
morphism

β : K0(AS)
∼−→ Z[u].
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Remark 3.25 The virtual Poincaré polynomial induces a ring isomorphism

β : M → Z[u, u−1].

Definition 3.26 We define the ring M̂ as the completion ofMwith respect to the ring
filtration5 defined by the following subgroups induced by dimension

FmM = 〈[S]L−i , i − dim S ≥ m〉

i.e.

M̂ = lim←−M
/
FmM .

Proposition 3.27 The virtual Poincaré polynomial induces a ring isomorphism

β : M̂ → Z[u]�u−1�.

Proof We have to prove that

lim←−
m

Z[u, u−1]/Fm
Z[u, u−1] = Z[u]�u−1�

where Fm
Z[u, u−1] = 〈 f ∈ Z[u, u−1], deg f ≤ −m〉.

For n < m, we define

ρm,n : Z[u, u−1]/Fm
Z[u, u−1] → Z[u, u−1]/Fn

Z[u, u−1]

by

r∑

k=−m+1

aku
k �→

r∑

k=−n+1

aku
k

and

ρm : Z[u]�u−1� → Z[u, u−1]/Fn
Z[u, u−1]

by

r∑

k=−∞
aku

k �→
r∑

k=−m+1

aku
k

5 i.e. Fm+1M ⊂ FmM and FmM ·FnM ⊂ Fm+nM. The last condition induces a ring structure on
the group M̂.
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By construction,

lim←−
m

Z[u, u−1]/Fm
Z[u, u−1]

=
{

( fm) ∈
∏

m∈Z
Z[u, u−1]/Fm

Z[u, u−1] , n < m ⇒ ρm,n( fm) = fn

}

The morphism

ϕ : Z[u]�u−1� → lim←−
m

Z[u, u−1]/Fm
Z[u, u−1]

defined by f �→ (ρm( f ))m∈Z is an isomorphism. �	
Definition 3.28 For α ∈ M, we define the virtual dimension of α by dim α = m
where m is the only integer such that α ∈ F−mM\F−m+1M.

Proposition 3.29 dim α = deg(β(α))

Remark 3.30 Notice that for x ∈ M, (x + FmM)m defines a basis of open neighbor-
hoods. This topology coincides with the one induced by the non-archimedean norm
‖·‖ : M → R defined by ‖α‖ = edim(α). The completionM̂ is exactly the topological
completion with respect to this non-archimedean norm. Particularly,

• Let (αn) ∈ M, then αn → 0 in M̂ if and only if dim(αn) → −∞.
• Let (αn) ∈ M, then

∑
n αn converges in M̂ if and only if αn → 0 in M̂.

• The following equality holds in M̂:

(1− L
−p)

∞∑

i=0

L
−pi = 1

Definition 3.31 We define an order on M̂ as follows. For a, b ∈ M̂, we set a � b if
and only if either b = a or the leading coefficient of the virtual Poincaré polynomial
β(b − a) is positive.

Remark 3.32 Notice that this real setting has good algebraic properties compared to
its complex counterpart:

• K0(AS) is an integral domain whereas K0(VarC) is not [44]. Indeed, there is no
zero divisor in K0(AS) whereas the class of the affine line is a zero divisor of
K0(VarC) [7] [31].

Notice that in particular K0(VarC) → MC = K0(VarC)
[
L
−1
C

]
is not injective.

• The natural map M → M̂ is injective. Indeed its kernel is ∩mFmM and the
virtual Poincaré polynomial allows us to conclude: if α ∈ ∩mFmM, then, for
all m ∈ Z, degα ≤ −m and hence α = 0. In the complex case, it is not known
whether MC → M̂C is injective.
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3.3 Real motivic measure

Kontsevitch introduced motivic integration in the non-singular case where the mea-
surable sets were the cylinders by using the fact that they are stable. Still in the
non-singular case, V. Batyrev [1, §6] enlarged the collection of measurable sets: a
subset of the arc space is measurable if it may be approximated by stable sets.

Concerning the singular case, Denef and Loeser [10] defined a measure and a first
family of measurable sets including cylinders. Then, in [11, Appendix], they used the
tools they developped in the singular case to adapt the definition of Batyrev to the
singular case. See also [29].

From now on we assume that X is a d-dimensional algebraic subset of R
N .

Definition 3.33 A subset A ⊂ L(X) is said to be stable at level n if:

• For m ≥ n, πm(A) is an AS-subset of Lm(X);
• For m ≥ n, A = π−1

m (πm(A));
• For m ≥ n, πm+1

m : πm+1(A) → πm(A) is an AS piecewise trivial fibration with
fiber R

d .

Remark 3.34 Notice that, for the two first points, it is enough to verify that πn(A) ∈
AS and that A = π−1

n (πn(A)) only for n. Indeed, then, for m ≥ n, πm(A) =
(πm

n )−1(πn(A)) is an AS-set as inverse image of an AS-set by a projection.

Then the following proposition holds (notice that the condition A = π−1
m (πm(A))

is quite important).

Proposition 3.35 If A, B are stable subsets of L(X), then A∪ B, A∩ B and A\B are
stable too.

Remark 3.36 Notice that L(X) may not be stable when X is singular.

Definition 3.37 For A ⊂ L(X) a stable set, we define its measure by

μ(A) = [πn(A)]
L(n+1)d

∈ M, n � 1.

Definition 3.38 The virtual dimension of a stable set is

dim(A) = dim(πn(A)) − (n + 1)d, n � 1.

Remark 3.39 Notice that the previous definitions don’t depend on n for n big enough.

Remark 3.40 Notice that dim(A) = dim(μ(A)) where the second dimension is the
one introduced in Definition 3.28.

Definition 3.41 A subset A ⊂ L(X) is measurable if, for every m ∈ Z<0, there exist

• a stable set Am ⊂ L(X);
• a sequence of stable sets (Cm,i ⊂ L(X))i≥0
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such that

• ∀i , dimCm,i < m;
• AΔAm ⊂ ∪Cm,i

Then we define the measure of A by μ(A) = limm→−∞ μ(Am).

Proposition 3.42 The previous limit is well defined in M̂ and doesn’t depend on the
choices.

The proof of the above Proposition, presented below, relies on the following two
lemmas.

Lemma 3.43 Let (Ai )i∈N≥0 be a decreasing sequence of non-empty AS-sets

A1 ⊃ A2 ⊃ · · ·

Then

⋂

i∈N
Ai �= ∅.

Proof Recall that A
AS

denotes the smallest closedAS-set containing A. We have the
following sequence which stabilizes by noetherianity of the AS-topology:

A1
AS ⊃ A2

AS ⊃ · · · ⊃ Ak
AS = Ak+1

AS = · · ·

Recall that AS-sets are exactly the constructible subsets of projective spaces for
the AS-topology whose closed sets are the semialgebraic arc-symmetric sets in the
sense of [23]. Hence Al = ∪finite(Ui ∩Vi )whereUi isAS-open, Vi isAS-closed and
Ui∩Vi �= ∅.Wemay assume that the Vi ’s are irreducible (up to spliting them) and that

Ui ∩ Vi
AS = Vi (up to replacing Vi by Ui ∩ Vi

AS
). Hence we obtain the following

decomposition as a union of finitely many irreducible closed subsets Ak
AS = ∪Vi (it

is not necessarily the irreducible decomposition since we may have Vi ⊂ Vj ).

Fix Z an AS-irreducible subset of Ak
AS

. By the previous discussion, for l ≥ k,
there exists Ul an open dense AS-subset of Z such that Ul ⊂ Al .

By [41, Remark 2.7], dim(Z\Ul) < dimUl so that Z\Ul is a closed subset of Z
with empty interior for the Euclidean topology. From Baire theorem, we deduce that
the Euclidean interior of ∪l≥k Z\Ul is empty. Hence ∩l≥kUl is non-empty. �	

The following lemma is an adaptation to the real context of [1, Theorem 6.6].

Lemma 3.44 Let A ⊂ L(X) be a stable set and (Ci )i∈N≥0 be a family of stable sets
such that

A ⊂
⋃

i∈N≥0

Ci
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Then there exists l ∈ N≥0 such that

A ⊂
l⋃

i=0

Ci

Proof Without loss of generality, we may assume that Ci ⊂ A (up to replacing Ci by
Ci ∩ A).

Set Di = A\ (C1 ∪ · · · ∪ Ci ) so that we get a decreasing sequence of stable sets

D1 ⊃ D2 ⊃ D3 ⊃ · · ·

satisfying

⋂

i∈N≥0

Di = ∅

Assume by contradiction that A may not be covered by finitely many Ci , then

∀i ∈ N≥0, Di �= ∅

Now assume that A is stable at level n and that Di is stable at level ni ≥ n. Then
πn(Di ) = π

ni
n (πni (Di )) ∈ AS as the image of an AS-set by a regular map whose

fibers have odd Euler characteristic with compact support, see [41, Theorem 4.3].
Hence, by Lemma 3.43,

Bn =
⋂

i∈N≥0

πn(Di ) �= ∅

Choose un ∈ Bn .
Now set

Bn+1 =
⋂

i∈N≥0

πn+1(Di ) �= ∅

As before each πn+1(Di ) is a non-emptyAS-set. Notice that (πn+1
n )−1(un) is a non-

empty AS-subset of Ln+1(X).
Then, by Lemma 3.43, Bn+1 ∩ (πn+1

n )−1(un) �= ∅. This way, there exists un+1 ∈
Bn+1 such that πn+1

n (un+1) = un .
Therefore, we may inductively construct a sequence (um ∈ Lm(X))m≥n such that:

• um ∈ Bm = ⋂
i∈N≥0

πm(Di ) �= ∅;

• πm+1
m (um+1) = um .

This defines an element u ∈ L(X) such that for all m ≥ n, πm(u) ∈ Bm . Hence for
i ∈ N≥0, πni (u) ∈ Bni ⊂ πni (Di ). Since Di is stable at level ni , u ∈ π−1

ni (πni (Di )) =
Di .

Therefore u ∈ ⋂
Di which is a contradiction. �	
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Proof of Proposition 3.42 We first prove that the limit is well defined. Let Am,Cm,i be
as in the definition. Then for m1,m2 ∈ Z<0,

Am1ΔAm2 ⊂
⋃

i∈N≥0

(Cm1,i ∪ Cm2,i )

By Lemma 3.44, there exists l ∈ N≥0 such that

Am1ΔAm2 ⊂
l⋃

i=0

(Cm1,i ∪ Cm2,i )

hence dim(Am1ΔAm2) ≤ max(m1,m2). Thus μ(Am) is a Cauchy sequence and its
limit is well defined in the completion M̂.

We now check that the limit doesn’t depend on the choices. Let A′
m,C ′

m,i be another
choice of data for the measurability of A. Fix m ∈ Z<0 then

AmΔA′
m ⊂

⋃

i∈N≥0

(Cm,i ∪ C ′
m,i )

By Lemma 3.44, there exists l ∈ N≥0 such that

AmΔA′
m ⊂

l⋃

i=0

(Cm,i ∪ C ′
m,i )

Hence dim(AmΔA′
m) < m and limm→−∞ μ(Am) = limm→−∞ μ(A′

m). �	
Proposition 3.45 If A, B are measurable subsets of L(X), then A ∪ B, A ∩ B and
A\B are measurable too.

Proof Assume that A and B are measurable, respectively with the data Am,Cm,i and
Bm, Dm,i .

• A ∪ B is measurable since

(A ∪ B)Δ(Am ∪ Bm) ⊂
⋃

(Cm,i ∪ Dm,i )

• In order to prove that A\B is measurable, we may use the previous point and
assume that B ⊂ A up to replacing A by A ∪ B. Similarly, we may assume that
Bm ⊂ Am . Then

(A\B)Δ(Am\Bm) ⊂
⋃

Cm,i ∪ Dm,i

• Using both previous points, we obtain that

A ∩ B = (A ∪ B)\ (((A ∪ B)\A) ∪ ((A ∪ B)\B))

is measurable. �	
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Proposition 3.46 The measure is additive on disjoint unions:

μ(A 	 B) = μ(A) + μ(B)

Proof According to the previous proof we have

μ(A 	 B) = lim
m→∞ (μ(Am) + μ(Bm) − μ(Am ∩ Bm))

and

0 = μ(A ∩ B) = lim
m→∞μ(Am ∩ Bm)

Hence

μ(A 	 B) = lim
m→∞μ(Am) + lim

m→∞μ(Bm) = μ(A) + μ(B)

�	
Proposition 3.47 Let (Bn)n∈N≥0 be a sequence of measurable sets with

dim Bn → −∞.

Then B = ∪Bn is measurable and

μ(B) = lim
n→+∞μ

⎛

⎝
⋃

k≤n

Bk

⎞

⎠ .

Furthermore, if the sets Bn are pairwise disjoint, then

μ(B) =
∞∑

n=0

μ (Bk) .

Proof By Definition 3.41 for each n ∈ N≥0 and m ∈ Z<0 there are stable sets An,m

and Cn,m,i , dimCn,m,i < m such that

BnΔAn,m ⊂
⋃

i

Cn,m,i .

For m ∈ Z<0 choose N ∈ N≥0 such that if n ≥ N then dim Bn < m.
Note that then dim An,m < m. Let us set Am = ⋃

k<N Ak,m . Then

⋃

n

BnΔAm ⊂
⋃

n,i

Cn,m,i ∪
⋃

n≥N

An,m .

This shows that B is measurable. The other properties follows easily. �	
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3.4 Measurability of the cylinders

Lemma 3.48 Let X be a d-dimensional algebraic subset of R
N . Let S ⊂ X be an

algebraic subset of X with dim S < d. For every e ∈ N≥0, there exists N ∈ N≥0 such
that

∀i, n ∈ N≥0, n ≥ i ≥ N ⇒ dim
(
πn

(
π−1
i (Li (S))

))
≤ (n + 1)d − e − 1

where πn denotes the n-th truncation map for X

∀n ∈ N≥0, πn : L(X) → Ln(X)

and where L(S) ⊂ L(X) and ∀i ∈ N≥0, Li (S) ⊂ Li (X).

Proof By Greenberg Theorem 3.9 applied to S, there exists c ∈ N≥0 such that

πe

(
π−1
ce (Lce(S))

)
= πe (L(S))

Let N = ce and n ≥ N . By 3.8(1) applied to

πn

(
π−1
ce (Lce(S))

)
→ πe

(
π−1
ce (Lce(S))

)

we get that

dim
(
πn

(
π−1
ce (Lce(S))

))
≤ dim

(
πe

(
π−1
ce (Lce(S))

))
+ (n − e)d

But

πe

(
π−1
ce (Lce(S))

)
= πe (L(S))

so that (see [8, Proposition 2.33.(i)])

dim
(
πn

(
π−1
ce (Lce(S))

))
≤ (e + 1)(d − 1) + (n − e)d = (n + 1) − e − 1

Now if n ≥ i ≥ N (= ce), the result derives from the inclusion

πn

(
π−1
i (Li (S))

)
⊂ πn

(
π−1
ce (Lce(S))

)

�	
Definition 3.49 Let X ⊂ R

N be an algebraic subset. For i ∈ N>0, we set

Ci (X) = L(i)(X)\L(i−1)(X).
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Remark 3.50

Ci (X) =
{
γ ∈ L(X), ∀h ∈ HX , ordt h ◦ γ ≥ i, ∃h̃ ∈ HX , ordt h̃ ◦ γ = i

}

Proposition 3.51 For i ∈ N>0, Ci (X) is stable and

lim
i→+∞ dimCi (X) = −∞

Proof Fix some i ∈ N>0. First, Ci (X) is stable at level i since the L(e)(X) are stable
by Proposition 3.16.

Notice that πi−1(Ci (X)) ⊂ Li−1(Xsing). Hence

Ci (X) ⊂ π−1
i−1(πi−1(Ci (X))) ⊂ π−1

i−1

(Li−1(Xsing)
)

and then

πi (Ci (X)) ⊂ πi

(
π−1
i−1

(Li−1(Xsing)
))

.

As explained in Remark 3.14, we may apply Greenberg Theorem 3.9 to HX so that
Lemma 3.48 holds for Xsing.

Hence, for all e ∈ N≥0, there exists N ∈ N≥0 so that for i ≥ N we have

dim (πi (Ci (X))) − (i + 1)d ≤ dim
(
πi

(
π−1
i−1

(Li−1(Xsing)
)))− (i + 1)d ≤ −e

�	
Corollary 3.52 A subset A ⊂ L(X) is measurable if and only if ∀e � 0, A ∩L(e)(X)

is measurable.

Proof By Proposition 3.16 every L(e)(X) is stable and therefore if A is measurable so
is every A ∩ L(e)(X).

Suppose now that ∀e ≥ N , A ∩ L(e)(X) is measurable.
Then so are A ∩ Ci (X) for i > N . Hence

A = (
A ∩ L(N )(X)

) ∪
⋃

i>N

(
A ∩ Ci (X)

)

is measurable by Proposition 3.47. �	
Definition 3.53 A cylinder at level n is a subset A ⊂ L(X) of the form

A = π−1
n (C)

for C an AS-subset of Ln(X).
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Remark 3.54 A cylinder at level n is a cylinder at level m for m ≥ n. Indeed πn =
πm
n ◦πm so that π−1

n (C) = π−1
m

(
(πm

n )−1(C)
)
where (πm

n )−1(C) ∈ AS as the inverse
image of an AS-set by a projection.

The following result derives from Proposition 3.16.

Proposition 3.55 If X is non-singular, a cylinder of L(X) is stable.

Proposition 3.56 A cylinder A ⊂ L(X) is measurable and

μ(A) = lim
m→+∞μ

(
A ∩ L(m)(X)

)

Proof By Proposition 3.51, we may construct by induction an increasing map ϕ :
N>0 → N>0 such that

i ≥ ϕ(s) ⇒ dimCi (X) < −s

Letm ∈ Z<0. Set Am = A∩L(ϕ(−m))(X). Then Am is stable by Proposition 3.16 and

AΔAm = A\L(ϕ(−m))(X) = A ∩ π−1
ϕ(−m)

(Lϕ(−m)(Xsing)
) ⊂

⋃

i≥ϕ(−m)

Ci (X)

where Ci (X) is stable with dimCi (X) < m. Hence A is measurable and

μ(A) = lim
m→+∞μ

(
A ∩ L(ϕ(m))(X)

)

The second part of the statement derives from the fact that

(
μ
(
A ∩ L(m)(X)

))

m∈N>0

is already aCauchy sequence. Assume that A is a cylinder at level s then A∩L(m)(X) is
stable at level max(m, s). Indeed fix k ∈ N≥0. Then, for n ≥ m′ ≥ m ≥ max(ϕ(k), s),
we get

μ
(
A ∩ L(m)′(X)

)
− μ

(
A ∩ L(m)(X)

)

=
[
πn

(
A ∩ L(m′)(X)

)]

L−(n+1)d
−

[
πn

(
A ∩ L(m)(X)

)]

L−(n+1)d

=
[
πn

(
A ∩ L(m′)(X)

)
\πn

(
A ∩ L(m)(X)

)]

L−(n+1)d
∈ FkM

�	
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Corollary 3.57 For Y ⊂ X an algebraic subset, set

L(X ,Y ) = {γ ∈ L(X), γ (0) ∈ Y }

then

• L(X ,Y ) is a measurable subset of L(X);
• in particular, L(X) is measurable.

Proof Indeed, L(X) = π−1
0 (X) and L(X ,Y ) = π−1

0 (Y ) are cylinders. �	
Corollary 3.58 If Y ⊂ X is an algebraic subset with dim Y < dim X, then L(Y ) ⊂
L(X) is measurable of measure 0:

μL(X) (L(Y )) = 0

Proof Notice that L(Y ) is a countable intersection of cylinders:

L(Y ) =
⋂

n∈N≥0

π−1
n (Ln(Y ))

Then π−1
n (Ln(Y )) is measurable as a cylinder and

dimμ
(
π−1
n (Ln(Y ))

)
≤ (n + 1)(dim Y − dim X) −−−→

n→∞ −∞

�	

3.5 Motivic integral and the change of variables formula

Definition 3.59 Let X ⊂ R
N be an algebraic subset. Let A ⊂ L(X) be a measurable

set. Letα : A → N≥0∪{∞}be such that eachfiber ismeasurable andμ(α−1(∞)) = 0.
We say that L

−α is integrable if the following sequence converges in M̂:

∫

A
L
−αdμ =

∑

n≥0

μ
(
α−1(n)

)
L
−n

Definition 3.60 We say that a semialgebraic map σ : M → X between two semi-
algebraic sets is generically one-to-one if there exists a semialgebraic set S ⊂ X
satisfying

• dim(S) < dim(X),
• dim

(
σ−1(S)

)
< dim(M),

• ∀p ∈ X\S, #σ−1(p) = 1.
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Definition 3.61 Let σ : M → X be a Nash map between a d-dimensional non-
singular algebraic set M and an algebraic subset X ⊂ R

N . For a real analytic arc
γ : (R, 0) → M , we set

ordt jacσ (γ (t)) = min {ordt δ(γ (t)), ∀δ d-minor of Jacσ } ,

where the Jacobian matrix Jacσ is defined using a local system of coordinates around
γ (0) in M .

The following lemma is a generalization of Denef–Loeser change of variables key
lemma [10, Lemma 3.4] to generically one-to-one Nash maps in the real context.

Lemma 3.62 ([8, Lemma 4.5]) Let σ : M → X be a proper generically one-to-one
Nash map where M is a non-singular d-dimensional algebraic subset of R

p and X a
d-dimensional algebraic subset of R

N . For e, e′ ∈ N≥0 and n ∈ N≥0, set

Δe,e′ =
{
γ ∈ L(M), ordt jacσ (γ (t)) = e, σ∗(γ ) ∈ L(e′)(X)

}

and

Δe,e′,n = πn
(
Δe,e′

)
,

where σ∗ : L(M) → L(X) is induced by σ .
Then for n ≥ max(2e, e′) the following holds:

(i) Given γ ∈ Δe,e′ and δ ∈ L(X) with σ∗(γ ) ≡ δ mod tn+1 there exists a unique
η ∈ L(M) such that σ∗(η) = δ and η ≡ γ mod tn−e+1.

(ii) Let γ, η ∈ L(M). If γ ∈ Δe,e′ and σ∗(γ ) ≡ σ∗(η) mod tn+1 then γ ≡ η

mod tn−e+1 and η ∈ Δe,e′ .
(iii) The set Δe,e′,n is a union of fibers of σ∗n.
(iv) σ∗n(Δe,e′,n) is an AS-set and σ∗n|Δe,e′,n : Δe,e′,n → σ∗n(Δe,e′,n) is an AS

piecewise trivial fibration with fiber R
e.

Lemma 3.63 Let σ : X → Y be a Nash map between algebraic sets. If A ⊂ L(Y ) is
a cylinder then σ−1∗ (A) ⊂ L(X) is also a cylinder.

Proof Assume that A = π−1
n (C) where C is an AS-subset of Ln(Y ). Then we have

the following commutative diagram:

L(X)
σ∗

πn

L(Y )

πn

Ln(X)
σ∗n Ln(Y )

Notice that σ∗n is polynomial and thus its graph isAS so that the inverse image of an
AS-set by σ∗n is also an AS-set. Hence σ−1∗ (A) = π−1

n (σ−1∗n (C)) where σ−1∗n (C) is
AS. �	
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Proposition 3.64 Let σ : M → X be a proper generically one-to-oneNashmapwhere
M is a non-singular d-dimensional algebraic subset of R

p and X a d-dimensional
algebraic subset of R

N .
If A ⊂ L(X) is a measurable subset, then the inverse image σ−1∗ (A) is also measur-
able.

Proof Let

S′ = σ−1(Xsing ∪ S) ∪ Σσ

Zar

where S ⊂ X is as in Definition 3.60 and Σσ is the critical set of σ . Notice that the
Zariski-closure of a semialgebraic set doesn’t change its dimension. Therefore L(S′)
is a measurable subset of L(M) with measure 0.

Hence σ−1∗ (A) is measurable if and only if σ−1∗ (A)\L(S′) is measurable and then

μ
(
σ−1∗ (A)

)
= μ

(
σ−1∗ (A)\L(S′)

)

Since A is measurable, there exists Am and Cm,i as in Definition 3.41. Hence for
all m ∈ Z<0,

σ−1∗ (A)Δσ−1∗ (Am) ⊂
⋃

i

σ−1∗ (Cm,i )

and (
σ−1∗ (A)\L(S′)

)
Δ

(
σ−1∗ (Am)\L(S′)

)
⊂

⋃

i

(
σ−1∗ (Cm,i )\L(S′)

)
(1)

By Lemma 3.63 the sets σ−1∗ (Am) and σ−1∗ (Cm,i ) are cylinders, therefore they are
stable sets by Proposition 3.55 since M is non-singular.

By definition of S′,

L(M)\L(S′) ⊂
⋃

e,e′
Δe,e′

By Lemma 3.44, there exists k such that

L(M)\L(S′) ⊂
⋃

e,e′≤k

Δe,e′

Thus, by Lemma 3.62, dim
(
σ−1∗ (Cm,i )\L(S′)

)
< k + m.

This allows one to prove that σ−1∗ (A)\L(S′) is measurable by shifting the index m
in (1). �	
Proposition 3.65 Let σ : M → X be a proper generically one-to-oneNashmapwhere
M is a non-singular d-dimensional algebraic subset of R

p and X a d-dimensional
algebraic subset of R

N .
If A ⊂ L(M) is a measurable subset, then the image σ∗(A) is also measurable.
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Proof We use the same S′ as in the proof of Proposition 3.64. Then L(S′) and
σ∗

(L(S′)
)
have measure 0 so that it is enough to prove that σ∗

(
A\L(S′)

)
is mea-

surable.

Lemma 3.66 There exists k such that for every stable set B ⊂ L(M)\L(S′), σ∗(B) is
stable and dim (σ∗(B)) < dim(B) − k.

Proof By definition of S′ and Lemma 3.44, there exists k such that

B ⊂ L(M)\L(S′) ⊂
⋃

e,e′≤k

Δe,e′

Then the lemma derives from Lemma 3.62. �	
Assume that A is measurable with the data Am,Cm,i then

AΔAm ⊂
⋃

Cm,i

so that

(A\L(S′))Δ(Am\L(S′)) ⊂
⋃

Cm,i\L(S′)

and

σ∗(A\L(S′))Δσ∗(Am\L(S′))
⊂ σ∗

(
(A\L(S′))Δ(Am\L(S′))

)

⊂
⋃

σ∗
(
Cm,i\L(S′)

)

Then we may conclude using Lemma 3.66. �	
Theorem 3.67 Let σ : M → X be a proper generically one-to-one Nash map where
M is a non-singular d-dimensional algebraic subset of R

p and X a d-dimensional
algebraic subset of R

N .
Let A ⊂ L(X) be a measurable set. Let α : A → N≥0 ∪ {∞} be such that L

−α is
integrable.
Then L

−(α◦σ∗+ordt jacσ ) is integrable on σ−1∗ (A) and

∫

A∩Im(σ∗)
L
−αdμL(X) =

∫

σ−1∗ (A)

L
−(α◦σ∗+ordt jacσ )dμL(M)

where σ∗ : L(M) → L(X) is induced by σ .

Proof Set β = α◦σ∗+ordt jacσ . By Proposition 3.64, σ
−1∗ (A) and the fibers of α◦σ∗

are measurable.
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Notice that

β−1(n) =
n⊔

e=0

(
(α ◦ σ∗)−1(n − e) ∩ (ordt jacσ )−1(e) ∩ σ−1∗ (A)

)

so that the fibers of β are measurable.
As in the proof of Proposition 3.64, up to replacing σ−1∗ (A) by σ−1∗ (A)\L(S′), we

may assume that

σ−1∗ (A) ⊂
⋃

e,e′≤k

Δe,e′

Using Lemma 3.62, we obtain

∫

σ−1∗ (A)

L
−(α◦σ∗+ordt jacσ )dμL(M)

=
∑

e,e′≤k

∫

σ−1∗ (A)∩Δe,e′
L
−(α◦σ∗+ordt jacσ )dμL(M)

=
∑

e,e′≤k

∑

n≥e

μ
(
γ ∈ σ−1∗ (A) ∩ Δe,e′, α ◦ σ∗(γ ) = n − e

)
L
−n

=
∑

e,e′≤k

∑

n≥e

μ
(
γ ∈ A ∩ σ∗(Δe,e′), α(γ ) = n − e

)
L
−(n−e)

=
∑

e,e′≤k

∑

n≥0

μ
(
γ ∈ A ∩ σ∗(Δe,e′), α(γ ) = n

)
L
−n

=
∑

n≥0

∑

e,e′≤k

μ
(
γ ∈ A ∩ σ∗(Δe,e′), α(γ ) = n

)
L
−n

=
∑

n≥0

μ (γ ∈ A ∩ Im(σ∗), α(γ ) = n) L
−n

=
∫

A∩Im(σ∗)
L
−αdμL(X)

Notice that Im(σ∗) is measurable by Proposition 3.65. �	

4 An inversemapping theorem for blow-Nashmaps

4.1 Blow-Nash and generically arc-analytic maps

Definition 4.1 ([23, Définition 4.1]) Let X and Y be two real algebraic sets. We say
that f : X → Y is arc-analytic if for every real analytic arc γ : (−1, 1) → X the
composition f ◦ γ : (−1, 1) → Y is also real analytic.
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Definition 4.2 ([8, Definition 2.22]) Let X and Y be two algebraic sets. We say that
f : X → Y is generically arc-analytic if there exists an algebraic subset S ⊂ X
satisfying dim S < dim X and such that if γ : (−1, 1) → X is a real analytic arc not
entirely included in S, then the composition f ◦γ : (−1, 1) → Y is also real analytic.

Definition 4.3 Let X and Y be two algebraic sets. We say that f : X → Y is blow-
Nash if f is semialgebraic and if there exists a finite sequence of algebraic blowings-up
with non-singular centers σ : M → X such that f ◦ σ : M → Y is real analytic (and
hence Nash).

Lemma 4.4 [8, Lemma 2.27] Let f : X → Y be a semialgebraic map between two
real algebraic sets. Then f : X → Y is blow-Nash if and only if f is generically
arc-analytic.

Remark 4.5 In the non-singular case, the previous lemma derives from [2] or [40].

Assumption 4.6 For the rest of this section we assume that X ⊂ R
N and Y ⊂ R

M are
two d-dimensional algebraic sets and that f : X → Y is blow-Nash. Since f is, in
particular, semialgebraic, it is real analytic in the complement of an algebraic subset
S of X of dimension < d. We may choose S sufficiently big so that S contains the
singular set of X and the non-analyticity set of f . Because f is blow-Nash we may
suppose, moreover, that f is analytic on every analytic arc γ not included entirely in
S. Then for every γ ∈ L(X)\L(S), f ◦ γ ∈ L(Y ).

We say that such f is generically of maximal rank if the Jacobian matrix of f is of
rank d on a dense semialgebraic subset of X\S.

Let γ ∈ L(X)\L(S). Then the limit of tangent spaces Tγ (t)X exists in the Grass-
mannian GN ,d of d-dimensional linear subspaces of R

N . After a linear change of
coordinates we may assume that this limit is equal to R

d ⊂ R
N . Then (x1, . . . , xd)

is a local system of coordinates at every γ (t), t �= 0. Fix J = { j1, . . . , jd) with
1 ≤ j1 < · · · < jd ≤ M . Then, for t �= 0,

d f j1 ∧ · · · ∧ d f jd (γ (t)) = ηJ (t) dx1 ∧ · · · ∧ dxd ,

where ηJ (t) is a semialgebraic function, well-defined for t �= 0. Indeed, let Γ f ⊂
R

N+M denote the graph of f and let τΓ f : Reg(Γ f ) → GN+M,d be the Gauss map. It
is semialgebraic, see e.g. [6, Proposition 3.4.7], [24]. Denote by Γ̃ f the closure of its
image and by π f : Γ̃ f → Γ f the induced projection. Then γ lifts to a semialgebraic
arc γ in Γ̃ f . The limits limt→0+ γ (t) and limt→0− γ (t) exist, and as follows from
Proposition 4.10 they coincide.

Denote by E → GN+M,d the tautological bundle. Thus each fiber of E → GN+M,d

is a d-dimensional vector subspace of R
N+M . We denote by (x1, . . . , xN , f1, . . . fM )

the linear coordinates in R
N+M . Then the restriction of alternating d-forms to each

V d ∈ GN+M,d gives an identity

d f j1 ∧ · · · ∧ d f jd = ηJ (V
d) dx1 ∧ · · · ∧ dxd

123

Author's personal copy



Arc spaces, motivic measure and Lipschitz geometry of real algebraic sets 239

that defines a semialgebraic function ηJ (Vd) on GN+M,d with values in R ∪ {±∞}.
Then ηJ (t) = ηJ (γ (t)). As follows from Proposition 4.10, ηJ (t) is meromorphic and
ordt ηJ ∈ Z ∪ {∞}.

The following notion generalizes the order defined in Definition 3.61.

Definition 4.7 The order of the Jacobian determinant of f along γ is defined as

ordt jac f (γ ) = min
J
{ordt ηJ (t)}.

If η(t) ≡ 0 then we define its order as +∞.

Definition 4.8 We say that the Jacobian determinant of f is bounded from above (resp.
below) if there exists S ⊂ X as in 4.6 such that

∀γ ∈ L(X)\L(S), ordt jac f (γ ) ≥ 0 (resp. ordt jac f (γ ) ≤ 0).

4.2 Resolution diagram of f

Let g : M → X be a Nash map where M is a non-singular algebraic set and X is an
algebraic subset of R

N . Denote by OM the sheaf of Nash functions on M . Assume
that dim M = dim X = d. Then the Jacobian sheaf Jg of g is the sheaf ofOM -ideals
generated, in a local system of coordinates z1, . . . , zd on M , by

Jg =
〈

∂
(
gi1, . . . , gid

)

∂(z1, . . . , zd)
, 1 ≤ i1 < · · · < id ≤ N

〉

.

Let D = ∪Di ⊂ M be a divisor with normal crossings. We say that a local system
of coordinates z1, . . . , zd at p ∈ M is compatible with D if D at p is the zero set of a
monomial in zi or p �∈ D.

Proposition 4.9 Let g : M → X be as in the previous definition. Then there exists
σ : M̃ → M the composition of a sequence of blowings-up with smooth algebraic
centers and an algebraic divisor with simple normal crossings D = ∪Di ⊂ M̃ such
that in any local Nash system of coordinates compatible with D, Jg◦σ is generated by
a monomial.

Proof First we fix a regular (in the algebraic sense) differential form ωM of degree d
on M which is not identically zero on every component of M .

There exists a sequence of blowings-up whose Jacobian determinant is a normal
crossing divisor and such that the compositions with the coefficients of ωM are also
normal crossings, see for instance [3, Theorem 1.10]. Then the zero set of the pullback
of ωM is a divisor with simple normal crossings.

Up to composing with blowings-up, this allows us to assume that the zero set of
ωM , denoted by Z(ωM ), is a divisor with simple normal crossings.

Since M , and hence Z(ωM ), is affine there is a regular function ϕ on M such that
Z(ωM ) ⊂ div ϕ. By performing additional blowings-up we may assume that div(ϕ)

is a divisor with normal crossings.
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For I = {i1, . . . , id} ⊂ {1, . . . , N }, let πI : X → R
d be defined by

πI (x1, . . . , xN ) = (xi1 , . . . , xid ).

We consider the algebraic differential form ωI = π∗(dxi1 ∧ · · · ∧ dxid ). Then

ϕg∗ωI = hIωM ,

where hI is a Nash function on M . By [9, Proposition 2.11], we may find a finite
composition of blowings-up σ : M̃ → M , with smooth algebraic centers, such that
hI ◦ σ is locally a monomial times a Nash unit. More precisely, let D ⊂ M̃ be the
union of σ−1(div ϕ) and the exceptional divisor of σ . We may suppose that D is with
simple normal crossings and hence hI ◦ σ equals a monomial times a Nash unit, in
any local system of coordinates compatible with D.

Let z1, . . . , zd be such a local system of coordinates and let g̃ = g ◦ σ . Then

g̃∗ωI = ∂
(
g̃i1, . . . , g̃id

)

∂(z1, . . . , zd)
dz = ϕ−1hIσ

∗ωM = zαI u(z)dz,

where u is a unit.
We may apply the above procedure to all ωI and their differences. Then, by [49,

Beginning of the proof of Proposition 2.1], see also [2, Lemma 6.5], we conclude that
the ideal generated by such g̃∗ωI is, locally, principal and generated by a monomial.

�	
Let p : Γ → X be a composition of finitely many algebraic blowings-up such

that q = f ◦ p : Γ → Y is Nash and σ : M → Γ be an algebraic resolution of Γ

such that Jp◦σ (resp. Jq◦σ ) is locally generated by a monomial. Notice that M is a
non-singular real algebraic variety and that f ◦ p ◦ σ is Nash. Note that if M is not
connected then Jp◦σ can vanish identically on a connected component of M if and
only if f is not generically of maximal rank.

We call p : Γ → X and σ : M → Γ satisfying the above properties a resolution
diagram of f . By Hironaka’s desingularisation theorem [17,18] and Proposition 4.9,
such a diagram always exists but is not unique.

M

σ

Γ

p q

X
f

Y

(2)

By choosing the algebraic subset S ⊂ X bigger (but still with dim S < d) we
may assume that (p ◦ σ)∗ induces a bijection L(M)\L(S′) → L(X)\L(S), where
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S′ = (p ◦ σ)−1(S). Note that dim S′ < d. Thus the diagram (2) induces a diagram

L(M)\L(S′)
(p◦σ)∗ (q◦σ)∗

L(X)\L(S)
f∗

L(Y )

where we denote f∗ = (q ◦ σ)∗ ◦ (p ◦ σ)−1∗ .
Now we show how to compute the order of the Jacobian determinant of f along γ

using a resolution diagram.

Proposition 4.10 Let γ ∈ L(X)\L(S) and let γ̃ = (p ◦ σ)−1∗ (γ ). Then

ordt jac f (γ ) = ordt jacq◦σ (γ̃ (t)) − ordt jacp◦σ (γ̃ (t)). (3)

Proof The result derives from the chain rule which holds outside S. �	

Corollary 4.11 Suppose that f is generically of maximal rank. Then the Jacobian
determinant of f is bounded from above, resp. from below, if and only if at every
point of M a local generator of Jp◦σ divides a local generator of Jq◦σ , resp. a local
generator of Jq◦σ divides a local generator of Jp◦σ .

Remark 4.12 We deduce from the previous corollary that if one of the conditions of
Definition 4.8 is satisfied for one S, then it holds for every S.

4.3 An inverse mapping theorem

Theorem 4.13 Let f : (X , x) → (Y , y) be a germ of semialgebraic homeomorphism
between real algebraic sets.

Assume that μL(X)(L(X , x)) = μL(Y )(L(Y , y)).
If f is generically arc-analytic and if the Jacobian determinant of f is bounded from
below, then the inverse map f −1 : Y → X is also generically arc-analytic and the
Jacobian of f is bounded from above.

Remark 4.14 Notice that arc-analyticity is an open condition for semialgebraic con-
tinuous maps (see [28, Theorem 3.1] where it is not necessary to assume that f is
bounded, up to composing f with a real analytic diffeomorphism ϕ : R → (−1, 1)).
Hence, since the above statement is local, it is enough to use real analytic arcs centered
at x for the arc-analyticity condition.

The same holds for the boundedness of the Jacobian of f : we assume that the arcs
of Definition 4.8 or Corollary 4.11 are centered at x .
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Proof of Theorem 4.13 We have the commutative diagram (2). Notice that E = (p ◦
σ)−1(0) is algebraic since p ◦ σ is regular. By Theorem 3.67,

μL(X) ((p ◦ σ)∗(L(M, E))) =
∫

(p◦σ)∗(L(M,E))

L
−0dμL(X)

=
∫

L(M,E)

L
− ordt jacp◦σ dμL(M)

=
∑

n≥0

μL(M)

(
L(M, E) ∩ (

ordt jacp◦σ
)−1

(n)
)

L
−n

Thus

μL(X) ((p ◦ σ)∗(L(M, E)))
∑

i≥0

L
−i

=
∑

i≥0

∑

n≥0

μL(M)

(
L(M, E) ∩ (

ordt jacp◦σ
)−1

(n)
)

L
−(i+n)

=
∑

n≥0

μL(M)

(
γ ∈ L(M, E), ordt jacp◦σ (γ (t)) ≤ n

)
L
−n

Similarly

μL(Y ) ((q ◦ σ)∗(L(M, E)))
∑

i≥0

L
−i

=
∑

n≥0

μL(M)

(
γ ∈ L(M, E), ordt jacq◦σ (γ (t)) ≤ n

)
L
−n

Hence

(
μL(Y ) ((q ◦ σ)∗(L(M, E))) − μL(X) ((p ◦ σ)∗(L(M, E)))

)∑

i≥0

L
−i

=
∑

n≥0

(
μL(M)

(
γ ∈ L(M, E), ordt jacq◦σ (γ (t)) ≤ n

)

− μL(M)

(
γ ∈ L(M, E), ordt jacp◦σ (γ (t)) ≤ n

) )
L
−n

Since we may lift a real analytic arc non-entirely included in the exceptional locus by
p ◦ σ , we have

μL(X) ((p ◦ σ)∗(L(M, E))) = μL(X) (L(X , x))
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so that

(
μL(Y ) ((q ◦ σ)∗(L(M, E))) − μL(X) (L(X , x))

)∑

i≥0

L
−i

=
∑

n≥0

(
μL(M)

(
γ ∈ L(M, E), ordt jacq◦σ (γ (t)) ≤ n

)

− μL(M)

(
γ ∈ L(M, E), ordt jacp◦σ (γ (t)) ≤ n

) )
L
−n

Since μL(Y )(L(Y , y)) = μL(X)(L(X , x)), we obtain

(
μL(Y ) ((q ◦ σ)∗(L(M, E))) − μL(Y ) (L(Y , y))

)∑

i≥0

L
−i

=
∑

n≥0

(
μL(M)

(
γ ∈ L(M, E), ordt jacq◦σ (γ (t)) ≤ n

)

− μL(M)

(
γ ∈ L(M, E), ordt jacp◦σ (γ (t)) ≤ n

) )
L
−n

Since M is non-singular, we may simply write

(
μL(Y ) ((q ◦ σ)∗(L(M, E))) − μL(Y ) (L(Y , y))

)∑

i≥0

L
−i

=
∑

n≥0

( [
γ ∈ Ln(M, E), ordt jacq◦σ (γ (t)) ≤ n

]

− [
γ ∈ Ln(M, E), ordt jacp◦σ (γ (t)) ≤ n

] )
L
−(n+2)d

Since the Jacobian determinant f is bounded from below, using Proposition 4.10, we
get that each summand of the RHS is positive or zero (in the sense of Definition 3.31)
because the leading coefficient of the virtual Poincaré polynomial of a non-empty
AS-set is positive:

(
μL(Y ) ((q ◦ σ)∗(L(M, E))) − μL(Y ) (L(Y , y))

)∑

i≥0

L
−i

=
∑

n≥0

([ {
γ ∈ Ln(M, E), ordt jacq◦σ (γ (t)) ≤ n

}

\ {γ ∈ Ln(M, E), ordt jacp◦σ (γ (t)) ≤ n
} ])

L
−(n+2)d

Moreover, the LHS is negative or zero since (q ◦ σ)∗(L(M, E)) ⊂ L(Y , y).
Assume that f is not bounded from above, then at least one of the summand of the

RHS is positive so that we obtain a contradiction. This proves that f is bounded from
above.
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Furthermore, since the RHS is zero, we obtain that

μL(Y ) ((q ◦ σ)∗(L(M, E))) = μL(Y ) (L(Y , y)) (4)

We are now going to prove that f −1 is generically arc-analytic so that it is blow-
Nash.

Assume by contradiction there exists γ ∈ L(Y , y) not entirely included in f (S) ∪
Ysing which may not be lifted by q ◦ σ . Nevertheless, by [8, Proposition 2.21],

(q ◦ σ)−1(γ (t)) =
∑

i≥0

ci t
i
a , t ≥ 0

and

(q ◦ σ)−1(γ (t)) =
∑

i≥0

di (−t)
i
b , t ≤ 0.

By assumption (q ◦σ)−1(γ (t)) is not analytic so that either these expansions don’t
coincide or they have a non-integer exponent.

1. We first treat the latter case. Assume that

(q ◦ σ)−1(γ (t)) =
m∑

i=0

ci t
i + ct

a
b + · · · , t ≥ 0, m <

a

b
< m + 1, c �= 0.

Since (q ◦σ)−1 : Y\ f (S) → M is continuous and subanalytic, it is locally Hölder
so that there exists N ∈ N≥0 satisfying for all real analytic arc η(t) not entirely
included in f (S) ∪ Ysing,

η(t) ≡ γ (t) mod t N ⇒ (q ◦ σ)−1(η(t)) ≡ (q ◦ σ)−1(γ (t)) mod tm+1.

Thus π−1
N (πN (γ )) ⊂ L(Y , y)\(q ◦ σ)∗(L(M, E)).

Notice thatπ−1
N (πN (γ )) ismeasurable as a cylinder. Letρ : Ỹ → Y be a resolution

of Y . Since γ is not entirely included in the singular set of Y , there exists a unique
real analytic arc γ̃ on M such that γ = ρ ◦ γ̃ . Let e = ordt jacρ(γ̃ (t)) and e′ be
such that γ ∈ L(e′)(Y ). We may assume that N ≥ max(e′, 2e). Then, by Lemma
3.62 and since Ỹ is non-singular,

μL(Y )

(
π−1
N (πN (γ ))

)
= μL(Ỹ )

(
π−1
N (πN (γ̃ ))

)
L
−e

=
[
πN

(
π−1
N (πN (γ̃ ))

)]
L
−(N+1)d−e

�= 0
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Since π−1
N (πN (γ )) ⊂ L(Y , y)\(q ◦ σ)∗(L(M, E)), we obtain that

μ (L(Y , y)\(q ◦ σ)∗(L(M, E))) �= 0

which contradicts (4).
2. We now assume that

γ̃+(t) = (q ◦ σ)−1(γ (t)) =
m−1∑

i=0

ci t
i + ctm + · · · , t ≥ 0

and

γ̃−(t) = (q ◦ σ)−1(γ (t)) =
m−1∑

i=0

ci t
i + dtm + · · · , t ≤ 0

with c �= d.

Notice that (q◦σ)(γ±(t)) are analytic so that γ (t) = ( f ◦q◦σ)(γ+(t)) = ( f ◦q◦
σ)(γ−(t)). Since f is a homeomorphism, we get (q◦σ)(γ+(t)) = (q◦σ)(γ−(t)).
Since this real analytic arc is not entirely included in S, it may be uniquely lifted
by q ◦ σ so that γ+(t) = γ−(t). Hence c = d and we obtain a contradiction.

Thus, for all γ ∈ L(Y , y)\L( f (S) ∪ Ysing) there exists γ̃ ∈ L(M, E) such that
(q ◦ σ)(γ̃ (t)) = γ (t). Then f −1(γ (t)) = (p ◦ σ)(γ̃ (t)) which is real analytic.
Therefore f −1 is generically arc-analytic and so blow-Nash. �	
Remark 4.15 Notice that, in the above proof, we do not need a homeomorphism f :
X → Y but only a homeomorphism of f : Reg(X) → Reg(Y ).

Under the assumptions of the previous theorem, we derive the following corollary
from Lemma 4.4.

Corollary 4.16 Let f : (X , x) → (Y , y) be a semialgebraic homeomorphism
germ between real algebraic sets with dim X = dim Y . Assume moreover that
μL(X)(L(X , x)) = μL(Y )(L(Y , y)).

If f is blow-Nash and if the Jacobian determinant of f is bounded from below,
then the inverse f −1 is also blow-Nash and the Jacobian determinant of f is bounded
from above.

Remark 4.17 Notice that in the previous results we do not assume that X = Y contrary
to [8, Main Theorem 3.5].

Theorem 4.18 Let f : (X , x) → (Y , y) be a semialgebraic homeomorphism germ
between algebraic sets with dim X = dim Y . If f is generically arc-analytic and
if the Jacobian determinant of f is bounded from below, then μL(X)(L(X , x)) �
μL(Y )(L(Y , y)).
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Proof Following the beginning of the proof of Theorem 4.13, we obtain :

(
μL(Y ) (L(Y , y)) − μL(X) (L(X , x))

)∑

i≥0

L
−i

# (
μL(Y ) ((q ◦ σ)∗(L(M, E))) − μL(X) (L(X , x))

)∑

i≥0

L
−i

=
∑

n≥0

(
μL(M)

(
γ ∈ L(M, E), ordt jacq◦σ (γ (t)) ≤ n

)

− μL(M)

(
γ ∈ L(M, E), ordt jacp◦σ (γ (t)) ≤ n

) )
L
−n

# 0

�	

5 An inversemapping theorem for inner-Lipschitz maps

5.1 Inner distance

Let X be a connected semialgebraic subset ofRN equippedwith the standardEuclidean
distance.We denote by dX the inner (also called geodesic) distance in X . By definition,
for p, q ∈ X , the inner distancedX (p, q) is the infimumover the length of all rectifiable
curves joining p to q in X . By [25], dX (p, q) is the infimum over the length of
continuous semialgebraic curves in X joining p and q. It is proven in [25] that dX can
be approximated uniformly by subanalytic distances.

We recall some results from [25], based on [24]. Let ε > 0, we say that a connected
semialgebraic set Γ ⊂ R

N is Kε-regular if for any p, q ∈ Γ we have

dΓ (p, q) ≤ (1+ ε)|p − q|.

We state now a semialgebraic version of [25, Proposition 3].

Proposition 5.1 Let X ⊂ R
N be a semialgebraic set and ε > 0. Then there exists a

finite decomposition X = ⋃
ν∈V Γν such that:

1. each Γν is a semialgebraic connected analytic submanifold of R
N ,

2. each Γν is Kε-regular.

Remark 5.2 Given a finite family of semialgebraic sets Xi , i ∈ I , we can find a
decomposition satisfying the above conditions and such that for any i ∈ I , ν ∈ V , we
have: either Γν ⊂ Xi or Γν ∩ Xi = ∅.

For a C1 map f : X ′ → R
M defined on a submanifold X ′ of R

N we denote by
Dp f : TpX → R

M its differential at p ∈ X ′. Then the norm of Dp f is defined by

‖Dp f ‖ = sup
{|Dp f (v)| : v ∈ Tp, |v| = 1

}
.
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Lemma 5.3 Assume that fν : Γν → R
M is aC1-map, such that for any p ∈ Γν wehave

‖Dp fν‖ ≤ L. Then fν is (1 + ε)L-Lipschitz with respect to the Euclidean distance,
hence it extends continuously on Γ ν to a Lipschitz map with the same constant.

Proof Let p, q ∈ Γν and ε′ > ε, then, by [25], there exists a C1-semialgebraic arc
λ : [0, 1] → Γν such that p = λ(0), q = λ(1) of the length |λ| ≤ (1+ ε′)|p − q|. It
follows that

| fν(p) − fν(q)| ≤ L|λ| ≤ (1+ ε′)L|p − q|.

We obtain the conclusion passing to the limit ε′ → ε.
Notice that, on any metric space, a Lipschitz mapping extends continuously to the

closure with the same Lipschitz constant. �	
Let X and Y be locally closed connected semialgebraic subsets respectively of R

N

and R
M . They are equipped with the inner distances dX and dY , respectively. Let

f : X → Y

be a continuous semialgebraic map. Then there exists a semialgebraic set X ′ ⊂ X ,
which is open and dense in X , such that the connected components of X ′ are analytic
submanifolds of R

N , possibly of different dimensions. Moreover f restricted to each
connected component of X ′ is analytic.

Proposition 5.4 The following conditions are equivalent:

(i) dY ( f (p), f (q)) ≤ LdX (p, q) for any p, q ∈ X,
(ii) ‖Dp f ‖ ≤ L for any p ∈ X ′.

Proof The implication 5.4(i) ⇒ 5.4 (ii) is obvious since at a smooth point p ∈ X , the
inner and Euclidean distances are asymptotically equal.

To prove the converse let us fix p, q ∈ X . For any ε > 0 there exists a continuous
semialgebraic arc λ : [0, 1] → X such that p = λ(0), q = λ(1) of the length
|λ| ≤ (1 + ε)dX (p, q). By Proposition 5.1 there exists a finite decomposition X ′ =⋃

ν∈V Γν into Kε-regular semialgebraic connected analytic submanifolds of R
N . Let

X ′′ = ⋃
ν∈V ′ Γν be the union of thoseΓν which are open in X ′. Note that X ′′ is dense in

X ′. It follows that X ⊂ ⋃
ν∈V ′ Γν . Since the arc λ is semialgebraic there exists a finite

sequence 0 = t0 < · · · < tk = 1 such that each λ([ti , ti+1]) ⊂ Γν for some ν ∈ V ′. By
Lemma 5.3 the length of f (λ([ti , ti+1])) is bounded by (1+ ε)|λ([ti , ti+1])|. Hence

| f (λ([0, 1]))| =
k−1∑

i=0

| f (λ([ti , ti+1])| ≤ (1+ ε)L
k−1∑

i=0

|λ([ti , ti+1])| ≤ (1+ ε)L|λ|.

Thus

dY ( f (p), f (q)) ≤ | f (λ([0, 1]))| ≤ (1+ ε)L|λ| ≤ (1+ ε)2LdX (p, q)

We conclude by taking the limit as ε → 0. �	
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5.2 An inverse mapping theorem

We suppose now that f : X → Y satisfies Assumption 4.6. Thus it is a blow-Nash
map between two real algebraic sets of dimension d.

Let γ ∈ L(X)\L(S). Let us adapt the notation introduced in the paragraph after
Assumption 4.6. In particular we assume that the limit of tangent spaces Tγ (t)X in the
Grassmannian GN ,d is equal to R

d ⊂ R
N . Then, for every i = 1, . . . , d and every

j = 1, . . . , M

ηi, j (t) = ∂ f j
∂xi

is semialgebraic. Thus the order of ηi, j (t), as t → 0+ is a well defined rational number
(or +∞ if f j vanishes identically on γ ).

Definition 5.5 The order of the Jacobian matrix of f along γ is defined as

ordt→0+ Jac f (γ (t)) = min
i, j

{ordt→0+ ηi, j (t)}.

Remark 5.6 The above notion should not be confused with the order of the Jacobian
determinant defined in Definition 4.7.

Remark 5.7 It is likely that ηi, j (t) is actually meromorphic and it is not necessary, in
the above definition, to restrict to t → 0+. We leave it as an open problem.

Definition 5.8 We say that the Jacobian matrix of f is bounded from above if there is
an S such that for every γ ∈ L(X)\L(S), ordt→0+ Jac f (γ (t)) ≥ 0.

One may show again that if the above condition is satisfied for one S they are
satisfied for every S.

The following result follows from Proposition 5.4.

Proposition 5.9 Let f : (X , x) → (Y , y) be a semialgebraic homeomorphism
germ between two real algebraic set germs with dim(X , x) = dim(Y , y). Then
f : Reg(X) → Reg(Y ) is inner Lipschitz if and only if the Jacobian matrix of f
is bounded from above.

Theorem 5.10 Let f : (X , x) → (Y , y) be a semialgebraic homeomorphism germ
between two real algebraic set germs with dim(X , x) = dim(Y , y). Assume that
μL(X)(L(X , x)) = μL(Y )(L(Y , y)). If f is generically arc-analytic and f −1 :
Reg(Y ) → Reg(X) is inner Lipschitz, then f −1 : Y → X is also generically arc-
analytic and f : Reg(X) → Reg(Y ) is inner Lipschitz.

Remark 5.11 Notice that both previous results involve the closure of the regular parts
of the algebraic sets. The obtained sets Reg(X) and Reg(Y ) do not contain any part
of smaller dimension but they still may not be smooth submanifolds.
For instance, for the Whitney umbrella X = {x2 = zy2}, Reg(X) consists in the
canopy (i.e. the z ≥ 0 part of X ). Therefore Reg(X) is singular along the half-axis
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{(0, 0, z), z ≥ 0}. However it doesn’t contain the handle of theWhitney umbrella (i.e.
{(0, 0, z), z < 0}) which is a smooth manifold of dimension 1 whereas dim X = 2.

Proof of Theorem 5.10 To simplify the exposition we suppose that X , and hence Y as
well, is pure-dimensional. That is X = Reg(X) and Y = Reg(Y ). The proof in the
general case is similar.

First we apply Proposition 5.4 to f −1. Hence the Jacobian determinant of f −1 is
bounded from above. Therefore the Jacobian determinant of f is bounded from below
and we can apply to f Theorem 4.13. This shows that f −1 is generically arc-analytic
and that the Jacobian determinant of f is bounded from above and below.

Now we show that the Jacobian matrix of f is bounded from above. Let γ ∈
L(X)\L(S). We may assume, as explained above, that R

d ⊂ R
N is the limit of

tangent spaces Tγ (t)X . Similarly by considering the limit of T f (γ (t))Y wemay assume
that it equals R

d ⊂ R
M . Then y1, . . . , yd form a local system of coordinates on Y

at every f (γ (t)), t �= 0. By the assumptions the matrix (
∂xi
∂ y j

)( f (γ (t)) is bounded
and its determinant is a unit. Therefore, by the cofactor formula, its inverse, that is
(

∂xi
∂ y j

)( f (γ (t)) is bounded. This shows that f is inner Lipschitz by Proposition 5.9. �	
Remark 5.12 Notice that, in the above proof, we do not need a homeomorphism f :
X → Y but only a homeomorphism of f : Reg(X) → Reg(Y ).
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41. Parusiński, A.: Topology of injective endomorphisms of real algebraic sets. Math. Ann. 328(1–2),
353–372 (2004). https://doi.org/10.1007/s00208-003-0486-x
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