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OPTIMAL SOBOLEV REGULARITY
OF ROOTS OF POLYNOMIALS

 A PARUSIŃSKI  A RAINER

A. – We study the regularity of the roots of complex univariate polynomials whose coeffi-
cients depend smoothly on parameters. We show that any continuous choice of a root of aCn�1;1-curve
of monic polynomials of degree n is locally absolutely continuous with locally p-integrable derivatives
for every 1 � p < n=.n � 1/, uniformly with respect to the coefficients. This result is optimal: in
general, the derivatives of the roots of a smooth curve of monic polynomials of degree n are not lo-
cally n=.n � 1/-integrable, and the roots may have locally unbounded variation if the coefficients are
only of class Cn�1;˛ for ˛ < 1. We also prove a generalization of Ghisi and Gobbino’s higher or-
der Glaeser inequalities. We give three applications of the main results: local solvability of a system of
pseudo-differential equations, a lifting theorem for mappings into orbit spaces of finite group represen-
tations, and a sufficient condition for multi-valued functions to be of Sobolev class W 1;p in the sense
of Almgren.

R. – Nous étudions la régularité des racines d’un polynôme complexe univarié dont les co-
efficients varient de façon lisse. Nous montrons que tout choix continu de racines d’uneCn�1;1-courbe
de polynômes unitaires de degré n est localement absolument continu avec ses dérivées localementp-in-
tégrables pour tout 1 � p < n=.n � 1/, uniformément par rapport aux coefficients. Ce résultat est op-
timal : en général, les dérivées de racines d’une courbe lisse de polynômes unitaires de degré n ne sont
pas localement n=.n � 1/-intégrables et la variation des racines peut être localement non bornée si les
coefficients sont de classe Cn�1;˛ pour ˛ < 1. Nous montrons aussi une généralisation des inégalités
de Glaeser d’ordre supérieur à la Ghisi et Gobbino. Nous donnons trois applications des résultats prin-
cipaux : résolution locale d’un système d’équations pseudo-différentielles, un théorème de relèvement
pour les applications à valeurs dans l’espace des orbites d’une représentation d’un groupe fini et une
condition suffisante pour qu’une fonction multivaluée soit de classe de Sobolev W 1;p au sens d’Alm-
gren.

Supported by the Austrian Science Fund (FWF), Grant P 26735-N25, and by ANR project STAAVF (ANR-
2011 BS01 009).
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1344 A. PARUSIŃSKI AND A. RAINER

1. Introduction

This paper is dedicated to the problem of determining the optimal regularity of the roots
of univariate polynomials whose coefficients depend smoothly on parameters. There is a vast
literature on this problem, but most contributions treat special cases:

– the polynomial is assumed to have only real roots ([9], [28], [45], [2], [21], [6], [7], [44],
[8], [13], [30]),

– only radicals of functions are considered ([17], [11], [43], [12], [16]),
– it is assumed that the roots meet only of finite order, e.g., if the coefficients are real

analytic or in some other quasianalytic class, ([10], [34], [35], [36], [39]),
– quadratic and cubic polynomials ([40]), etc.

In this paper we consider the general case: let .˛; ˇ/ � R be a bounded open interval and let

(1.1) Pa.t/.Z/ D Pa.t/.Z/ D Z
n
C

nX
jD1

aj .t/Z
n�j ; t 2 .˛; ˇ/;

be a monic polynomial whose coefficients are complex valued smooth functions
aj W .˛; ˇ/! C; j D 1; : : : ; n. It is not hard to see that Pa always admits a continuous
system of roots (e.g., [20, Ch. II Theorem 5.2]), but in general the roots cannot satisfy a local
Lipschitz condition. For a long time it was unclear whether the roots of Pa admit locally
absolutely continuous parameterizations. This question was affirmatively solved in our
recent paper [32]: there is a positive integer k D k.n/ and a rational number p D p.n/ > 1

such that, if the coefficients are of class C k , each continuous root � is locally absolutely
continuous with derivative �0 being locally q-integrable for each 1 � q < p, uniformly with
respect to the coefficients.

The problem of absolute continuity of the roots arose in the analysis of certain systems
of pseudo-differential equations due to Spagnolo [41]; see Section 10.1. For the history of
the problem we refer to the introduction of [32]. The main tool of [32] was the resolution of
singularities. With this technique we could not determine the optimal parameters k and p.

1.1. Main results

In the present paper we prove the optimal result by elementary methods. Our main result
is the following theorem.

T 1. – Let .˛; ˇ/ � R be a bounded open interval and let Pa be a monic poly-
nomial (1.1) with coefficients aj 2 C n�1;1.Œ˛; ˇ�/, j D 1; : : : ; n. Let � 2 C 0..˛; ˇ// be a
continuous root of Pa on .˛; ˇ/. Then � is absolutely continuous on .˛; ˇ/ and belongs to the
Sobolev space W 1;p..˛; ˇ// for every 1 � p < n=.n � 1/. The derivative �0 satisfies

k�0kLp..˛;ˇ// � C.n; p/maxf1; .ˇ � ˛/1=pg max
1�j�n

kaj k
1=j

Cn�1;1.Œ˛;ˇ�/
;(1.2)

where the constant C.n; p/ depends only on n and p.

A well-known estimate for the Cauchy bound of a polynomial (cf. [27, p.56] or [33,
(8.1.11)]) gives j�.t/j � 2max1�j�n jaj .t/j1=j for all t 2 .˛; ˇ/, and hence

k�kLp..˛;ˇ// � C.n/.ˇ � ˛/
1=p max

1�j�n
kaj k

1=j

L1..˛;ˇ//
:
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OPTIMAL SOBOLEV REGULARITY OF ROOTS OF POLYNOMIALS 1345

It follows that

k�kW 1;p..˛;ˇ// � C.n; p/maxf1; .ˇ � ˛/1=pg max
1�j�n

kaj k
1=j

Cn�1;1.Œ˛;ˇ�/
:(1.3)

An application of Hölder’s inequality yields the following corollary.

C 1. – Every continuous root of Pa on .˛; ˇ/ is Hölder continuous of exponent
 D 1 � 1=p < 1=n, and

(1.4) k�kC0; .Œ˛;ˇ�/ � C.n; p/maxf1; .ˇ � ˛/1=pg max
1�j�n

kaj k
1=j

Cn�1;1.Œ˛;ˇ�/
:

Proof. – Indeed, j�.t/ � �.s/j � j
R t
s
�0 d� j � k�0kLp..˛;ˇ//jt � sj

1�1=p.

The result in Theorem 1 is best possible in the following sense:

– In general the roots of a polynomial of degree n cannot lie locally in W 1;n=.n�1/, even
when the coefficients are real analytic. For instance, Zn D t , t 2 R.

– If the coefficients are just inC n�1;ı.Œ˛; ˇ�/ for every ı < 1, then the roots need not have
bounded variation in .˛; ˇ/. See [16, Example 4.4].

A curve of complex monic polynomials (1.1) admits a continuous choice of its roots. This is
no longer true if the dimension of the parameter space is at least two. In that case monodromy
may prevent the existence of continuous roots. However, we obtain the following multipa-
rameter result, where we impose the existence of a continuous root; see also Remark 8.

T 2. – Let U � Rm be open and let

(1.5) Pa.x/.Z/ D Pa.x/.Z/ D Z
n
C

nX
jD1

aj .x/Z
n�j ; x 2 U;

be a monic polynomial with coefficients aj 2 C n�1;1.U /, j D 1; : : : ; n. Let � 2 C 0.V / be a
root of Pa on a relatively compact open subset V b U . Then � belongs to the Sobolev space
W 1;p.V / for every 1 � p < n=.n � 1/. The distributional gradient r� satisfies

(1.6) kr�kLp.V / � C.m; n; p; K / max
1�j�n

kaj k
1=j

Cn�1;1.W /
;

where K is any finite cover of V by open boxes
Qm
iD1.˛i ; ˇi / contained in U and W D

S
K ;

the constant C.m; n; p; K / depends only on m, n, p, and the cover K .

R 1. – For any two distinct points x and y in V such that the segment Œx; y� is
contained in V , the root � satisfies a Hölder condition

j�.x/ � �.y/j

jx � yj
� C.m; n; p; diam.V // max

1�j�n
kaj k

1=j

Cn�1;1.Œx;y�/
;

where  D 1 � 1=p < 1=n. This follows easily from Theorem 2 and Remark 8.

The proof of Theorem 1 makes essential use of the recent result of Ghisi and Gobbino
[16] who found the optimal regularity of radicals of functions (we will need a version for
complex valued functions; see Section 3). But we independently prove and generalize Ghisi
and Gobbino’s higher order Glaeser inequalities (see Section 4.5) on which their result is
based.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1346 A. PARUSIŃSKI AND A. RAINER

T 3 (Ghisi and Gobbino [16]). – Let k be a positive integer, let ˛ 2 .0; 1�, let
I � R be an open bounded interval, and let f W I ! R be a function. Assume that f is
continuous and that there exists g 2 C k;˛.I ;R/ such that

jf jkC˛ D jgj:

Let p be defined by 1=p C 1=.k C ˛/ D 1. Then we have f 0 2 Lpw.I / and

(1.7) kf 0kp;w;I � C.k/max
n�

H Rold˛;I .g.k//
�1=.kC˛/

jI j1=p; kg0k
1=.kC˛/

L1.I /

o
;

where C.k/ is a constant that depends only on k.

HereLpw.I / denotes the weak Lebesgue space equipped with the quasinorm k �kp;w;I (see
Section 2.2), and H Rold˛;I .g.k// is the ˛-Hölder constant of g.k/ on I .

1.2. Open problems

We remark that our bound (1.2) is not invariant under rescaling, in contrast to (1.7). The
reason for this defect is linked to our method of proof.

O P 1. – Are there scale invariant estimates which could replace (1.2)?

We do not know whether, in the setting of Theorem 1, �0 is actually an element
of Ln=.n�1/w ..˛; ˇ//, as one could expect in view of Theorem 3. This has technical reasons
and comes from the fact that k � kpp;w;I is not � -additive.

O P 2. – Is �0 in the setting of Theorem 1 an element of Ln=.n�1/w ..˛; ˇ//?
If so is there an explicit bound for k�0kn=.n�1/;w;.˛;ˇ/ in terms of the coefficients aj and the
interval .˛; ˇ/?

The roots of (1.5) will in general not allow for continuous (and, a fortiori,W 1;1
loc ) parame-

terizations ifm � 2. It is thus natural to ask if the roots are representable locally by functions
of bounded variation.

O P 3. – Are the roots of a polynomial Pa.x/, x 2 Rm, m � 2, with
smooth complex valued coefficients representable by functions which locally have bounded
variation? We can prove this for radicals of smooth functions.

1.3. Strategy of the proof of Theorem 1

Let us briefly describe the strategy of our proof of Theorem 1. It is by induction on the
degree of the polynomial and its heart is Proposition 3 below.

First we reduce the polynomial Pa to Tschirnhausen form PQa (indicated by adding tilde
diacritics), where Qa1 � 0 (see Section 4.1). This has the benefit that near points t0, where not
all coefficients vanish, the polynomial PQa splits,

PQa.t/ D Pb.t/Pb�.t/; t 2 I; .t0 2 I /;

thanks to the inverse function theorem. It is important for our proof that the splitting is
universal (and independent of t0). We achieve this by considering the polynomial

Qa.Z/ WD Qa
�n=k

k
PQa. Qa

1=k

k
Z/ D Zn C

nX
jD2

ajZ
n�j ;
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OPTIMAL SOBOLEV REGULARITY OF ROOTS OF POLYNOMIALS 1347

which splits locally near every .a2; : : : ; an/ 2 Cn�1 \ fak D 1g.
We obtain a universal splitting by choosing a finite subcover of the compact set of points

with ak D 1 and jaj j � 1 for j ¤ k. It induces a splitting of PQa and gives formulas for the
coefficients bi (and b�i ) in terms of Qaj . See Sections 4.2 and 4.3. The differentiability class of
the Qaj is preserved by the splitting.

After the Tschirnhausen transformation Pb  P Qb , we split P Qb near points t1 2 I , where
not all Qbi vanish,

P Qb.t/ D Pc.t/Pc�.t/; t 2 J; .t1 2 J /:

Again we use the universal splitting (now for polynomials of degree nb WD degPb in
Tschirnhausen form). We get formulas for ch (and c�

h
) in terms of Qbj , and the differentiability

class is preserved. Then we apply the Tschirnhausen transformation Pc  PQc and so on.

The central idea underlying the induction is to show that, for 1 � p < n=.n� 1/, we have
an estimate of the form

(1.8) kjJ j�1j Qb`.t1/j
1=`
kLp.J / C

ncX
hD2

k. Qc
1=h

h
/0kLp.J /

� C
�
kjI j�1j Qak.t0/j

1=k
kLp.J / C

nbX
iD2

k. Qb
1=i
i /0kLp.J /

�
;

for a universal constant C D C.n; p/ (where nc WD degPc). Here k (resp. `) is chosen such
that j Qak.t0/j1=k D max2�j�n j Qaj .t0/j1=j (resp. j Qb`.t1/j1=` D max2�i�nb j Qbi .t1/j

1=i ), that is
the kth (resp. `th) correctly weighted coefficient is dominant at t0 (resp. t1).

In the derivation of (1.8) we make essential use of (1.7) and Lemma 4 below in order to
bound the left-hand side by

jJ j�1C1=pj Qb`.t1/j
1=`:

Now the key to get (1.8) from this is that we can choose the interval J such that

(1.9) DjJ j�1C1=pj Qb`.t1/j
1=`
D jJ j1=p

�
jI j�1j Qak.t0/j

1=k
C

nbX
iD2

k. Qb
1=i
i /0kL1.J /

�
;

where D is a universal constant.

We get the estimate (1.8) on neighborhoods J of all points t1 2 I , where not all Qbi
vanish. In order to glue these estimates, we prove in Proposition 2 that there is a countable
subcollection of intervals J such that every point in their union is covered at most by two
intervals. In this gluing process we use the � -additivity of k � kpLp . Since the Lpw -quasinorm

lacks this property, we are forced to switch from L
n=.n�1/
w - to Lp-bounds for p < n=.n� 1/.

In the end we must estimate the right-hand side of (1.8) by a bound involving the
C n�1;1-norm of the Qaj . At this stage we will not always have an identity corresponding to
(1.9) (see Remark 7). We resolve this inconvenience by extending the coefficients Qaj to a
larger interval and we force them to vanish at the boundary of this interval. This results in
an identity of the type (1.9) for the Qaj instead of the Qbi (see Lemma 16). However, in this
process we lose scale invariance of our bound (1.2).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1348 A. PARUSIŃSKI AND A. RAINER

1.4. Structure of the paper

The paper is structured as follows. We fix notation and recall facts on function spaces
in Section 2. Ghisi and Gobbino’s result on radicals (Theorem 3) is extended to complex
valued functions in Section 3. We collect preliminaries on polynomials and define a universal
splitting of such in Section 4. We derive bounds for the coefficients of a polynomial and
generalize Ghisi and Gobbino’s higher order Glaeser inequalities [16, Proposition 3.4] in
Section 4.5, by applying these bounds to the Taylor polynomial. In Sections 5 and 6 we
deduce estimates for the iterated derivatives of the coefficients before and after the splitting.
Section 7 is dedicated to the proof of Proposition 2. The proof of Theorem 1 is finally carried
out in Section 8; in the appendix we illustrate the proof for polynomials of degree 3 and 4. We
deduce Theorem 2 in Section 9. In Section 10 we provide three applications of our results:
local solvability of a system of pseudo-differential equations, a lifting theorem for mappings
into orbit spaces of finite group representations and a sufficient condition for multi-valued
functions to be of Sobolev class W 1;p in the sense of Almgren [3].

Acknowledgement

We thank the anonymous referees for the helpful remarks to improve the presentation.

2. Function spaces

In this section we fix notation for function spaces and recall well-known facts.

2.1. Hölder spaces

Let� � Rn be open and bounded. We denote byC 0.�/ the space of continuous complex
valued functions on �. For k 2 N [ f1g we set

C k.�/ D ff 2 C� W @˛f 2 C 0.�/; 0 � j˛j � kg;

C k.�/ D ff 2 C k.�/ W @˛f has a continuous extension to �; 0 � j˛j � kg:

For ˛ 2 .0; 1� a function f W � ! C belongs to C 0;˛.�/ if it is ˛-Hölder continuous in �,
that is,

H Rold˛;�.f / WD sup
x;y2�;x¤y

jf .x/ � f .y/j

jx � yj˛
<1:

If f is Lipschitz, that is, f 2 C 0;1.�/, we use

Lip�.f / D H Rold1;�.f /:

We define

C k;˛.�/ D ff 2 C k.�/ W @ˇf 2 C 0;˛.�/; jˇj D kg:

Note that C k;˛.�/ is a Banach space when provided with the norm

kf kCk;˛.�/ WD sup
jˇ j�k
x2�

j@ˇf .x/j C sup
jˇ jDk

H Rold˛;�.@ˇf /:

4 e SÉRIE – TOME 51 – 2018 – No 5



OPTIMAL SOBOLEV REGULARITY OF ROOTS OF POLYNOMIALS 1349

2.2. Lebesgue spaces and weak Lebesgue spaces

Let � � Rn be open, and let 1 � p � 1. We denote by Lp.�/ the Lebesgue space with
respect to the n-dimensional Lebesgue measure L

n. For Lebesgue measurable sets E � Rn

we denote by

jEj D L
n
.E/

its n-dimensional Lebesgue measure. Let p0 denote the conjugate exponent of p defined by

1

p
C
1

p0
D 1

with the convention 10 D1 and10 D 1.

Let 1 � p <1 and let us assume that � is bounded. A measurable function f W �! C
belongs to the weak Lp-space Lpw.�/ if

kf kp;w;� WD sup
r�0

r jfx 2 � W jf .x/j > rgj1=p <1:

For 1 � q < p <1 we have (cf. [18, Ex. 1.1.11])

(2.1) kf kq;w;� � kf kLq.�/ �
� p

p � q

�1=q
j�j1=q�1=pkf kp;w;�

and hence Lp.�/ � Lpw.�/ � Lq.�/ � L
q
w.�/ with strict inclusions. It will be convenient

to normalize the Lp-norm and the Lpw -quasinorm, i.e., we will consider

kf k�Lp.�/ WD j�j
�1=p
kf kLp.�/;

kf k�p;w;� WD j�j
�1=p
kf kp;w;�:

Note that k1k�
Lp.�/

D k1k�p;w;� D 1. Then, for 1 � q < p <1,

kf k�Lq.�/ � kf k
�
Lp.�/;(2.2)

kf k�q;w;� � kf k
�
Lq.�/ �

� p

p � q

�1=q
kf k�p;w;�:(2.3)

We remark that k�kp;w;� is only a quasinorm: the triangle inequality fails, but for fj 2 L
p
w.�/

we still have  mX
jD1

fj


p;w;�

� m

mX
jD1

kfj kp;w;�:

There exists a norm equivalent to k�kp;w;� which makesLpw.�/ into a Banach space ifp > 1.

The Lpw -quasinorm is � -subadditive: if f�j g is a countable family of open sets with
� D

S
�j then

(2.4) kf k
p
p;w;� �

X
j

kf k
p
p;w;�j

for every f 2 Lpw.�/:

But it is not � -additive: for instance, for h W .0;1/! R, h.t/ WD t�1=p, we have khkp
p;w;.0;�/

D 1

for every � > 0, but khkp
p;w;.1;2/

D 1=2.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1350 A. PARUSIŃSKI AND A. RAINER

2.3. Sobolev spaces

For k 2 N and 1 � p � 1 we consider the Sobolev space

W k;p.�/ D ff 2 Lp.�/ W @˛f 2 Lp.�/; 0 � j˛j � kg;

where @˛f denote distributional derivatives, with the norm

kf kW k;p.�/ WD

X
j˛j�k

k@˛f kLp.�/:

On bounded intervals I � R the Sobolev space W 1;1.I / coincides with the space AC.I /
of absolutely continuous functions on I if we identify each W 1;1-function with its unique
continuous representative. Recall that a function f W � ! R on an open subset � � R is
absolutely continuous if for every � > 0 there exists ı > 0 so that

Pn
iD1 jai � bi j < ı impliesPn

iD1 jf .ai / � f .bi /j < � whenever Œai ; bi �, i D 1; : : : ; n, are non-overlapping intervals
contained in �.

We shall also use W k;p
loc , ACloc, etc. with the obvious meaning.

2.4. Extension lemma

We will use the following extension lemma. The analog for the Lpw -quasinorm may be
found in [32, Lemma 2.1] which is a slight generalization of [16, Lemma 3.2]. Here we need
a version for the Lp-norm; the proof is the same.

L 1. – Let � � R be open and bounded, let f W � ! C be continuous, and set
�0 WD ft 2 � W f .t/ ¤ 0g. Assume that f j�0

2 ACloc.�0/ and that f j0�0
2 Lp.�0/ for some

p � 1 (note that f is differentiable a.e. in �0). Then the distributional derivative of f in � is
a measurable function f 0 2 Lp.�/ and

(2.5) kf 0kLp.�/ D kf j
0

�0
kLp.�0/:

Proof. – One shows that

 .t/ WD

(
f 0.t/ if t 2 �0;

0 if t 2 � n�0;

represents the distributional derivative of f in �; for details see [32, Lemma 2.1].

3. Radicals of differentiable functions

We derive an analog of Theorem 3 for complex valued functions.

P 1. – Let I � R be a bounded interval, let k 2 N>0, and ˛ 2 .0; 1�. For each
g 2 C k;˛.I / we have

(3.1) jg0.t/j � ƒkC˛.t/jg.t/j
1�1=.kC˛/; a.e. in I;

for some ƒkC˛ D ƒkC˛;g 2 L
p
w.I;R�0/, where p D .k C ˛/0, and such that

(3.2) kƒkC˛kp;w;I � C.k/max
n�

H Rold˛;I .g.k//
�1=.kC˛/

jI j1=p; kg0k
1=.kC˛/

L1.I /

o
:

Proof. – Analogous to the proof of [32, Proposition 3.1].
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C 2. – Let n be a positive integer and let I � R be an open bounded interval.
Assume that f W I ! C is a continuous function such that f n D g 2 C n�1;1.I /. Then we have
f 0 2 Ln

0

w .I / and

(3.3) kf 0kn0;w;I � C.n/max
n�

LipI .g
.n�1//

�1=n
jI j1=n

0

; kg0k
1=n

L1.I /

o
:

Proof. – On the set �0 D ft 2 I W f .t/ ¤ 0g, f is differentiable and satisfies

jf 0.t/j D
1

n

jg0.t/j

jg.t/j1�1=n
:

So the assertion follows from Proposition 1 and the Lpw -analog of Lemma 1; see [32,
Lemma 2.1].

R 2. – Proposition 1 and hence also Corollary 2 are optimal in the following
sense:

– ƒkC˛ can in general not be chosen in Lp. Indeed, for g W .�1; 1/ ! R, g.t/ D t , we
have jg0jjgj1=.kC˛/�1 D jt j�1=p which is not p-integrable near 0; see [16, Example 4.3].

– Ifg is only inC k;ˇ .I / for everyˇ < ˛, then (3.1) in general fails even forƒkC˛ 2 L1.I /.
We refer to [16, Example 4.4] for a non-negative function g 2

T
ˇ<˛ C

k;ˇ .I /\C1.I /

and g 62 C k;˛.I / whose non-negative .k C ˛/-root has unbounded variation in I .

4. Preliminaries on polynomials

4.1. Tschirnhausen transformation

A monic polynomial

Pa.Z/ D Z
n
C

nX
jD1

ajZ
n�j ; a D .a1; : : : ; an/ 2 Cn;

is said to be in Tschirnhausen form if a1 D 0. Every polynomial Pa can be transformed to a
polynomial PQa in Tschirnhausen form by the substitution Z 7! Z � a1=n, which we refer to
as the Tschirnhausen transformation,

PQa.Z/ D Pa.Z � a1=n/ D Z
n
C

nX
jD2

QajZ
n�j ; Qa D . Qa2; : : : ; Qan/ 2 Cn�1:

We have the formulas

(4.1) Qaj D

jX
`D0

C` a` a1
j�`; j D 2; : : : ; n;

whereC` are universal constants. The effect of the Tschirnhausen transformation will always
be indicated by adding tilde to the coefficients, Pa  PQa.

We will identify the set of monic complex polynomials Pa of degree n with the set Cn (via
Pa 7! a) and the set of monic complex polynomials PQa of degree n in Tschirnhausen form
with the set Cn�1 (via PQa 7! Qa).
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4.2. Splitting

The following well-known lemma (see e.g., [2] or [5]) is a consequence of the inverse
function theorem.

L 2. – Let Pa D PbPc , where Pb and Pc are monic complex polynomials without
common root. Then for P near Pa we have P D Pb.P /Pc.P / for analytic mappings of monic
polynomials P 7! b.P / and P 7! c.P /, defined for P near Pa, with the given initial values.

Proof. – The splitting Pa D PbPc defines on the coefficients a polynomial mapping '
such that a D '.b; c/, where a D .ai /, b D .bi /, and c D .ci /. The Jacobian determinant
det d'.b; c/ equals the resultant of Pb and Pc which is non-zero by assumption. Thus ' can
be inverted locally.

If PQa is in Tschirnhausen form and if Qa ¤ 0, then PQa splits, i.e., PQa D PbPc for monic
polynomials Pb and Pc with positive degree and without common zero. For, if �1; : : : ; �n
denote the roots of PQa and they all coincide, then since

�1 C � � � C �n D Qa1 D 0

they all must vanish, contradicting Qa ¤ 0.

Let Qa2; : : : ; Qan denote the coordinates in Cn�1 (D set of polynomials of degree n in
Tschirnhausen form). Fix k 2 f2; : : : ; ng and let Qp 2 Cn�1 \ fQak ¤ 0g; Qp corresponds to the
polynomial PQa. We associate the polynomial

Qa.Z/ WD Qa
�n=k

k
PQa. Qa

1=k

k
Z/ D Zn C

nX
jD2

Qa
�j=k

k
QajZ

n�j ;

aj WD Qa
�j=k

k
Qaj ; j D 2; : : : ; n;

where some branch of the radical is fixed. Then Qa is in Tschirnhausen form and ak D 1; it
corresponds to a point p 2 Cn�1 \ fak D 1g. By Lemma 2 we have a splitting Qa D QbQc
on some open ball B�.p/ centered at p with radius � > 0. In particular, there exist analytic
functions  i on B�.p/ such that

bi D  i
�
Qa
�2=k

k
Qa2; Qa

�3=k

k
Qa3; : : : ; Qa

�n=k

k
Qan
�
; i D 1; : : : ; degQb :

The splitting Qa D QbQc induces a splitting PQa D PbPc , where

(4.2) bi D Qa
i=k

k
 i
�
Qa
�2=k

k
Qa2; Qa

�3=k

k
Qa3; : : : ; Qa

�n=k

k
Qan
�
; i D 1; : : : ; nb WD degPbI

likewise for cj . Shrinking � slightly, we may assume that  i and all its partial derivatives are
bounded on B�.p/. Let Qbj denote the coefficients of the polynomial P Qb resulting from Pb by
the Tschirnhausen transformation. Then, by (4.1),

(4.3) Qbi D Qa
i=k

k
Q i
�
Qa
�2=k

k
Qa2; Qa

�3=k

k
Qa3; : : : ; Qa

�n=k

k
Qan
�
; i D 2; : : : ; nb;

for analytic functions Q i which, together with all their partial derivatives, are bounded
on B�.p/.
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4.3. Universal splitting of polynomials in Tschirnhausen form

The set

(4.4) K WD

n[
kD2

f.a2; : : : ; an/ 2 Cn�1 W ak D 1; jaj j � 1 for j ¤ kg

is compact. For each point p 2 K there exists �.p/ > 0 such that we have a splitting
PQa D PbPc on the open ball B�.p/.p/, and we fix this splitting; cf. Section 4.2. Choose a
finite subcover of K by open balls B�ı .pı/, ı 2 �. Then there exists � > 0 such that for
every p 2 K there is a ı 2 � such that B�.p/ � B�ı .pı/.

To summarize, for each integer n � 2 we have fixed

– a finite cover B of K by open balls B,
– a splitting PQa D PbPc on each B 2 B together with analytic functions  i and Q i

which are bounded on B along with all their partial derivatives,
– a positive number � such that for each p 2 K there is a B 2 B such that B�.p/ � B

(note that � is a Lebesgue number of the cover B).

We will refer to this data as a universal splitting of polynomials of degree n in Tschirnhausen
form and to � as the radius of the splitting.

4.4. Coefficient estimates

The following estimates are crucial. (Here it is convenient to number the coefficients in
reversed order.)

L 3. – Letm � 1 be an integer and ˛ 2 .0; 1�. Let P.x/ D a1xC� � �Camxm 2 CŒx�
satisfy

(4.5) jP.x/j � A.1CMxmC˛/; for x 2 Œ0; B� � R;

and constants A;M � 0 and B > 0. Then

(4.6) jaj j � CA.1CM
j=.mC˛/Bj /B�j ; j D 1; : : : ; m;

for a constant C depending only on m and ˛.

Proof. – The statement is well-known if M D 0; see [30, Lemma 3.4]. Assume that
M > 0.

It suffices to consider the special case A D B D 1. The general case follows by applying
the special case to Q.x/ D A�1P.Bx/ D b1x C � � � C bmxm, where bi D A�1B iai .

Fix k 2 f1; : : : ; mg and write the inequality (4.5) in the form

(4.7) jx�kP.x/j � x�k CMxmC˛�k :

The function on the right-hand side of (4.7) attains its minimum on fx > 0g at the point

(4.8) xk D
�

k
mC˛�k

�1=.mC˛/
M�1=.mC˛/;

and this minimum is of the form CkM
k=.mC˛/ for some Ck depending only on k, m, and ˛.

Thus, provided that xk � 1, we get

jP.xk/j � CkM
k=.mC˛/

jxkk j D Ck
�

k
mC˛�k

�k=.mC˛/
:
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Suppose first that xk � 1 for all k D 1; : : : ; m and consider

a1xk C � � � C amx
m
k D P.xk/; k D 1; : : : ; m;

as a system of linear equations with the unknowns ajM�j=.mC˛/ and the (Vandermonde-like)
matrix

L D
��

k
mC˛�k

�j=.mC˛/�m
k;jD1

:

Then the vector of unknowns is given by

.a1M
�1=.mC˛/; : : : ; amM

�m=.mC˛//T D L�1.P.x1/; P.x2/; : : : ; P.xm//
T :

We may conclude that
jaj j � CM

j=.mC˛/; j D 1; : : : ; m;

for a constant C depending only on m and ˛, that is (4.6).
If xk > 1 then M < k=.mC ˛ � k/, by (4.8). Hence, using (4.5), for x 2 Œ0; 1�,

jP.x/j � 1CMxmC˛ � 1C k
mC˛�k

�
mC˛
˛
:

In this case we may apply the lemma with M D 0, A D .mC ˛/=˛, and B D 1, and obtain

jaj j � C; j D 1; : : : ; m;

for a constant C depending only on m and ˛, which implies (4.6).

As a consequence we get estimates for the intermediate derivatives of a finitely differen-
tiable function in terms of the function and its highest derivative. For an interval I � R and
a function f W I ! C we define

VI .f / WD sup
t;s2I

jf .t/ � f .s/j:

L 4. – Let I � R be a bounded open interval, m 2 N>0, and ˛ 2 .0; 1�. If
f 2 Cm;˛.I /, then for all t 2 I and s D 1; : : : ; m,

jf .s/.t/j � C jI j�s
�
VI .f /C VI .f /

.mC˛�s/=.mC˛/.H Rold˛;I .f .m///s=.mC˛/jI js
�
;(4.9)

for a universal constant C depending only on m and ˛.

Proof. – We may suppose that I D .�ı; ı/. If t 2 I then at least one of the two intervals
Œt; t ˙ ı/, say Œt; t C ı/, is included in I . By Taylor’s formula, for t1 2 Œt; t C ı/,

mX
sD1

f .s/.t/

sŠ
.t1 � t /

s

D f .t1/ � f .t/ �

Z 1

0

.1 � �/m�1

.m � 1/Š

�
f .m/.t C �.t1 � t // � f

.m/.t/
�
d� .t1 � t /

m

and henceˇ̌̌ mX
sD1

f .s/.t/

sŠ
.t1 � t /

s
ˇ̌̌
� VI .f /CH Rold˛;I .f .m//.t1 � t /mC˛

D VI .f /
�
1C VI .f /

�1 H Rold˛;I .f .m//.t1 � t /mC˛
�
:

The assertion follows from Lemma 3.

4 e SÉRIE – TOME 51 – 2018 – No 5



OPTIMAL SOBOLEV REGULARITY OF ROOTS OF POLYNOMIALS 1355

4.5. Higher order Glaeser inequalities

As a corollary of Lemma 4 we obtain a generalization of Ghisi and Gobbino’s higher order
Glaeser inequalities [16, Proposition 3.4].

C 3. – Let m 2 N>0 and ˛ 2 .0; 1�. Let I D .t0 � ı; t0 C ı/ with t0 2 R
and ı > 0. If f 2 Cm;˛.I / is such that f and f 0 do not change their sign on I , then for all
s D 1; : : : ; m,

jf .s/.t0/j � C jI j
�s
�
jf .t0/j C jf .t0/j

.mC˛�s/=.mC˛/.H Rold˛;I .f .m///s=.mC˛/jI js
�
;(4.10)

for a universal constant C depending only on m and ˛.

Proof. – For simplicity assume t0 D 0. Changing f to �f and t to �t if necessary, we
may assume that f .t/ � 0 and f 0.t/ � 0 for all t � 0. Then VŒ0;ı/.f / � f .0/ and so (4.10)
follows from (4.9).

For s D 1 we recover [16, Proposition 3.4]. Indeed, for s D 1 we may write (4.10) as

jf 0.t0/j � C jf .t0/j
.mC˛�1/=.mC˛/ max

˚
jf .t0/j

1=.mC˛/
jI j�1; .H Rold˛;I .f .m///1=.mC˛/

	
;

(4.11)

and the inequality in [16, Proposition 3.4] can be written as

jf 0.t0/j � C jf .t0/j
.mC˛�1/=.mC˛/ max

˚
jf 0.t0/j

1=.mC˛/
jI j�1C1=.mC˛/; .H Rold˛;I .f .m///1=.mC˛/

	
:

(4.12)

These two inequalities are equivalent in the following sense: if (4.11) holds with the constant
C > 0 then (4.12) holds with the constant maxfC;C .mC˛�1/=.mC˛/g and, symmetrically, if
(4.12) holds with the constantC then (4.11) holds with the constant maxfC;C .mC˛/=.mC˛�1/g.
For instance, suppose that (4.11) holds. If the second term in the maximum (in (4.11)) is
dominant, then (4.12) holds with the same constant. If the first term is dominant in the
maximum, that is jf 0.t0/j � C jf .t0/jjI j�1, then

jf 0.t0/j
.mC˛�1/=.mC˛/

� .C jf .t0/jjI j
�1/.mC˛�1/=.mC˛/

and (4.12) holds with the constant C .mC˛�1/=.mC˛/.

5. Estimates for the iterated derivatives of the coefficients

In the next three sections we collect the necessary tools for the proof of Theorem 1. In the
current section we derive estimates for the derivatives of the coefficients of a C n�1;1-curve of
polynomials of degree n in Tschirnhausen form.
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5.1. Preparations for the splitting

Let I � R be a bounded open interval and let

(5.1) PQa.t/.Z/ D Z
n
C

nX
jD2

Qaj .t/Z
n�j ; t 2 I;

be a monic complex polynomial in Tschirnhausen form with coefficients Qaj 2 C n�1;1.I /,
j D 2; : : : ; n. We make the following assumptions. Suppose that t0 2 I and k 2 f2; : : : ; ng
are such that

(5.2) j Qak.t0/j
1=k
D max
2�j�n

j Qaj .t0/j
1=j
¤ 0

and that, for some positive constant B < 1=3,
nX

jD2

k. Qa
1=j
j /0kL1.I / � Bj Qak.t0/j

1=k :(5.3)

By Corollary 2, every continuous selection f of the multi-valued function Qa1=jj is abso-
lutely continuous on I , and kf 0kL1.I / is independent of the choice of the selection (by (2.5)).
(By a selection of a set-valued function F W X  Y we mean a single-valued function
f W X ! Y such that f .x/ 2 F.x/ for all x 2 X .) So henceforth we shall fix one continuous
selection of Qa1=jj and, abusing notation, denote it by Qa1=jj as well.

L 5. – Assume that the polynomial (5.1) satisfies (5.2) (5.3). Then for all t 2 I and
j D 2; : : : ; n,

j Qa
1=j
j .t/ � Qa

1=j
j .t0/j � Bj Qak.t0/j

1=k ;(5.4)

2

3
< 1 � B �

ˇ̌̌
Qak.t/

Qak.t0/

ˇ̌̌1=k
� 1C B <

4

3
;(5.5)

j Qaj .t/j
1=j
�
4

3
j Qak.t0/j

1=k
� 2j Qak.t/j

1=k :(5.6)

Proof. – First, (5.4) is a consequence of (5.3),

j Qa
1=j
j .t/ � Qa

1=j
j .t0/j D

ˇ̌̌̌Z t

t0

. Qa
1=j
j /0 ds

ˇ̌̌̌
� k. Qa

1=j
j /0kL1.I / � Bj Qak.t0/j

1=k :

For j D k it implies ˇ̌̌ˇ̌̌
Qak.t/

Qak.t0/

ˇ̌̌1=k
� 1

ˇ̌̌
� B;

and thus (5.5). By (5.2), (5.4), and (5.5),

j Qaj .t/j
1=j
� .1C B/j Qak.t0/j

1=k
� 2j Qak.t/j

1=k ;

that is (5.6).

By (5.5), Qak does not vanish on the interval I and so the curve

a W I ! f.a2; : : : ; an/ 2 Cn�1 W ak D 1g(5.7)

t 7! a.t/ WD . Qa
�2=k

k
Qa2; : : : ; Qa

�n=k

k
Qan/.t/

is well-defined.
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L 6. – Assume that the polynomial (5.1) satisfies (5.2) (5.3). Then the length of the
curve (5.7) is bounded by 3n2 2nB.

Proof. – The estimates (5.4), (5.5), and (5.6) imply

j Qa
�j=k

k
Qa0j j � 2

n
j Qa
�1C1=j
j Qa0j Qa

�1=k

k
j � 3n 2n�1j. Qa

1=j
j /0jj Qak.t0/j

�1=k

j. Qa
�j=k

k
/0 Qaj j � n2

n
j Qa
�1=k

k
. Qa
1=k

k
/0j � 3n 2n�1j. Qa

1=k

k
/0jj Qak.t0/j

�1=k ;

and thus
j. Qa
�j=k

k
Qaj /
0
j � 3n 2n�1j Qak.t0/j

�1=k
�
j. Qa

1=j
j /0j C j. Qa

1=k

k
/0j
�
:

Consequently, using (5.3), Z
I

ja0j ds � 3n2 2nB;

as required.

5.2. Estimates for the derivatives of the coefficients

Let us replace (5.3) by the stronger assumption

M jI j C

nX
jD2

k. Qa
1=j
j /0kL1.I / � Bj Qak.t0/j

1=k ;(5.8)

where

(5.9) M D max
2�j�n

.LipI . Qa
.n�1/
j //1=nj Qak.t0/j

.n�j /=.kn/:

L 7. – Assume that the polynomial (5.1) satisfies (5.2) and (5.8). Then for all
j D 2; : : : ; n and s D 1; : : : ; n � 1,

k Qa
.s/
j kL1.I / � C.n/jI j

�s
j Qak.t0/j

j=k ;

LipI . Qa
.n�1/
j / � C.n/jI j�nj Qak.t0/j

j=k :
(5.10)

Proof. – The second estimate in (5.10) is immediate from (5.8). Let t 2 I . By Lemma 4,

j Qa
.s/
j .t/j � C jI j�s

�
VI . Qaj /C VI . Qaj /

.n�s/=n LipI . Qa
.n�1/
j /s=njI js

�
:

By (5.6),
VI . Qaj / � 2k Qaj kL1.I / � 2 .4=3/

n
j Qak.t0/j

j=k

and, by (5.8),

max
2�j�n

.LipI . Qa
.n�1/
j //s=nj Qak.t0/j

�js=.kn/
jI js D jQak.t0/j

�s=kM s
jI js � 1:

Thus

VI . Qaj /C VI . Qaj /
.n�s/=n LipI . Qa

.n�1/
j /s=njI js

� j Qak.t0/j
j=k
�
C1 C C2 LipI . Qa

.n�1/
j /s=nj Qak.t0/j

�js=.kn/
jI js

�
� C3j Qak.t0/j

j=k ;

for constants Ci that depend only on n. So the first estimate in (5.10) is also proved.
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1358 A. PARUSIŃSKI AND A. RAINER

6. The estimates after splitting

In this section we assume that our polynomial splits. We prove that the coefficients of each
factor of the splitting satisfy estimates analogous to those in (5.10) on suitable subintervals.

6.1. Estimates after splitting on I

Assume that the polynomial (5.1) satisfies (5.2)–(5.3) and the estimates (5.10).

Additionally, we suppose that the curve a defined in (5.7) lies entirely in one of the balls
B�.p/ from Section 4.2 on which we have a splitting. Then PQa splits on I ,

PQa.t/ D Pb.t/Pb�.t/; t 2 I:(6.1)

By (4.2) and (4.3), the coefficients bi are of the form

bi D Qa
i=k

k
 i
�
Qa
�2=k

k
Qa2; : : : ; Qa

�n=k

k
Qan
�
; i D 1; : : : ; nb;(6.2)

and after the Tschirnhausen transformation Pb  P Qb , we get

Qbi D Qa
i=k

k
Q i
�
Qa
�2=k

k
Qa2; : : : ; Qa

�n=k

k
Qan
�
; i D 2; : : : ; nb;(6.3)

where  i and Q i are the analytic functions specified in Section 4.2 and nb D degPb .

L 8. – Assume that the polynomial (5.1) satisfies (5.2) (5.3), (5.10), and (6.1) (6.3).
Then for all i D 2; : : : ; nb and s D 1; : : : ; n � 1,

k Qb
.s/
i kL1.I / � C jI j

�s
j Qak.t0/j

i=k ;

LipI . Qb
.n�1/
i / � C jI j�nj Qak.t0/j

i=k ;
(6.4)

where C is a constant depending only on n and on the functions Q i .

Proof. – Let us prove the first estimate in (6.4). Let F be any C n-function defined on
an open set U in Cn�1 containing a.I / and satisfying kF kCn.U / < 1. We claim that,
for s D 1; : : : ; n � 1,

k@st .F ı a/kL1.I / � C jI j
�s;(6.5)

where C is a constant depending only on n and kF kCn.U /. For any real exponent r , Faà di
Bruno’s formula implies

(6.6) @st
�
Qarj
�
D

sX
`�1

X
2�.`;s/

c;`;r Qa
r�`
j Qa

.1/
j � � � Qa

.`/
j

where �.`; s/ D f 2 N`>0 W j j D sg and

c;`;r D
sŠ

`ŠŠ
r.r � 1/ � � � .r � `C 1/:
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By (5.10) and (5.5), this implies

k@st
�
Qarj
�
kL1.I / �

sX
`�1

X
2�.`;s/

c;`;r k Qa
r�`
j kL1.I /k Qa

.1/
j kL1.I / � � � k Qa

.`/
j kL1.I /

� C.n/

sX
`�1

X
2�.`;s/

c;`;r j Qak.t0/j
.r�`/j=k

jI j�sj Qak.t0/j
j̀=k

� C.n/jI j�sj Qak.t0/j
rj=k :(6.7)

Together with the Leibniz formula,

@st
�
Qa
�j=k

k
Qaj
�
D

sX
qD0

 
s

q

!
Qa
.q/
j @

s�q
t

�
Qa
�j=k

k

�
;

(6.7) and (5.10) lead to

(6.8) k@st
�
Qa
�j=k

k
Qaj
�
kL1.I / � C.n/jI j

�s :

Again by the Leibniz formula,

@t .F ı a/ D

nX
jD2

..@j�1F / ı a/ @t
�
Qa
�j=k

k
Qaj
�
;

@st .F ı a/ D

nX
jD2

@s�1t

�
..@j�1F / ı a/ @t

�
Qa
�j=k

k
Qaj
��

D

nX
jD2

s�1X
pD0

 
s � 1

p

!
@
p
t ..@j�1F / ı a/ @

s�p
t

�
Qa
�j=k

k
Qaj
�
:

For s D 1 we immediately get (6.5). For 1 < s � n � 1, we may argue by induction on s. By
induction hypothesis,

k@
p
t ..@j�1F / ı a/kL1.I / � C.n; k@j�1F kC s.U //jI j

�p;

for p D 1; : : : ; s � 1. Together with (6.8) this entails (6.5).
Now the first part of (6.4) is a consequence of (6.3), (6.7) (for j D k and r D i=k) and

(6.5) (applied to F D Q i ).
For the second part of (6.4) observe that for functions f1; : : : ; fm on I we have

LipI .f1f2 � � � fm/ �
mX
iD1

LipI .fi /kf1kL1.I / � � � ̂kfikL1.I / � � � kfmkL1.I /:

Applying it to (6.6) and using

LipI . Qa
r�`
j / � jr � `jk Qar�`�1j kL1.I /k Qa

0
j kL1

we find, as in the derivation of (6.7),

LipI .@
n�1
t . Qarj // � C.n; r/jI j

�n
j Qak.t0/j

rj=k :

As above, this leads to

LipI .@
n�1
t

�
Qa
�j=k

k
Qaj
�
/ � C.n/jI j�n;
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and

LipI .@
n�1
t .F ı a// � C.n; kF kCn.U //jI j

�n;

and finally to the second part of (6.4).

R 3. – In the setup of Lemma 8 the same estimates hold for Qbi replaced by bi . This
follows by the same proof where one uses (6.2) instead of (6.3). We shall only need the special
case i D s D 1 which we state explicitly for later reference:

(6.9) kb01kL1.I / � C jI j
�1
j Qak.t0/j

1=k :

L 9. – Assume that Qbi , i D 2; : : : ; m, are C n�1;1-functions (m � n) on an open
bounded interval I , which satisfy (6.4) for all s D 1; : : : ; n � 1. Then, for all 1 � p < m0,

(6.10) k. Qb
1=i
i /0k�Lp.I / � C jI j

�1
j Qak.t0/j

1=k ;

for a constant C which depends only on n, p, and the constant in (6.4).

Proof. – By (3.3) and (6.4),

k. Qb
1=i
i /0ki 0;w;I � C.i/max

n�
LipI . Qb

.i�1/
i /

�1=i
jI j1=i

0

; k Qb0ik
1=i

L1.I /

o
� C jI j�1C1=i

0

j Qak.t0/j
1=k ;

or equivalently,

k. Qb
1=i
i /0k�i 0;w;I � C jI j

�1
j Qak.t0/j

1=k :

In view of (2.3), this entails (6.10).

6.2. Special subintervals of I and estimates on them

Assume that the polynomial (5.1) satisfies (5.2)–(5.3), (5.10), and (6.1)–(6.3). Suppose that
t1 2 I and ` 2 f2; : : : ; nbg are such that

(6.11) j Qb`.t1/j
1=`
D max
2�i�nb

j Qbi .t1/j
1=i
¤ 0:

By (5.6) and (6.3), for all t 2 I and i D 2; : : : ; nb ,

(6.12) j Qbi .t/j � C1j Qak.t0/j
i=k ;

where the constant C1 depends only on the functions Q i . Thanks to (6.12) we can choose a
constant D < 1=3 and an open interval J with t1 2 J � I such that

jJ jjI j�1j Qak.t0/j
1=k
C

nbX
iD2

k. Qb
1=i
i /0kL1.J / D Dj

Qb`.t1/j
1=`:(6.13)

It suffices to take D < C�11 where C1 is the constant in (6.12); note that every Qb1=ii is
absolutely continuous by Corollary 2.

R 4. – The identity (6.13) will be crucial for the proof of Theorem 1.

We will now see that on the interval J the estimates of Section 5 hold for Qbi instead of Qaj .
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L 10. – Assume that the polynomial (5.1) satisfies (5.2) (5.3), (5.10), (6.1) (6.3),
and (6.11). Let D and J be as in (6.13). Then the functions Qbi on J satisfy the conclusions
of Lemmas 5, 6, and 7. More precisely, for all t 2 J and i D 2; : : : ; nb ,

j Qb
1=i
i .t/ � Qb

1=i
i .t1/j � Dj Qb`.t1/j

1=`;(6.14)

2

3
< 1 �D �

ˇ̌̌ Qb`.t/
Qb`.t1/

ˇ̌̌1=`
� 1CD <

4

3
;(6.15)

j Qbi .t/j
1=i
�
4

3
j Qb`.t1/j

1=`
� 2j Qb`.t/j

1=`:(6.16)

The length of the curve

(6.17) J 3 t 7! b.t/ WD . Qb
�2=`

`
Qb2; : : : ; Qb

�nb=`

`
Qbnb /.t/

is bounded by 3n2
b
2nbD. For all i D 2; : : : ; nb and s D 1; : : : ; n � 1,

k Qb
.s/
i kL1.J / � C jJ j

�s
j Qb`.t1/j

i=`;

LipJ . Qb
.n�1/
i / � C jJ j�nj Qb`.t1/j

i=`;
(6.18)

for a universal constant C depending only on n and Q i .

Proof. – The proof of (6.14)–(6.16) is analogous to the proof of Lemma 5; use (6.11) and
(6.13) instead of (5.2) and (5.3). The bound for the length of the curve J 3 t 7! b.t/ (which
is well-defined by (6.15)) follows from (6.13) and (6.14)–(6.16); see the proof of Lemma 6.

Let us prove (6.18). By (6.4), for t 2 I and i D 2; : : : ; nb (note that nb < n),

(6.19) j Qb
.i/
i .t/j � C jI j

�i
j Qak.t0/j

i=k ;

where C D C.n; Q i /. Thus, for t 2 J and s D 1; : : : ; i ,

j Qb
.s/
i .t/j � C jJ j�s

�
VJ . Qbi /C VJ . Qbi /

.i�s/=i
k Qb
.i/
i k

s=i

L1.J /
jJ js

�
by Lemma 4

� C1jJ j
�s
�
j Qb`.t1/j

i=`
C j Qb`.t1/j

.i�s/=`
jJ jsjI j�sj Qak.t0/j

s=k
�

by (6.16) and (6.19)

� C2jJ j
�s
j Qb`.t1/j

i=` by (6.13);

for constants C D C.i/ and Ch D Ch.n; Q i /. For s > i (including s D n), we have
.jJ jjI j�1/s � .jJ jjI j�1/i and thus

jI j�sj Qak.t0/j
i=k
� jJ j�s

�
jJ jjI j�1j Qak.t0/j

1=k
�i
� jJ j�sj Qb`.t1/j

i=`;

where the second inequality follows from (6.13). Hence (6.4) implies (6.18).

7. A special cover by intervals

In this section we prove a technical result which will allow us to glue local Lp-estimates
to global ones in the proof of Theorem 1.
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7.1. Intervals of first and second kind

Let I � R be a bounded open interval. Let Qbi 2 C nb�1;1.I /, i D 2; : : : ; nb . For each
point t1 in

I 0 WD I n ft 2 I W Qb2.t/ D � � � D Qbnb .t/ D 0g

there exists ` 2 f2; : : : ; nbg such that (6.11). Assume that there are positive constants
D < 1=3 and L such that for all t1 2 I 0 there is an open interval J D J.t1/ with t1 2 J � I
such that

LjJ j C

nbX
iD2

k. Qb
1=i
i /0kL1.J / D Dj

Qb`.t1/j
1=`:(7.1)

Note that (6.11) and (7.1) imply (6.15) (cf. the proof of Lemma 10); in particular, we have
J � I 0.

Let us consider the functions

't1;C.s/ WD L.s � t1/C

nbX
iD2

k. Qb
1=i
i /0kL1.Œt1;s//; s � t1;

't1;�.s/ WD L.t1 � s/C

nbX
iD2

k. Qb
1=i
i /0kL1..s;t1�/; s � t1:

Then 't1;˙ � 0 are monotonic continuous functions defined for small ˙.s � t1/ � 0 and
satisfying 't1;˙.t1/ D 0. We let 't1;˙ grow until 't1;�.s�/C 't1;C.sC/ D Dj Qb`.t1/j

1=`, that
is (7.1) with J D .s�; sC/. And we do this symmetrically whenever possible:

(i) We say that the interval J D .s�; sC/ is of first kind if

(7.2) 't1;�.s�/ D 't1;C.sC/ D
D

2
j Qb`.t1/j

1=`:

(ii) If (7.2) is not possible, i.e., we reach the boundary of the interval I before either 't1;�
or 't1;C has grown to the value .D=2/j Qb`.t1/j1=`, then we say that J D .s�; sC/ is of
second kind.

R 5. – We may always assume that the interval J.t1/ is of first kind, if such a
choice for t1 exists.

7.2. A special subcover

The goal of this section is to prove the following proposition.

P 2. – Let I � R be a bounded open interval. Let Qbi 2 C nb�1;1.I /, i D
2; : : : ; nb . For each point t1 in I 0 fix ` 2 f2; : : : ; nbg such that (6.11). Let fJ.t1/gt12I 0 be a
collection of open intervals J D J.t1/ with t1 2 J � I such that:

1. There are positive constants D < 1=3 and L such that for all t1 2 I 0 we have (7.1)
for J D J.t1/.

2. The interval J.t1/ is of first kind, i.e., (7.2) holds, if such a choice for t1 exists.
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Then the collection fJ.t1/gt12I 0 has a countable subcollection G that still covers I 0 and such that
every point in I 0 belongs to at most two intervals in G . In particular,X

J2 G

jJ j � 2jI 0j:

R 6. – It is essential for us that G is a subcollection and not a refinement; by
shrinking the intervals we would lose equality in (7.1). We will need this proposition for
glueing local Lp-estimates to global ones.

We can treat the connected components of I 0 separately. So let .˛; ˇ/ be any connected
component of I 0 and let I WD fJ.t1/gt12.˛;ˇ/. The function Qb WD . Qb2; : : : ; Qbnb / may or may
not vanish at the endpoints of .˛; ˇ/. We distinguish three cases:

(i) Qb vanishes at both endpoints,

(7.3) Qb.˛/ D Qb.ˇ/ D 0:

(ii) Qb vanishes at one endpoint, say ˛, but not at the other,

(7.4) Qb.˛/ D 0; Qb.ˇ/ ¤ 0:

(iii) Qb does not vanishes at either endpoint,

(7.5) Qb.˛/ ¤ 0; Qb.ˇ/ ¤ 0:

We shall need the following two lemmas.

L 11. – We have:

1. If Qb.˛/ D 0, then no interval J 2 I has left endpoint ˛ and jJ.t1/j ! 0 as t1 ! ˛. If
Qb.ˇ/ D 0, then no interval J 2 I has right endpoint ˇ and jJ.t1/j ! 0 as t1 ! ˇ.

2. If Qb.˛/ ¤ 0, then there exists an interval J 2 I of second kind (with endpoint ˛). If
Qb.ˇ/ ¤ 0, then there exists an interval J 2 I of second kind (with endpoint ˇ).

Proof. – (1) By (6.15), Qb is non-zero at both endpoints of J . That jJ.t1/j ! 0 as t1 tends
to an endpoint, where Qb vanishes, is immediate from (7.1).

(2) Suppose that Qb.ˇ/ ¤ 0. If all intervals J.t1/ in I were of first kind then, by (7.1) and
(7.2),

(7.6) 't1;C.ˇ/ �
D

2
j Qb`.t1/j

1=`
D
D

2
max
2�i�nb

j Qbi .t1/j
1=i ; t1 2 .˛; ˇ/:

But 't1;C.ˇ/! 0 as t1 ! ˇ, while the right-hand side of (7.6) tends to a positive constant,
a contradiction.

L 12. – Let J 2 I and let t1 62 J be such that J.t1/ is of first kind. Then J 6� J.t1/.

Proof. – Let J D J.s1/ D .˛s1 ; ˇs1/ and assume without loss of generality that ˇs1 � t1.
Suppose that J.s1/ � J.t1/. Since J.t1/ D .˛t1 ; ˇt1/ is of first kind (cf. (7.2)), we have

L.t1 � ˛t1/C

nbX
iD2

k. Qb
1=i
i /0kL1..˛t1 ;t1�/

D 't1;�.˛t1/ D
D

2
j Qb`t1 .t1/j

1=`t1 < Dj Qb`s1 .s1/j
1=`s1 ;
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because by (6.15) and (6.16) (which follow from (6.11) and (7.1)),

j Qb`t1 .t1/j
1=`t1 <

3

2
j Qb`t1 .s1/j

1=`t1 � 2j Qb`s1 .s1/j
1=`s1 :

But this leads to a contradiction in view of (7.1).

Let us now prove Proposition 2.

Case (i). – By (7.3) and Lemma 11, each J 2 I is an interval of first kind.

Choose any interval J.t1/, t1 2 .˛; ˇ/, and denote it by J0 D .˛0; ˇ0/. Define recursively
(for  2 Z)

J D .˛ ; ˇ / WD

(
J.ˇ�1/ if  � 1;

J.˛C1/ if  � �1:

By Lemma 12, we have ˛ < ˛ < ˛C1 and ˇ < ˇC1 < ˇ for all  . Let us show that the
collection G D fJg2Z covers .˛; ˇ/. Suppose that, say, � WD sup ˇ < ˇ. By (7.1) and
since all intervals are of first kind (cf. (7.2)),

L.� � ˇ /C

nbX
iD2

k. Qb
1=i
i /0kL1..ˇ ;��/ �

D

2
max
2�i�nb

j Qbi .ˇ /j
1=i :

But the left-hand side tends to 0 as  ! C1, whereas the right-hand side converges
to .D=2/max2�i�nb j Qbi .�/j

1=i > 0, a contradiction.

Now Proposition 2 follows from Lemma 11 and the following lemma.

L 13. – Let G D fJg2Z be a countable collection of bounded open intervals J D
.˛ ; ˇ / � R such that

1.
S

G D .˛; ˇ/ is a bounded open interval,
2. ˛ < ˛ < ˛C1 and ˇ < ˇC1 < ˇ for all  2 Z,
3. jJ j ! 0 as  !˙1.

Then there is a subcollection G0 � G with
S

G0 D .˛; ˇ/ and such that every point in .˛; ˇ/
belongs to at most two intervals in G0.

Proof. – The assumptions imply that the sequence of left endpoints .˛ / converges to ˇ
as  !1, and the sequence of right endpoints .ˇ / converges to ˛ as  ! �1. Thus, there
exists 1 > 0 such that ˛1 < ˇ0 � ˛1C1, there exists 2 > 1 such that ˛2 < ˇ1 � ˛2C1,
and iteratively, there exists j > j�1 such that ˛j < ˇj�1 � ˛jC1. Symmetrically, there
exist integers j�1 < j < 0 (j 2 Z<0) such that ˇj�1�1 � ˛j < ˇj�1 . Set 0 WD 0 and
define

G0 WD fJj gj2Z:

By construction G0 still covers .˛; ˇ/ and the left and right endpoints of the intervals Jj are
interlacing,

� � � < ˇj�2 < ˛j < ˇj�1 < ˛jC1 < ˇj < ˛jC2 < � � �

Thus G0 has the required properties.

Proposition 2 is proved in Case (i).
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Case (ii). – By (7.4) and Lemma 11, the collection I contains an interval of second kind.
Since Qb.˛/ D 0, all intervals of second kind in I must have endpoint ˇ. Thus,

� WD infft1 W J.t1/ 2 I is of second kindg > ˛;

because jJ.t1/j ! 0 as t1 ! ˛ by Lemma 11. The interval J.�/ is of first kind (being of
second kind is an open condition). There is an interval J0 D .˛0; ˇ0 D ˇ/ of second kind
in I with J.�/ \ J0 ¤ ;. Let us denote J.�/ by J�1 D .˛�1; ˇ�1/ and define recursively

J D .˛ ; ˇ / WD J.˛C1/;  � �1:

The arguments in Case (i) imply that the collection G WD fJg�0 is a countable cover
of .˛; ˇ/ satisfying ˛ < ˛ < ˛C1 and jJ j ! 0.

Proposition 2 follows from (an obvious modification of) Lemma 13. This ends Case (ii).

Case (iii). – In this case I has a finite subcollection G that still covers .˛; ˇ/. Indeed, by
(7.5) and Lemma 11, the collection I contains intervals of second kind with endpoints ˛
and ˇ, say, .˛; ı/ and .�; ˇ/. If their intersection is non-empty we are done. Otherwise there
are finitely many intervals in I that cover the compact interval Œı; ��.

Proposition 2 follows from the following lemma.

L 14. – Every finite collection G of open intervals with
S

G D .˛; ˇ/ has a subcol-
lection that still covers .˛; ˇ/ and every point in .˛; ˇ/ belongs to at most two intervals in the
subcollection.

Proof. – The collection G contains an interval with endpoint ˛; let J0 D .˛ D ˛0; ˇ0/ be
the biggest among them. If ˇ0 < ˇ, let J1 D .˛1; ˇ1/ denote the interval among all intervals
in G containing ˇ0 whose right endpoint is maximal. If ˇ1 < ˇ, let J2 D .˛2; ˇ2/ denote
the interval among all intervals in G containing ˇ1 whose right endpoint is maximal, etc.
This yields a finite cover of .˛; ˇ/ by intervals Ji D .˛i ; ˇi /, i D 0; 1; : : : ; N , such that
˛0 < ˛1 < � � � < ˛N . Define

i1 WD max
˛i<ˇ0

i; ij WD max
˛i<ˇij�1

i; j � 2:

Then fJ0; Ji1 ; Ji2 ; : : : ; JN g has the required properties.

The proof of Proposition 2 is complete.

8. Proof of Theorem 1

We suppose henceforth that for each integer n a universal splitting of polynomials of
degree n in Tschirnhausen form in the sense of Section 4.3 has been fixed. Whenever we speak
of a splitting we mean the fixed universal splitting. Accordingly, we will apply the following
convention:

All dependencies of constants on data of the universal splitting, like �, Q i , etc., (see
Section 4.3) will no longer be explicitly stated. For simplicity it will henceforth be
subsumed by saying that the constants depend on the degree of the polynomials. The
constants which are universal in this sense will be denoted by C and may vary from line
to line.
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The heart of the proof of Theorem 1 is the following proposition. It comprises the induc-
tive argument on the degree.

P 3. – Let I � R be a bounded open interval and letPQa be a monic polynomial
of degree nQa in Tschirnhausen form with coefficients of class C n Qa�1;1.I /. Let t0 2 I and
k 2 f2; : : : ; nQag be such that

1. j Qak.t0/j1=k D max2�j�n Qa j Qaj .t0/j
1=j ¤ 0,

2.
Pn Qa
jD2 k. Qa

1=j
j /0kL1.I / � Bj Qak.t0/j

1=k for some constant B < 1=3,
3. for all j D 2; : : : ; nQa and s D 1; : : : ; nQa � 1,

k Qa
.s/
j kL1.I / � C jI j

�s
j Qak.t0/j

j=k ;

LipI . Qa
.n Qa�1/
j / � C jI j�n Qa j Qak.t0/j

j=k ;

where C D C.nQa/.
4. Assume that PQa splits on I , that is, PQa.t/ D Pb.t/Pb�.t/ for t 2 I , where bi and b�i are

given by (4.2).

Then every continuous root � 2 C 0.I / of P Qb is absolutely continuous and satisfies

(8.1) k�0kLp.I / � C
�
kjI j�1j Qak.t0/j

1=k
kLp.I / C

nbX
iD2

k. Qb
1=i
i /0kLp.I /

�
;

for all 1 � p < .nQa/0 and a constant C depending only on nQa and p.

The proof of Theorem 1 is divided into three steps.

S 1: We check that a monic polynomial in Tschirnhausen form satisfying the assump-
tions of Theorem 1 also satisfies those of Proposition 3.

S 2: We prove Proposition 3.
S 3: We finish the proof of Theorem 1. The goal is to estimate the right-hand side of (8.1)

in terms of the Qaj .

Step 1: The assumptions of Theorem 1 imply those of Proposition 3

Let .˛; ˇ/ � R be a bounded open interval and let

(8.2) PQa.t/.Z/ D Z
n
C

nX
jD2

Qaj .t/Z
n�j ; t 2 .˛; ˇ/;

be a monic polynomial in Tschirnhausen form with coefficients Qaj 2 C n�1;1.Œ˛; ˇ�/,
j D 2; : : : ; n.

Let � be the radius of the fixed universal splitting of polynomials of degree n in Tschirn-
hausen form (cf. Section 4.3). We fix a universal positive constant B satisfying

B < min
n1
3
;

�

3n22n

o
:(8.3)

Fix t0 2 .˛; ˇ/ and k 2 f2; : : : ; ng such that (5.2) holds, that is,

(8.4) j Qak.t0/j
1=k
D max
2�j�n

j Qaj .t0/j
1=j
¤ 0:
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This is possible unless Qa � 0 in which case nothing is to prove. Choose a maximal open
interval I � .˛; ˇ/ containing t0 such that we have (5.8), that is,

M jI j C

nX
jD2

k. Qa
1=j
j /0kL1.I / � Bj Qak.t0/j

1=k ;(8.5)

with M given by (5.9). In particular, all conclusions of Section 5 hold true.

Consider the point p D a.t0/, where a is the curve defined in (5.7). By (8.4), p is an
element of the set K defined in (4.4). By the properties of the universal splitting specified in
Section 4.3, the ballB�.p/ is contained in some ball of the finite cover B ofK. By Lemma 6
and (8.3), the length of the curve ajI is bounded by �. Thus we have a splitting on I ,

PQa.t/ D Pb.t/Pb�.t/; t 2 I:

The coefficients bi of Pb are given by (6.2), and, after the Tschirnhausen transformation
Pb  P Qb , the coefficients Qbi of P Qb are given by (6.3). (Similar formulas hold for b�i and Qb�i .)

In summary, the restriction of the curve of polynomials PQa to the interval I satisfies all
assumptions and thus all conclusions of Sections 5 and 6. In particular, the assumptions of
Proposition 3 are satisfied. Thus we have proved the following lemma.

L 15. – Let .˛; ˇ/ � R be a bounded open interval and let PQa be a polynomial (8.2)
in Tschirnhausen form with coefficients Qaj 2 C n�1;1.Œ˛; ˇ�/, j D 2; : : : ; n. Let B be a positive
constant satisfying (8.3). Let t0 2 .˛; ˇ/ and k 2 f2; : : : ; ng be such that (8.4) holds. Let I be
an open interval with t0 2 I � .˛; ˇ/ and satisfying (8.5). Then the assumptions (1) (4) of
Proposition 3 are fulfilled.

Step 2: Induction on the degree

Let us prove Proposition 3.

We proceed by induction on the degree n D nQa. The assumptions of the proposition
amount exactly to the assumptions (5.1)–(5.3), (5.10), and (6.1)–(6.3). Thus we may rely on
all conclusions of Sections 5 and 6.

Induction basis. – Proposition 3 trivially holds for polynomials of degree 1. Using the result
of Ghisi and Gobbino, i.e., Corollary 2, one can also check that Proposition 3 is valid for
polynomials of the form PQa.Z/ D Z

n� Qan, n � 2, because they can be split into the product
of linear factors PQa.Z/ D

Q
�nD1.Z � � Qa

1=n
n /. But we do not need to consider this case

separately, since it will appear implicitly in the inductive step.

Inductive step. – By (5.5), Qak does not vanish on I , and thus bi and Qbi belong to C n�1;1.I /.
Let us set

I 0 WD I n ft 2 I W Qb2.t/ D � � � D Qbnb .t/ D 0g:

For each t1 2 I 0 choose ` 2 f2; : : : ; nbg such that (6.11) holds. By Section 6.2, there is an
open interval J D J.t1/, t1 2 J � I 0, such that (6.13). The constant D in (6.13) can be
chosen sufficiently small such that on J we have a splitting

P Qb.t/ D Pc.t/Pc�.t/; t 2 J I
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in fact, it suffices to choose

(8.6) D < min
n1
3
;

�

3n2
b
2nb

; C�11

o
;

where C1 is the constant in (6.12) and where � is the radius of the universal splitting of
polynomials of degree nb in Tschirnhausen form. Indeed, the length of the curve bjJ is
bounded by � , which follows from Lemma 10 and the arguments in Section 4.3 and in Step 1
applied to P Qb .

By Proposition 2 (where (6.13) plays the role of (7.1)), we may conclude that there is a
countable family f.J ; t ; ` /g of open intervals J � I 0, of points t 2 J , and of integers
` 2 f2; : : : ; nbg satisfying

j Qb` .t /j
1=` D max

2�i�nb
j Qbi .t /j

1=i
¤ 0;(8.7)

jJ jjI j
�1
j Qak.t0/j

1=k
C

nbX
iD2

k. Qb
1=i
i /0kL1.J / D Dj

Qb` .t /j
1=` ;(8.8)

P Qb.t/ D Pc .t/Pc� .t/; t 2 J ;(8.9) [


J D I
0;

X


jJ j � 2jI
0
j:(8.10)

In particular, for every  , the polynomial P Qb.t/ D Pc .t/Pc� .t/, t 2 J , satisfies the
assumptions of Proposition 3; note that (3) in Proposition 3 corresponds to (6.18).

Let� 2 C 0.I / be a continuous root of P Qb . We may assume without loss of generality that
in J ,

(8.11) Q�.t/ WD �.t/C
c1.t/

nc
; t 2 J ;

is a root ofPQc , where nc WD degPc . Since nc < nb < nQa, the induction hypothesis implies
that Q� is absolutely continuous and satisfies

(8.12) k Q�0kLp.J / � C
�
kjJ j

�1
j Qb` .t /j

1=` kLp.J / C

ncX
hD2

k. Qc
1=h

h
/0kLp.J /

�
;

for all 1 � p < .nb/0, where C is a constant depending only on nb and p.

Lp-estimates on I . – To finish the proof of Proposition 3 we have to show that the estimates
(8.12) on the subintervals J imply the bound (8.1) on I . To this end we claim that, for all p
with 1 � p < .nc /

0,

(8.13)
ncX
hD2

k. Qc
1=h

h
/0k�Lp.J / � C jJ j

�1
j Qb` .t /j

1=` ;

for a constant C that depends only on nQa and p.

By the properties of the universal splitting (cf. Sections 4.2 and 4.3), the coefficients ch
of Pc are of the form

ch D Qb
h=`
`

�h
�
Qb
�2=`
`

Qb2; : : : ; Qb
�nb=`
`

Qbnb
�
; h D 1; : : : ; nc ;
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and after the Tschirnhausen transformation Pc  PQc , see (4.3),

Qch D Qb
h=`
`
Q�h
�
Qb
�2=`
`

Qb2; : : : ; Qb
�nb=`
`

Qbnb
�
; h D 2; : : : ; nc ;

where �h, respectively, Q�h, are analytic functions with bounded partial derivatives of all
orders. By (6.15), Qb` does not vanish on J and thus ch and Qch belong to C n Qa�1;1.J  /.
By Lemma 8 (applied to Qch, J , j Qb` .t /j

1=` instead of Qbi , I , j Qak.t0j1=k), we find that,
for h D 2; : : : ; nc and s D 1; : : : ; nQa � 1,

k Qc
.s/

h
kL1.J / � C jJ j

�s
j Qb` .t /j

h=` ;

LipJ . Qc
.n Qa�1/

h
/ � C jJ j

�n Qa j Qb` .t /j
h=` ;

where C D C.nQa/. Then Lemma 9 yields (8.13).

Now (8.13), (8.8), and (2.2) allow us to estimate the right-hand side of (8.12):

kjJ j
�1
j Qb` .t /j

1=` k
�
Lp.J /

C

ncX
hD2

k. Qc
1=h

h
/0k�Lp.J /

� .1C C/jJ j
�1
j Qb` .t /j

1=`

D .1C C/D�1
�
kjI j�1j Qak.t0/j

1=k
k
�

L1.J /
C

nbX
iD2

k. Qb
1=i
i /0k�

L1.J /

�
� .1C C/D�1

�
kjI j�1j Qak.t0/j

1=k
k
�
Lp.J /

C

nbX
iD2

k. Qb
1=i
i /0k�Lp.J /

�
and therefore

kjJ j
�1
j Qb` .t /j

1=` k
p

Lp.J /
C

ncX
hD2

k. Qc
1=h

h
/0k

p

Lp.J /

� CD�p
�
kjI j�1j Qak.t0/j

1=k
k
p

Lp.J /
C

nbX
iD2

k. Qb
1=i
i /0k

p

Lp.J /

�
;(8.14)

for a constant C that depends only on nQa and p.

By Remark 3 (applied to Qch, J , j Qb` .t /j
1=` instead of Qbi , I , j Qak.t0j1=k), we have

kc01kL1.J / � C jJ j
�1
j Qb` .t /j

1=` ;

where C D C.nQa/. Thus, using (8.8) and (2.2), we find (as in the derivation of (8.14))

kc01k
p

Lp.J /
� CD�p

�
kjI j�1j Qak.t0/j

1=k
k
p

Lp.J /
C

nbX
iD2

k. Qb
1=i
i /0k

p

Lp.J /

�
;(8.15)

for a constant C that depends only on nQa and p.

Let us now glue the bounds on J to a bound on I . By (8.10), (8.12), (8.14), and (8.15),X


k Q�0k
p

Lp.J /
� CD�p

�
kjI j�1j Qak.t0/j

1=k
k
p

Lp.I /
C

nbX
iD2

k. Qb
1=i
i /0k

p

Lp.I /

�
;(8.16)
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and X


kc01k
p

Lp.J /
� CD�p

�
kjI j�1j Qak.t0/j

1=k
k
p

Lp.I /
C

nbX
iD2

k. Qb
1=i
i /0k

p

Lp.I /

�
;(8.17)

for a constant C that depends only on nQa and p. By (8.10), (8.11), (8.16), and (8.17), we may
conclude that � is absolutely continuous on I 0 and

k�0kLp.I 0/ � CD
�1
�
kjI j�1j Qak.t0/j

1=k
kLp.I / C

nbX
iD2

k. Qb
1=i
i /0kLp.I /

�
;

for a constant C that depends only on nQa and p. Since� vanishes on I nI 0, Lemma 1 implies
that � is absolutely continuous on I and satisfies (8.1), since D D D.nQa/ by (8.6). This
completes the proof of Proposition 3.

Step 3: End of the proof of Theorem 1

We have seen in Lemma 15 that for a polynomialPQa in Tschirnhausen form (8.2) satisfying
(8.4) and (8.5), the assumptions of Proposition 3 hold with the constantB fulfilling (8.3). Our
next goal is to estimate the right-hand side of (8.1) in terms of the Qaj .

By Lemma 8, we have (6.4), and thus, by Lemma 9, we get for all p with 1 � p < .nb/0,

kjI j�1j Qak.t0/j
1=k
k
�
Lp.I / C

nbX
iD2

k. Qb
1=i
i /0k�Lp.I / � C jI j

�1
j Qak.t0/j

1=k ;(8.18)

where the constant C depends only on n and p.
At this stage two cases may occur:

(i) Either we have equality in (8.5), that is,

M jI j C

nX
jD2

k. Qa
1=j
j /0kL1.I / D Bj Qak.t0/j

1=k :(8.19)

(ii) Or I D .˛; ˇ/ and

M jI j C

nX
jD2

k. Qa
1=j
j /0kL1.I / < Bj Qak.t0/j

1=k :(8.20)

Case (ii) entails an unpleasant blow-up of the bounds if ˇ � ˛ ! 0 as explained in the
following remark. We will explain below how to avoid this phenomenon.

R 7. – In Case (ii) we have a splitting PQa D PbPb� on the whole interval
I D .˛; ˇ/; cf. Step 1. Thus, (8.18) becomes

kj.ˇ � ˛/�1j Qak.t0/j
1=k
kLp..˛;ˇ// C

nbX
iD2

k. Qb
1=i
i /0kLp..˛;ˇ// � C.ˇ � ˛/

�1C1=p
j Qak.t0/j

1=k

which can be bounded by

C.ˇ � ˛/�1C1=p max
2�j�n

k Qaj k
1=j

L1..˛;ˇ//
:(8.21)

Similarly, (6.9) implies that kb01kLp..˛;ˇ// is bounded by (8.21). If � 2 C 0..˛; ˇ// is a
continuous root of PQa then we may assume that it is a root of Pb , and hence � D �� b1=nb ,
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for a continuous root � 2 C 0..˛; ˇ// of P Qb . By (8.1), we may conclude that � is absolutely
continuous on .˛; ˇ/ and

k�0kLp..˛;ˇ// � C.ˇ � ˛/
�1C1=p max

2�j�n
k Qaj k

1=j

L1..˛;ˇ//
;(8.22)

where C D C.n; p/. But the bound for k�0kLp..˛;ˇ// in (8.22) tends to infinity if ˇ � ˛ ! 0

unless p D 1.

The next lemma provides a way to enforce Case (i).

L 16. – Let�1 < ˛ < ˇ <1. Let Qaj 2 C n�1;1.Œ˛; ˇ�/, for 2; : : : ; n. Let Ǫ WD ˛�1
and Ǒ WD ˇ C 1. The functions Qaj can be extended to functions, again denoted by Qaj , defined
on . Ǫ ; Ǒ/ such that the following holds. We have

(8.23) k Qaj kCn�1;1.Œ Ǫ ; Ǒ�/ � C k Qaj kCn�1;1.Œ˛;ˇ�/;

for some universal constant C independent of .˛; ˇ/. For each t0 2 . Ǫ ; Ǒ/ and k 2 f2; : : : ; ng
satisfying (8.4), there is an open interval I � . Ǫ ; Ǒ/ containing t0 such that (8.19) holds true
with B specified in (8.3) and M defined in (5.9).

Proof. – Using a simple version of Whitney’s extension theorem (cf. [42, Theorem 4,
p.177]), we may extend the functions Qaj 2 C n�1;1.Œ˛; ˇ�/ to functions, again denoted
by Qaj , defined on R such that Qaj ; Qa0j ; : : : ; Qa

.n�1/
j are continuous and bounded on R and

LipR. Qa
.n�1/
j / <1. More precisely,

max
0�i�n�1

k Qa
.i/
j kL1.R/ C LipR. Qa

.n�1/
j / � C k Qaj kCn�1;1.Œ˛;ˇ�/;

for some universal constant C independent of .˛; ˇ/. Choose a smooth function
' W R! Œ0; 1� such that '.t/ D 1 for t � 0 and '.t/ D 0 for t � 1. Then

 .t/ WD '.˛ � t /'.t � ˇ/; t 2 R;

is a smooth function which is 1 on the interval Œ˛; ˇ� and 0 outside the interval Œ Ǫ ; Ǒ�. By
multiplying all functions Qaj with the cut-off function , we may assume that each Qaj vanishes
somewhere in Œ Ǫ ; Ǒ� and the Leibniz formula implies (8.23) for a constant C depending only
on '.

If there is a point s D s.j / 2 Œ Ǫ ; Ǒ� such that Qaj .s/ D 0, then, for t 2 Œ Ǫ ; Ǒ�,

j Qa
1=j
j .t/j D j

Z t

s

. Qa
1=j
j /0 d� j � k. Qa

1=j
j /0k

L1.. Ǫ ; Ǒ//

and hence

(8.24) max
2�j�n

k Qaj k
1=j

L1.. Ǫ ; Ǒ//
�

nX
jD2

k. Qa
1=j
j /0k

L1.. Ǫ ; Ǒ//
:

Since B < 1 (by (8.3)), (8.24) enforces Case (i): for each t0 2 . Ǫ ; Ǒ/ and k 2 f2; : : : ; ng
satisfying (8.4) there is an open interval I � . Ǫ ; Ǒ/ containing t0 such that (8.19) holds
true.
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L 17. – Let PQa be a monic polynomial of degree n in Tschirnhausen form (8.2) with
coefficients of class C n�1;1.Œ Ǫ ; Ǒ�/. Let t0 2 . Ǫ ; Ǒ/, k 2 f2; � � � ; ng, and let I � . Ǫ ; Ǒ/ be an
open interval containing t0 such that (8.4) and (8.19) hold with the constantB fulfilling (8.3) and
M defined by (5.9). Then any continuous root � 2 C 0.I / of PQa on I is absolutely continuous
on I and satisfies

k�0kLp.I / � C
�
OAk1kLp.I / C

nX
jD2

k. Qa
1=j
j /0kLp.I /

�
;(8.25)

where

(8.26) OA WD max
2�j�n

k Qaj k
1=j

Cn�1;1.Œ Ǫ ; Ǒ�/
:

Proof. – By Lemma 15 (for . Ǫ ; Ǒ/ instead of .˛; ˇ/), the assumptions of Proposition 3 are
satisfied. In particular, we have a splitting PQa.t/ D Pb.t/Pb�.t/ for t 2 I . We may assume
without loss of generality that � is a root of Pb . Then it has the form

�.t/ D �
b1.t/

nb
C �.t/; t 2 I;(8.27)

where � is a continuous root of P Qb . By Proposition 3, � is absolutely continuous on I and
satisfies (8.1).

Using (8.19) and (2.2) to estimate (8.18) (as in the derivation of (8.14)), we arrive at

kjI j�1jak.t0/j
1=k
kLp.I / C

nbX
iD2

k. Qb
1=i
i /0kLp.I / � C

�
Mk1kLp.I / C

nX
jD2

k. Qa
1=j
j /0kLp.I /

�
;

(8.28)

for a constant C that depends only on n and p; note that B D B.n/ by (8.3). Thus, by (8.1)
and (8.28),

k�0kLp.I / � C
�
Mk1kLp.I / C

nX
jD2

k. Qa
1=j
j /0kLp.I /

�
:

By (2.2), (6.9), (8.19), and (8.28), we have the same bound for kb01kLp.I /, and, in view of
(8.27), we conclude that � is absolutely continuous on I and satisfies

k�0kLp.I / � C
�
Mk1kLp.I / C

nX
jD2

k. Qa
1=j
j /0kLp.I /

�
:

The constant M , defined in (5.9), which depends on t0 and I can be bounded by OA defined
in (8.26); in fact,

M D max
2�j�n

.LipI . Qa
.n�1/
j //1=nj Qak.t0/j

.n�j /=.kn/
� max
2�j�n

OAj=n OA.n�j /=n D OA:

This entails (8.25).

Proof of Theorem 1. – Let .˛; ˇ/ � R be a bounded open interval and let

(8.29) Pa.t/.Z/ D Z
n
C

nX
jD1

aj .t/Z
n�j ; t 2 .˛; ˇ/;

be a monic polynomial with coefficients aj 2 C n�1;1.Œ˛; ˇ�/, j D 1; : : : ; n.
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Without loss of generality we may assume that n � 2 and that Pa D PQa is in Tschirn-
hausen form, that is, Qa1 D 0. We shall see at the end of the proof how to get the bound (1.2)
from a corresponding bound involving the Qaj . If f�j .t/gnjD1, t 2 .˛; ˇ/, is any system of the
roots of PQa (not necessarily continuous), then, since Qa1 D 0, for fixed t 2 .˛; ˇ/,

(8.30) 8i;j �i .t/ D �j .t/ ” 8i �i .t/ D 0 ” 8i Qai .t/ D 0:

Let � 2 C 0..˛; ˇ// be a continuous root of PQa. We use Lemma 16 to extend PQa to the
interval Œ Ǫ ; Ǒ�. We extend � continuously to the interval . Ǫ ; Ǒ/ such that PQa.t/.�.t// D 0

for all t 2 . Ǫ ; Ǒ/. Then, by Lemma 17 and Proposition 2 (applied to Qaj instead of Qbi and
(8.19) instead of (7.1)), we can cover the complement in . Ǫ ; Ǒ/ of the points t satisfying
(8.30) by a countable family I of open intervals I on which (8.25) holds and such thatP
I2I jI j � 2. Ǒ � Ǫ /. Since � vanishes on the points t satisfying (8.30), Lemma 1 yields

that � is absolutely continuous on . Ǫ ; Ǒ/ and satisfies

k�0k
Lp.. Ǫ ; Ǒ//

� C
�
OAk1k

Lp.. Ǫ ; Ǒ//
C

nX
jD2

k. Qa
1=j
j /0k

Lp.. Ǫ ; Ǒ//

�
;

and, using (3.3), we obtain

k�0k
Lp.. Ǫ ; Ǒ//

� C
�
OA. Ǒ � Ǫ /1=p C

nX
jD2

max
n
.Lip

. Ǫ ; Ǒ/
. Qa
.j�1/
j //1=j . Ǒ � Ǫ /1�1=j ; k Qa0j k

1=j

L1.. Ǫ ; Ǒ//

o�
;

where C D C.n; p/.

Now let us restrict to the interval .˛; ˇ/ again, and set

QA WD max
2�j�n

k Qaj k
1=j

Cn�1;1.Œ˛;ˇ�/
:

By (8.23) and (8.26), we have OA � C QA for a universal constantC . Moreover, Ǒ� Ǫ D ˇ�˛C2
and 1 � 1=j < 1=p for all j � n. Consequently,

k�0kLp..˛;ˇ// � C.n; p/maxf1; .ˇ � ˛/1=pg QA:(8.31)

Finally we determine the bound in terms of the aj (that is, before the Tschirnhausen
transformation). Let L� WD � � a1=n, that is, L� is a continuous root of Pa, and set

A WD max
1�j�n

kaj k
1=j

Cn�1;1.Œ˛;ˇ�/
:

Thanks to the weighted homogeneity of the formulas (4.1), QA � C.n/A. Thus, by (8.31),

kL�0kLp..˛;ˇ// � k�
0
kLp..˛;ˇ// C ka

0
1kLp..˛;ˇ//

� C.n; p/maxf1; .ˇ � ˛/1=pg QAC .ˇ � ˛/1=pka01kL1..˛;ˇ//

� C.n; p/maxf1; .ˇ � ˛/1=pgA;

that is (1.2). The proof of Theorem 1 is complete.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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9. Proof of Theorem 2

Theorem 2 follows from Theorem 1 by the arguments given in the proof of [32, Theorem 4.1].
We provide full details in order to see that the constant in the bound (1.6) depends only on
the cover K of V (apart from m, n, and p); this will be important in forthcoming work.

Proof of Theorem 2. – By Theorem 1, � is absolutely continuous along affine lines
parallel to the coordinate axes (restricted to V ). So � possesses the partial derivatives @i�,
i D 1; : : : ; m, which are defined almost everywhere and are measurable.

Set x D .t; y/, where t D x1, y D .x2; : : : ; xm/, and let V1 be the orthogonal projection
of V on the hyperplane fx1 D 0g. For each y 2 V1 we denote by V y WD ft 2 R W .t; y/ 2 V g
the corresponding section of V ; note that V y is open in R.

We may cover V by finitely many open boxesK D I1 � � � � � Im contained in U . LetK be
fixed and set L D I2 � � � � � Im. Fix y 2 V1 \ L and let �yj , j D 1; : : : ; n, be a continuous
system of the roots of Pa. ; y/ on �y WD V y \ I1 such that �. ; y/ D �

y
1 ; it exists since

�. ; y/ can be completed to a continuous system of the roots of Pa. ; y/ on each connected
component of �y by [38, Lemma 6.17]. Our goal is to bound

k@t�. ; y/kLp.�y/ D k.�
y
1 /
0
kLp.�y/

uniformly with respect to y 2 V1 \ L.

To this end let Cy denote the set of connected components J of the open subset�y � R.
For each J 2 Cy we extend the system of roots �yj jJ , j D 1; : : : ; n, continuously to I1, i.e.,

we choose continuous functions �y;Jj , j D 1; : : : ; n, on I1 such that �y;Jj jJ D �
y
j jJ

for all j
and

Pa.t; y/.Z/ D

nY
jD1

.Z � �
y;J
j .t//; t 2 I1:
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This is possible since �yj jJ has a continuous extension to the endpoints of the (bounded)
interval J , by [22, Lemma 4.3], and can then be extended on the left and on the right of J
by a continuous system of the roots of Pa. ; y/ after suitable permutations.

By Theorem 1, for each y 2 V1 \ L, J 2 Cy , and j D 1; : : : ; n, the function �y;Jj is

absolutely continuous on I1 and .�y;Jj /0 2 Lp.I1/, for 1 � p < n=.n � 1/, with

(9.1) k.�
y;J
j /0kLp.I1/ � C.n; p; jI1j/ max

1�i�n
kaik

1=i

Cn�1;1.K/
:

Let J; J0 2 Cy be arbitrary. By [32, Lemma 3.6], .�yj /
0 as well as .�y;J0j /0 belong toLp.J /

and we have
nX

jD1

k.�
y
j /
0
k
p

Lp.J /
D

nX
jD1

k.�
y;J
j /0k

p

Lp.J /
D

nX
jD1

k.�
y;J0
j /0k

p

Lp.J /
:

Thus,

nX
jD1

k.�
y
j /
0
k
p

Lp.�y/
D

X
J2 Cy

nX
jD1

k.�
y
j /
0
k
p

Lp.J /
D

X
J2 Cy

nX
jD1

k.�
y;J0
j /0k

p

Lp.J /

D

nX
jD1

k.�
y;J0
j /0k

p

Lp.�y/
�

nX
jD1

k.�
y;J0
j /0k

p

Lp.I1/
:

In particular, by (9.1),

k@t�. ; y/kLp.�y/ D k.�
y
1 /
0
kLp.�y/ � C.n; p;K/ max

1�i�n
kaik

1=i

Cn�1;1.K/
;

and so, by Fubini’s theorem,Z
V\K

j@1�.x/j
p dx D

Z
V1\L

Z
�y
j@1�.t; y/j

p dt dy

�

�
C.n; p;K/ max

1�i�n
kaik

1=i

Cn�1;1.K/

�p Z
V1\L

dy;

and thus

k@1�kLp.V\K/ � C.n; p;K/ max
1�i�n

kaik
1=i

Cn�1;1.K/
:

The other partial derivatives @i�, i � 2, are treated analogously. This implies (1.6), where
W is the (finite) union of the boxes K.

R 8. – This can be improved slightly if V has just finitely many recesses: in this
case the constant in (1.6) depends only onm, n, p, and diam.V /. For simplicity let us assume
that V is convex. Then in the previous proof we need not restrict to the open boxesK. Instead
of I1 we may work with the interval V y and (9.1) can be replaced by

(9.2) k.�
y;J
j /0kLp.V y/ � C.n; p/maxf1; diam.V /1=pg max

1�i�n
kaik

1=i

Cn�1;1.V /
:
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10. Applications

In this section we present three applications of our main results Theorems 1 and 2. First we
improve upon a result due to Spagnolo [41] on local solvability of certain systems of pseudo-
differential equations. Secondly, we obtain a lifting theorem for differentiable mappings
into orbit spaces of finite group representations. As a third application we give a sufficient
condition for a multi-valued function to be of Sobolev class W 1;p in the sense of Almgren.
We also want to point out that our results were used in [4].

10.1. Local solvability of pseudo-differential equations

In [41] Spagnolo proved that the pseudo-differential n � n system

ut C iA.t;Dx/uC B.t;Dx/u D f .t; x/; .t; x/ 2 I � U � R � Rm;(10.1)

where A 2 C1.I; S1.Rm//n�n, B 2 C 0.I; S0.Rm//n�n are matrix symbols of order 1
and 0, respectively, and A.t; �/ is homogeneous of degree 1 in � for j�j � 1, is locally
solvable in the Gevrey class Gs for 1 � s � n=.n � 1/ and semi-globally solvable in Gs

for 1 < s < n=.n � 1/ under the following assumptions: the eigenvalues of A.t; �/ admit
a parameterization �1.t; �/; : : : ; �n.t; �/ such that each �j .t; �/ is absolutely continuous in t ,
uniformly with respect to �, that is,

j@t�j .t; �/j � �.t; �/.1C j�j
2/1=2; with �. ; �/ equi-integrable on I;( A 1)

and for each � the imaginary parts of the �j .t; �/ do not change sign for varying t and j , that
is,

8� either Im �j .t; �/ � 0; 8t; j; or Im �j .t; �/ � 0; 8t; j:( A 2)

Theorem 1 implies that the assumption ( A 1) is always satisfied. Indeed, this follows by
applying Theorem 1 to the characteristic polynomial of the matrix .1C j�j2/�1=2A.t; �/ and
noting that the entries of .1Cj�j2/�1=2A.t; �/ and its iterated partial derivatives with respect
to t are globally bounded in �, since A.t; �/ is a symbol of order 1.

In particular, the scalar equation

(10.2) @nt uC

nX
jD1

aj .t;Dx/@
n�j
t u D f .t; x/;

whereu; f are scalar functions and aj .t;Dx/ is a pseudo-differential operator of order j with
principal symbol a0j .t; �/ smooth in t , is locally solvable inGs for 1 � s � n=.n�1/ and semi-
globally solvable in Gs for 1 < s < n=.n � 1/ provided that the roots �1.t; �/; : : : ; �n.t; �/ of

.iZ/n C

nX
jD1

a0j .t; �/.iZ/
n�j
D 0

satisfy assumption ( A 2); cf. [41, Corollary 2].

A crucial tool in the proof is the technique of quasi-diagonalization for a Sylvester matrix,
introduced by [19] for weakly hyperbolic problems and then refined by [14].

Actually, by Theorem 1, the above conclusions hold provided that the matrix symbol
A.t; �/ is just of class C n�1;1 in time t .
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T 4. – The pseudo-differential n � n system (10.1), where A 2 C n�1;1.I; S1.Rm//n�n,
B 2 C 0.I; S0.Rm//n�n, and A.t; �/ is homogeneous of degree 1 in � for j�j � 1, is locally
solvable in the Gevrey class Gs for 1 � s � n=.n � 1/ and semi-globally solvable in Gs

for 1 < s < n=.n�1/ provided that the eigenvalues �1.t; �/; : : : ; �n.t; �/ ofA.t; �/ satisfy ( A 2).

Proof. – Theorem 1 implies ( A 1) provided that A.t; �/ is C n�1;1 in t . Then the proof
in [41] yields the result.

10.2. Lifting mappings from orbit spaces

LetG be a finite group and let � W G ! GL.V / be a representation ofG in a finite dimen-
sional complex vector space V . By Hilbert’s theorem, the algebra CŒV �G of G-invariant
polynomials on V is finitely generated. We consider the categorical quotient V ==G, i.e., the
affine algebraic variety with coordinate ring CŒV �G , and the morphism � W V ! V ==G

defined by the embedding CŒV �G ! CŒV �. Since G is finite, V ==G coincides with the
orbit space V=G. Let �1; : : : ; �n be a system of homogeneous generators of CŒV �G with
positive degrees d1; : : : ; dn. Then we can identify � with the mapping of invariants
� D .�1; : : : �n/ W V ! �.V / � Cn and the orbit space V=G with the image �.V /.

Let U � Rm be open, and k 2 N. Consider a mapping f 2 C k�1;1.U; �.V //, i.e., f is of
Hölder class C k�1;1 as mapping U ! Cn with the image f .U / contained in �.V / � Cn. We
say that a mapping f W U ! V is a lift of f over � if f D � ı f . It is natural to ask how
regular a lift of f can be chosen. This question is independent of the choice of generators
of CŒV �G , since any two choices differ by a polynomial diffeomorphism. This and similar
problems were studied in [1], [22], [23], [24], [25], [26], [37], [31].

V

�
����

G
xx

U
f

//

f

77

�.V /
� � // Cn

V=G.

The subject of this paper, i.e., optimal regularity of roots of polynomials, is just
a special case of this problem: let the symmetric group Sn act on Cn by permuting
the coordinates. Then CŒCn�Sn is generated by the elementary symmetric polynomials
�j .z/ D

P
i1<���<ij

zi1 � � � zij , Cn= Sn D �.Cn/ D Cn, and f W U ! �.Cn/ amounts to a

family of complex monic polynomials Pf with coefficients .�1/jfj , j D 1; : : : ; n, in view of
Vieta’s formulas. Lifting f over � precisely means choosing the roots of Pf .

As an application of our main Theorems 1 and 2 we obtain the following lifting result for
finite groups. Following Noether’s proof of Hilbert’s theorem we associate with � a suitable
polynomial and use the regularity result for its roots.

In the following Gv WD fgv W g 2 Gg denotes the orbit through v.
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T 5. – Let � W G ! GL.V / be a complex finite dimensional representation of a
finite group G. Let �1; : : : ; �n be a system of homogeneous generators of CŒV �G . Decompose
V D

L`
iD1 Vi into irreducible subrepresentations of G, and let

k WD max
iD1;:::;`

min
v2Vinf0g

jGvj:

Then:

1. If c 2 C k�1;1.I; �.V //, where I � R is a compact interval, then any continuous lift
c 2 C 0.I; V / of c is absolutely continuous and belongs to the Sobolev space W 1;p.I; V /

for every 1 � p < k=.k � 1/. If C is a bounded subset of C k�1;1.I; �.V //, then
C WD fc 2 C 0.I; V / W � ı c 2 Cg is bounded inW 1;p.I; V / for every 1 � p < k=.k � 1/.

2. If f 2 C k�1;1.U; �.V //, where U � Rm is open, and f 2 C 0.�; V / is a continuous lift
of f on a relatively compact open subset � b U , then f belongs to the Sobolev space
W 1;p.�; V / for every 1 � p < k=.k� 1/. If F is a bounded subset of C k�1;1.U; �.V //,
then F WD ff 2 C 0.�; V / W � ı f 2 F g is bounded in W 1;p.�; V / for every
1 � p < k=.k � 1/.

Note that there always exists a continuous lift c of c 2 C 0.I; �.V //; see [26, Theorem 5.1].

Proof. – By treating the irreducible subrepresentations separately, we may assume
without loss of generality that � is irreducible. Fix a non-zero vector v 2 V such that jGvj is
minimal. Choose a G-invariant Hermitian inner product h ; i on V , and associate with
g 2 G the linear form `g W V ! C defined by `g.x/ WD hx; gvi. Choose a numbering of
the left cosets G=Gv D fg1; : : : ; gkg, where Gv D fg 2 G W gv D vg and k D jGvj, and set
`i WD `gi for i D 1; : : : ; k. Then the action of G on G=Gv by left multiplication induces a
permutation of the set fg1; : : : ; gkg, and thus

aj WD .�1/
j

X
1�i1<���<ij�k

`i1 � � � `ij ; j D 1; : : : ; k;

are G-invariant polynomials on V . So aj D pj ı � for polynomials pj 2 CŒCn�, and the
polynomial Pa 2 CŒV �G ŒZ� given by

Pa.x/.Z/ D Z
k
C

kX
jD1

aj .x/Z
k�j
D

kY
jD1

.Z � j̀ .x//; x 2 V;

factors through the polynomial Pp 2 CŒCn�ŒZ�, that is, Pa D Ppı� . Applying Theorem 1
to Pp.c.t//, t 2 I , we find that t 7! `i .c.t// D hc.t/; givi, i D 1; : : : ; k, belongs to W 1;p.I /

for each 1 � p < k=.k � 1/. Since � is irreducible, the orbit Gv spans V and (1) follows.
Analogously, (2) follows from Theorem 2.

As a consequence one obtains a similar result for polar representations of reductive
algebraic groups, since the lifting problem can be reduced to the action of the corresponding
generalized Weyl group which is finite; cf. [26] or [37].

4 e SÉRIE – TOME 51 – 2018 – No 5



OPTIMAL SOBOLEV REGULARITY OF ROOTS OF POLYNOMIALS 1379

10.3. Multi-valued Sobolev functions

In [3] Almgren developed a theory of n-valued Sobolev functions and proved the existence
of n-valued minimizers of the Dirichlet energy functional. See also [15] for simpler proofs.

An n-valued function is a mapping with values in the set A n.R`/ of unordered n-tuples
of points in R`. Let us denote by Œx� D Œx1; : : : ; xn� the unordered n-tuple consisting
of x1; : : : ; xn 2 R`; then Œx1; : : : ; xn� D Œx�.1/; : : : ; x�.n/� for each permutation � 2 Sn. The
set A n.R`/ D fŒx� D Œx1; : : : ; xn� W xi 2 R`g forms a complete metric space when endowed
with the metric

d.Œx�; Œy�/ WD min
�2Sn

� nX
iD1

jxi � y�.i/j
2
�1=2

:

Almgren proved that there is an integer N D N.n; `/, a positive constant C D C.n; `/, and
an injective mapping � W A n.R`/! RN such that Lip.�/ � 1 and Lip.�j�1

�.An.R`//
/ � C ;

moreover, there is a Lipschitz retraction of RN onto �.A n.R`//.
One can use this bi-Lipschitz embedding to define Sobolev spaces of n-valued functions:

for open U � Rm and 1 � p � 1 define

W 1;p.U; A n.R`// WD ff W U ! A n.R`/ W � ı f 2 W 1;p.U;RN /g:

For an intrinsic definition see [15, Definition 0.5 and Theorem 2.4].
Let us identify R2 Š C. Theorem 1 implies a sufficient condition for an n-valued function

U ! A n.C/ to belong to the Sobolev spacesW 1;p.U; A n.C// for every 1 � p < n=.n�1/;
see Theorem 6 below.

We shall use the following terminology. By a parameterization of an n-valued function
f W U ! A n.C/ we mean a function ' W U ! Cn such that f .x/ D Œ'.x/� D Œ'1.x/; : : : ; 'n.x/�
for all x 2 U . Let � W Cn ! A n.C/ be defined by �.z/ WD Œz�; it is a Lipschitz mapping with
Lip.�/ D 1. Then a parameterization of f amounts to a lift ' of f over � , that is, f D � ı'.
The elementary symmetric polynomials induce a bijective mapping a W A n.C/! Cn,

aj .Œz1; : : : ; zn�/ WD .�1/
j

X
i1<���<ij

zi1 � � � zij ; 1 � j � n:

In other words, monic complex polynomials of degree n are in one-to-one correspondence
with their unordered n-tuples of roots.

T 6. – Let U � Rm be open and let f W U ! A n.C/ be continuous. If
a ı f 2 C n�1;1.U;Cn/, then f 2 W 1;p.V; A n.C// for each relatively compact open V b U
and each 1 � p < n=.n � 1/. Moreover,

kr.� ı f /kLp.V / � C.m; n; p; K ; �/
�
1C max

1�j�n
kaj ı f k

1=j

Cn�1;1.W /

�
;

where K is any finite cover of V by open boxes
Qm
iD1.˛i ; ˇi / contained in U and W D

S
K .

Proof. – Fix V b U . We must show that � ı f is an element of W 1;p.V;RN /. Clearly,
� ı f W U ! RN is continuous. The set V can be covered by finitely many open boxes
K D

Qm
iD1 Ii contained in U. Let ei be the i th standard unit vector in Rm. Denote byKi the

orthogonal projection of K onto the hyperplane e?i . For each y 2 Ki we have Ii D ft 2 R W
y C tei 2 Kg.
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By Theorem 1, Ii 3 t 7! f .y C tei / admits an absolutely continuous parameterization
'i;y such that, for 1 � p < n=.n � 1/,

k'0i;ykLp.Ii / � C.n; p/maxf1; jIi j1=pg max
1�j�n

kaj ı f k
1=j

Cn�1;1.K/
:

Thus, Ii 3 t 7! �.f .y C tei // D �.�.'i;y.t/// is absolutely continuous and

k.� ı � ı 'i;y/
0
kLp.Ii / � C.m; n; p; jIi j; �/

�
1C max

1�j�n
kaj ı f k

1=j

Cn�1;1.K/

�
;

since composition with the Lipschitz mapping � ı � maps W 1;p.Ii ;Cn/ to W 1;p.Ii ;RN / in
a bounded way; see [29, Theorem 1]. By Fubini’s theorem,Z

K

j@i .� ı f /j
p dx D

Z
Ki

Z
Ii

j.� ı � ı 'i;y/
0
j
p dt dy;

and the statement follows.

Cn

�
���� ((

Ii
� � //

'i;y

44

K
f

//

''

A n.C/

a

��

� � � // RN

Cn.

a�1

OO

In particular, the roots of a polynomial Pa of degree n with coefficients aj 2 C n�1;1.U /,
j D 1; : : : ; n, form ann-valued function� W U ! A n.C/which belongs toW 1;p

loc .U; A n.C//
for each 1 � p < n=.n� 1/; in fact, it is well-known that � W U ! A n.C/ is continuous (cf.
[20] or [33, Theorem 1.3.1]). Theorem 6 implies that the push-forward

.a�1/� W C
n�1;1.U;Cn/!

\
1�p<n=.n�1/

W
1;p

loc .U; A n.C//

is a bounded mapping.

We remark that much more is true in the case of real n-valued functions. In this situation
the elementary symmetric polynomials induce a bijective mapping a W A n.R/! Hn, where
Hn is a closed semialgebraic subset of Rn, namely, the space of hyperbolic polynomials of
degree n (i.e., polynomials with all roots real). Then the mapping

.a�1/� W C
n�1;1.U;Hn/! C 0;1.U; A n.R//;

is bounded. It is easy to see that the projection � W Rn ! A n.R/ admits a continuous
section � , for instance, by ordering the components increasingly. Then we have a bounded
mapping

.� ı a�1/� W C
n�1;1.U;Hn/! C 0;1.U;Rn/:

All this essentially follows from Bronshtein’s theorem [9]; see [30].
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R 9. – Let ˆ W A n.C/! A n.R/ be a Lipschitz function. If f 2 W 1;p.U; A n.C//,
then ˆ ı f 2 W 1;p.U; A n.R// and it admits a parameterization � ıˆ ı f 2 W 1;p.U;Rn/.
This follows (again by [29, Theorem 1]) from the following diagram in which all vertical
arrows are Lipschitz: the arrows in the lower row by Almgren’s results, and � is Lipschitz,
since d.Œx�; Œy�/ D j�.Œx�/ � �.Œy�/j for Œx�; Œy� 2 A n.R/.

Rn

�
����

U

33

f
// A n.C/

�2
��

ˆ // A n.R/

�

OO

�1
��

RN2

OO

// RN1 .

OO

Every Lipschitz function � W C! R induces Lipschitz functions ˆ W A n.C/! A n.R/ by
setting ˆ.Œz�/ WD Œ�.z1/; : : : ; �.zn/�. In particular, we can take '.z/ D jzj, '.z/ D Re.z/, or
'.z/ D Im.z/. In view of Theorem 6, we may conclude that the real and imaginary parts
of the roots of a monic polynomial Pa of degree n with coefficients in C n�1;1.U / admit
continuous parameterization that are of class W 1;p

loc .U;R
n/ for each 1 � p < n=.n � 1/.

The same holds for the absolute values. But note that real and imaginary parts of the roots
do not allow continuous parameterizations simultaneously!

Appendix

Illustration of the proof in simple cases

Let us illustrate the proof of Theorem 1 for polynomials Pa of degree 3 and 4. For
simplicity we assume that Pa is in Tschirnhausen form.

Degree 3

In degree 3 Proposition 3 is trivial: the factors of a splitting are at most of degree 2; so
(8.1) reduces to k�0kLp.I / D k. Qb

1=2
2 /0kLp.I / if nb D 2 and � � 0 if nb D 1.

Let .˛; ˇ/ � R be a bounded open interval. Let

PQa.t/.Z/ D Z
3
C Qa2.t/Z C Qa3.t/; t 2 .˛; ˇ/;

be a monic polynomial of degree 3 in Tschirnhausen form with coefficients Qa2; Qa3 2

C 2;1.Œ˛; ˇ�/. We may use Lemma 16 to extend Qa2; Qa3 to functions in C 2;1.Œ Ǫ ; Ǒ�/, where
Ǫ D ˛ � 1 and Ǒ D ˇ C 1, such that

– (8.23) holds for n D 3, and
– for t0 2 .˛; ˇ/ and k 2 f2; 3g satisfying

(A.1) j Qak.t0/j
1=k
D max
jD2;3

j Qaj .t0/j
1=j
¤ 0;

and a constant B satisfying (8.3) for n D 3, there is an open interval I � . Ǫ ; Ǒ/

containing t0 such that

(A.2) M jI j C k. Qa
1=2
2 /0kL1.I / C k. Qa

1=3
3 /0kL1.I / D Bj Qak.t0/j

1=k ;
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where

(A.3) M D max
jD2;3

.LipI . Qa
.2/
j //1=3j Qak.t0/j

.3�j /=.3k/:

We have a splitting PQa.t/ D Pb.t/Pb�.t/, t 2 I (see Lemma 15).

Case nb D 2. – In this case

Pb.t/.Z/ D Z
2
C b1.t/Z C b2.t/; t 2 I;

and after Tschirnhausen transformation

P Qb.t/.Z/ D Z
2
C Qb2.t/; t 2 I:

The coefficients b1, b2, and Qb2 are given by (6.2) and (6.3) for nb D 2. They are of class
C 2;1.I / since Qak does not vanish on I (by (5.5)). If � 2 C 0.I / is a continuous root of P Qb ,
then Lemma 8 and Lemma 9 imply

(A.4) k�0k�Lp.I / D k.
Qb
1=2
2 /0k�Lp.I / � C.p/jI j

�1
j Qak.t0/j

1=k ; 1 � p < 2:

Moreover, by (6.9),

(A.5) kb01k
�
Lp.I / � C jI j

�1
j Qak.t0/j

1=k :

Case nb D 1. – In this case Pb.t/.Z/ D Z C b1.t/, P Qb.t/.Z/ D Z, and � � 0. In particular,
(A.4) and (A.5) are still valid.

Let � 2 C 0..˛; ˇ// be a continuous root of PQa. We extend � continuously to . Ǫ ; Ǒ/ such
that � is a root of PQa on . Ǫ ; Ǒ/. Assume that, on I , � is a root of Pb ; then

�.t/ D �
b1.t/

nb
C �.t/; t 2 I:

By (A.4), (A.5), and (2.2),

k�0k�Lp.I / � C.p/jI j
�1
j Qak.t0/j

1=k

D C.p/B�1
�
M C k. Qa

1=2
2 /0k�

L1.I /
C k. Qa

1=3
3 /0k�

L1.I /

�
� C.p/B�1

�
OAC k. Qa

1=2
2 /0k�Lp.I / C k. Qa

1=3
3 /0k�Lp.I /

�
;

where OA WD maxjD2;3 k Qaj k
1=j

C2;1.Œ Ǫ ; Ǒ�/
which dominates M as defined in (A.3) (see the proof

of Lemma 17). By Proposition 2 (applied to Qaj instead of Qbi and (A.2) instead of (7.1)) and
Lemma 1, we may conclude that � is absolutely continuous on . Ǫ ; Ǒ/ and satisfies

k�0k
Lp.. Ǫ ; Ǒ//

� C.p/
�
OA. Ǒ � Ǫ /1=p C k. Qa

1=2
2 /0k

Lp.. Ǫ ; Ǒ//
C k. Qa

1=3
3 /0k

Lp.. Ǫ ; Ǒ//

�
I

the constant B is universal. Using (3.3) and (8.23), we find

k�0kLp..˛;ˇ// � C.p/maxf1; .ˇ � ˛/1=pg max
jD2;3

k Qaj k
1=j

C2;1.Œ˛;ˇ�/
; 1 � p < 3=2:
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Degree 4

In degree 4 the interesting case is when, after splitting, one of the factors has degree 3.
Then the conclusion of Proposition 3 is obtained by a second splitting which further reduces
the degree.

Let .˛; ˇ/ � R be a bounded open interval. Let

PQa.t/.Z/ D Z
4
C Qa2.t/Z

2
C Qa3.t/Z C Qa4.t/; t 2 .˛; ˇ/;

be a monic polynomial of degree 4 in Tschirnhausen form with coefficients Qa2; Qa3; Qa4 2
C 3;1.Œ˛; ˇ�/. As in degree 3 we may assume that Qa2; Qa3; Qa4 are functions inC 3;1.Œ Ǫ ; Ǒ�/ (where
Ǫ D ˛ � 1 and Ǒ D ˇ C 1) such that

– (8.23) holds for n D 4, and
– for t0 2 .˛; ˇ/ and k 2 f2; 3; 4g satisfying

(A.6) j Qak.t0/j
1=k
D max
jD2;3;4

j Qaj .t0/j
1=j
¤ 0;

and a constant B satisfying (8.3) for n D 4, there is an open interval I � . Ǫ ; Ǒ/

containing t0 such that

(A.7) M jI j C

4X
jD2

k. Qa
1=j
j /0kL1.I / D Bj Qak.t0/j

1=k ;

where

(A.8) M D max
jD2;3;4

.LipI . Qa
.3/
j //1=4j Qak.t0/j

.4�j /=.4k/:

We have a splitting PQa.t/ D Pb.t/Pb�.t/, t 2 I .

Case nb D 3. – In this case

Pb.t/.Z/ D Z
3
C b1.t/Z

2
C b2.t/Z C b3.t/; t 2 I;

and after Tschirnhausen transformation

P Qb.t/.Z/ D Z
3
C Qb2.t/Z C Qb3.t/; t 2 I:

The coefficients b1, b2, b3 and Qb2, Qb3 are given by (6.2) and (6.3) for nb D 3. They are of class
C 3;1.I / since Qak does not vanish on I .

In this situation we have to work harder to obtain the conclusion of Proposition 3: we
must split again. Let I 0 WD I nft 2 I W Qb2.t/ D Qb3.t/ D 0g. For each t1 2 I 0 choose ` 2 f2; 3g
such that

j Qb`.t0/j
1=`
D max
jD2;3

j Qbi .t0/j
1=i
¤ 0:

There is an open interval J D J.t1/, t1 2 J � I 0, such that

(A.9) jJ jjI j�1j Qak.t0/j
1=k
C k. Qb

1=2
2 /0kL1.J / C k.

Qb
1=3
3 /0kL1.J / D Dj

Qb`.t1/j
1=`;

for a constant D satisfying (8.6) for nb D 3. Then we have a splitting P Qb.t/ D Pc.t/Pc�.t/,
t 2 J ; see Section 6.2 and bottom of p. 1367.

Let � 2 C 0.I / be a continuous root of P Qb . We may assume that

Q�.t/ WD �.t/C
c1.t/

nc
; t 2 J;
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is a root of PQc in J . We have nc � 2. If nc D 2, then, in analogy to (A.4) and (A.5),

(A.10) k Q�0k�Lp.J / D k. Qc
1=2
2 /0k�Lp.J / � C.p/jJ j

�1
j Qb`.t1/j

1=`; 1 � p < 2

and

(A.11) kc01k
�
Lp.J / � C jJ j

�1
j Qb`.t1/j

1=`:

In the case that nc D 1 we have Pc.t/.Z/ D Z C c1.t/, PQc.t/.Z/ D Z, and Q� � 0. In
particular, (A.10) and (A.11) are still valid.

Thus, (A.9), (A.10), (A.11), and (2.2) imply

k�0k�Lp.J / � C.p/jJ j
�1
j Qb`.t1/j

1=`

D C.p/D�1
�
jI j�1j Qak.t0/j

1=k
C k. Qb

1=2
2 /0k�

L1.J /
C k. Qb

1=3
3 /0k�

L1.J /

�
� C.p/D�1

�
jI j�1j Qak.t0/j

1=k
C k. Qb

1=2
2 /0k�Lp.J / C k.

Qb
1=3
3 /0k�Lp.J /

�
:

Using Proposition 2 to extract a countable subcollection of fJ.t1/gt12I 0 , � -additivity of k�kpLp
to glue the Lp-estimates, and Lemma 1 to extend the estimate to I , we obtain

k�0kLp.I / � C.p/
�
kjI j�1j Qak.t0/j

1=k
kLp.I / C k. Qb

1=2
2 /0kLp.I / C k. Qb

1=3
3 /0kLp.I /

�
;

that is the conclusion of Proposition 3 (the constant D is universal). With Lemma 8 and
Lemma 9 we may conclude

(A.12) k�0k�Lp.I / � C.p/jI j
�1
j Qak.t0/j

1=k ; 1 � p < 3=2:

Case nb � 2. – In this case (A.12) follows from (A.4) and (A.5).

Let � 2 C 0..˛; ˇ// be a continuous root of PQa. We extend � continuously to . Ǫ ; Ǒ/ such
that � is a root of PQa on . Ǫ ; Ǒ/. Assume that, on I , � is a root of Pb ; then

�.t/ D �
b1.t/

nb
C �.t/; t 2 I:

By (A.12), (A.5), (A.7), and (2.2),

k�0k�Lp.I / � C.p/jI j
�1
j Qak.t0/j

1=k

D C.p/B�1
�
M C

4X
jD2

k. Qa
1=j
j /0k�

L1.I /

�
� C.p/B�1

�
OAC

4X
jD2

k. Qa
1=j
j /0k�Lp.I /

�
;

where OA WD maxjD2;3;4 k Qaj k
1=j

C3;1.Œ Ǫ ; Ǒ�/
dominatesM as defined in (A.8). As in the end of the

proof for degree 3, we may use Proposition 2 and Lemma 1 to glue the Lp-estimates, and
(3.3) and (8.23) to conclude

k�0kLp..˛;ˇ// � C.p/maxf1; .ˇ � ˛/1=pg max
jD2;3;4

k Qaj k
1=j

C3;1.Œ˛;ˇ�/
; 1 � p < 4=3:
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