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Abstract
We give rather simple answers to two long-standing questions in real-analytic geom-
etry, on global smoothing of a subanalytic set, and on transformation of a proper
real-analytic mapping to a mapping with equidimensional fibers by global blowings-
up of the target. These questions are related: a positive answer to the second can
be used to reduce the first to the simpler semianalytic case. We show that the second
question has a negative answer, in general, and that the first problem nevertheless has
a positive solution.

1. Introduction
Semialgebraic and subanalytic sets have become ubiquitous in mathematics since
their introduction by Łojasiewicz [7] in the 1960s, following the celebrated Tarski–
Seidenberg theorem on quantifier elimination. In this article, we give rather simple
answers to two long-standing questions in real-analytic geometry, on global smooth-
ing of a subanalytic set (an analogue of resolution of singularities), and on transfor-
mation of a proper real-analytic mapping to a mapping with locally equidimensional
fibers by global blowings-up of the target (a classical result of Hironaka [6] in the
complex-analytic case).

These questions are related: a positive answer to the second can be used to reduce
the first to the simpler semianalytic case. We show that the second question has a
negative answer, in general, and that the first problem nevertheless has a positive
solution.

1.1. Global smoothing
Throughout the article, all spaces and mappings are assumed to be defined over the
field of real numbers, unless stated otherwise. The results stated in this section will
be proved in Section 2 below.
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THEOREM 1.1 (Nonembedded global smoothing)
Let V be an analytic manifold of dimension n, and let X denote a closed subanalytic
subset of V , dimX D k. Then there is a proper analytic mapping ' WX 0! V , where
X 0 is an analytic manifold of pure dimension k, and a smooth open subanalytic subset
U of X , where dimXnU < k, such that
(1) '.X 0/�X ;
(2) '�1.XnU / is a simple normal crossings hypersurface B 0 �X 0;
(3) for each connected component W of U , '�1.W / is a finite union of subsets

open and closed in '�1.U /, each mapped isomorphically onto W by '.

There is an analogous semialgebraic version of Theorem 1.1. Condition (3) of the
theorem is an analogue for subanalytic (or semialgebraic) sets of the bimeromorphic
(or birational) property of resolution of singularities. The example of a closed half-
line in R shows that the finite-to-one property in (3) is needed. The fact that U is not
required to be the entire k-dimensional smooth part of X in Theorem 1.1 means there
is freedom in the construction of the mapping ' that can be exploited to prove the
global smoothing result by essentially local means.

THEOREM 1.2 (Embedded global smoothing)
Let V be an analytic manifold of dimension n, and let X denote a closed subanalytic
subset of V , dimX D k. Then there is a proper analytic mapping ' W V 0! V , where
V 0 is an analytic manifold of dimension n, together with a smooth closed analytic
subset X 0 � V 0 of dimension k, and a simple normal crossings hypersurface B 0 � V 0

transverse toX 0 (i.e., the components ofB 0 are smooth and simultaneously transverse
to X 0), such that
(1) dim'.B 0/ < k;
(2) 'jV 0nB0 is finite-to-one and of constant rank n;
(3) ' induces an isomorphism from a union of components of X 0 nB 0 to a smooth

open subanalytic subset U of X such that dimXnU < k.

The union in (3) is necessarily finite if X is compact; in general, X itself may
have infinitely many components. The following example shows that the finite-to-one
property (2) is again needed. In the case that X is a closed semialgebraic subset of
R
n, there is an analogue of Theorem 1.2 where the mapping in (2) is one-to-one (see

Remark 2.6).

Example 1.3
Let

g.x/ WD sin
� 1

ıx � 1=�

�
; (1.1)
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where ı > 0 is a constant. Then g.x/ is analytic on the open interval .�1; 1=ı�/.
Let X D ¹.x; y/ 2 R2 W y D g.x/; x � 1=2ı�º. A mapping ' W V 0! R

2 as in Theo-
rem 1.2 must be at least two-to-one on V 0 n B 0. (Otherwise, the image of X 0 would
provide an extension of X to a closed analytic curve in R

2.)

We believe that Theorems 1.1 and 1.2 are not, in general, true with the stronger
condition that U is the entire smooth part of X of dimension k, but we do not have a
counterexample. The following example in the algebraic case is illustrative.

Example 1.4
LetX be the algebraic subset of R3 defined by z4 D x3Cwxz2 (cf. [1, Remark 7.3]);
X can be obtained as a blowing-down (uD x=z) of the smooth hypersurfaceX 0 �R

3

given by z D u3Cuw. The smooth part of X (as an algebraic set) is the complement
in X of the half-line ¹x D z D 0;w � 0º. The blowing-up ' WX 0!X satisfies Theo-
rem 1.1 with U equal to the complement in X of the w-axis, but the inverse image of
SingX in X 0 is a “T-shaped” set including only the nonpositive w-axis. We can get a
mapping as in Theorem 1.1, where U is the entire smooth part of X , by following the
blowing-up with an additional (generically) two-to-one covering.

1.2. Simplification of an analytic morphism
Let ' W Y !Z denote a proper morphism of analytic spaces. We say that ' is finite if,
for every a 2 Y , the local ring OY;a is a finite OZ;'.a/-module, via the ring homomor-
phism '� W OZ;'.a/! OY;a. If ' is finite, then '.Y / is a closed semianalytic subset
of Z [5, Lemma 7.3.6].

Let � WZ0!Z denote a morphism given as a composite of blowings-up (more
precisely, for every relatively compact open subset V of Z, � j��1.V / W �

�1.V /! V

is the composite of a finite sequence of blowings-up over V ). Given a proper mor-
phism ' W Y ! Z, let ˆ W Y �Z Z0! Z0 denote the canonical morphism from the
fiber-product. There is an induced morphism '0 W Y 0 ! Z0, where Y 0 denotes the
smallest closed analytic subspace of Y �Z Z0 containing Y �Z Z0 nˆ�1.B 0/, where
B 0 �Z0 is the exceptional divisor of � (i.e., the critical set of � , in the case that Z is
smooth). The morphism '0 is called the strict transform of '.

If � is a blowing-up with center C � Z, then Y 0 ! Y can be identified with
the blowing-up of the pullback ideal '�.IC / (where IC � OZ is the ideal of C ,
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and '�.IC /� OY denotes the coherent ideal generated by the pullbacks of all local
sections of IC ). This follows essentially from the definitions (cf. [5, Chapter 4]).

Question 1.5
Given ' W Y !Z, can we find a composite of blowings-up � WZ0!Z such that '0

has fibers that are equidimensional in some neighborhood of every point of Y 0?

Any closed subanalytic subset X of Z is the image of a proper morphism ' W

Y ! Z with fibers that generically are finite [5, Chapter 7], [1, Theorem 0.1], so a
positive answer would provide a composite of blowings-up � such that X 0 WD '0.Y 0/
is semianalytic (cf. Lemma 2.1 below). In Section 3 below, we will use the function
(1.1) to construct examples showing that the answer to Question 1.5 is no, in general.

Remark 1.6
In the complex-analytic case, the answer is yes and, in fact, there is a stronger result
due to Hironaka [6]: ' can be transformed to a flat morphism by a composite of
blowings-up � . Hironaka’s proof is based on successively blowing up local flatten-
ers of the morphism. Remarkably, Hironaka shows that ' can be flattened by global
blowings-up of X although a global flattener does not exist, in general, even in the
complex case (cf. [5, Chapter 4]). Equidimensionality of fibers as a substitute for the
stronger flatness condition is studied in [8].

As a final remark (Remark 3.4), we note that a construction similar to that in
Examples 3.1 and 3.3 can be used to show that, in the real-analytic category, it is not
true, in general, that a composite of blowings-up is also a blowing-up. It follows that
a characterization of blow-analytic mappings claimed by Fukui [4, Section 2] is not
true as stated.

2. Global smoothing theorems

2.1. Lemma of Hironaka
The proofs of our global smoothing theorems (Theorems 1.1 and 1.2) use the follow-
ing local lemma due essentially to Hironaka [5, Proposition 7.3] (see also [3, Theo-
rem A.4.1]). The lemma is a consequence of Hironaka’s local flattening theorem [5,
Chapter 4], using resolution of singularities to dominate each blowing-up of a local
flattener by a sequence of blowings-up with smooth centers. We recall that a local
blowing-up � W V 0! V means a composite V 0! W ,! V , where W ,! V is the
inclusion of an open subset, and V 0!W is a blowing-up.
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LEMMA 2.1
Let V be an analytic manifold, and let X denote a closed subanalytic subset of V . Let
K be a compact subset of V . Then there exists a finite collection of analytic mappings
�� W V�! V , where each V� is an analytic manifold of dimension equal to dimV ,
and a compact subset K� of V�, for each �, with the following properties.
(1)

S
��.K�/ is a neighborhood of X \K in V .

(2) For each �, �� is the composite of a finite sequence of local blowings-up with
smooth centers. The union of the inverse images of these centers in V� is a
closed analytic hypersurface B� of V�, so that �� induces an open embedding
V�nB�! V . Moreover, dim

S
��.B�/ < dimX .

(3) (The closure of) .��/�1.X/nB� is semianalytic, for every �.

Let p denote the longest length of the sequence of local blowings-up involved in
��, for any �, in Lemma 2.1. We will call ¹��º a semianalytic covering of X \K of
depth p. We will prove Theorem 1.2 first in the case thatX is semianalytic, and reduce
the subanalytic to the semianalytic case by induction on the depth of a semianalytic
covering, for suitable K .

2.2. Smoothing of a semianalytic n-cell
Let V be an analytic manifold of dimension n, and let C denote the closure of a
relatively compact open semianalytic subset of V . We will say that C is a semiana-
lytic n-cell if there are finitely many analytic functions fi , i D 1; : : : ; q, defined in a
neighborhood W of C , such that C D

Sr
jD1Cj , where each

Cj D
®
x 2W W fi .x/� 0; i 2 Ij

¯
; for some Ij � ¹1; : : : ; qºI

in particular, the boundary of C , bdryC �
S
i¹fi .x/D 0º. Note that the boundary

hypersurfaces ¹fi .x/D 0º may include interior points of C .

LEMMA 2.2
Let C denote a semianalytic n-cell in V , as above. Then there is an analytic mapping
� W S! V , where S is a compact analytic manifold of dimension n, a simple normal
crossings hypersurface D � S , and a dense open semianalytic subset U of C , such
that �.S/ D C , SnD D ��1.U / equals a finite union of open and closed subsets,
each projecting isomorphically onto U .

Proof
We can assume that dimCj1 \ Cj2 < n, for all j1 ¤ j2, and can thus reduce to the
case that C is of the form

C D
®
x 2W W fi .x/� 0; i D 1; : : : ; q

¯
:
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Define

Z WD
®
.x; t/ 2W �Rq W t2i D fi .x/; i D 1; : : : ; q

¯
;

where t D .t1; : : : ; tq/. Then Z is a compact analytic subset of W �Rq . Let � WZ!
W denote the restriction of the projectionW �Rq!W . Then �.Z/D C . Moreover,
there is a closed analytic subset Y of Z, with dimY < nD dimZ, and an open dense
semianalytic subset U of X , such that ZnY D ��1.U / equals a finite union of open
and closed subsets, each projecting isomorphically onto U . The result then follows by
composing � with a mapping S ! Z given by resolution of singularities of Y � Z
(cf. [5, Theorem 5.10], [2, Theorem 1.6]).

Remark 2.3
(1) In the case that X is a semialgebraic subset of Rn, the same proof gives an ana-
logue of Lemma 2.2 where the mapping � is algebraic.

(2) Our proof of Theorem 1.2 involves Lemma 2.2 for a covering of X by semi-
analytic n-cells with disjoint interiors. In the case that X is a compact subanalytic
subset of V D R

n, Lemma 2.2 is needed only in the case of a cube C � R
n (see

Remark 2.5). In this case, a smoothing � W S! V can be constructed more efficiently
as follows. Suppose that C D Œ�1; 1�n. Then the projection .x; y/ 7! x of the unit
circle S1 in R

2 onto the closed interval Œ�1; 1�� R induces a real-analytic mapping
� W S WD .S1/n! R

n onto C , such that � induces a 2n-sheeted covering of the open
cube .�1; 1/n, and the inverse image of the boundary is a simple normal crossings
hypersurface D in S .

2.3. Partition into semianalytic cells
Let V denote an analytic manifold (assumed to be countable at infinity), dimV D n.
A locally finite (hence countable) collection of semianalytic n-cells C� in V will be
called a partition of V into semianalytic n-cells if V D

S
C� and the interiors of the

C� are disjoint. We will say that such a partition P is subordinate to a covering C

of V by open subsets W� if each C� 2 P lies in some W�. We will say that P is
compatible with a semianalytic subset Y of V if the interior intC� of every C� 2 P

lies in either the interior or exterior of Y .
Given a subanalytic subset X of V , we will say that a partition into semianalytic

n-cells C� is in general position with respect to X if, for each �, the boundary hyper-
surfaces ¹fi .x/D 0º of C� (see Section 2.2) can be chosen so that dim.X \¹fi .x/D
0º/ < dimX , for all i .

LEMMA 2.4
Let V denote an analytic manifold of dimension n, and let C be an open covering
of V .
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(1) There exists a (locally finite) partition of V into semianalytic n-cells, subordi-
nate to C .

(2) If Y is a semianalytic subset of V , then there exists a partition of V into
semianalytic cells, subordinate to C and compatible with Y .

(3) If X is a closed subanalytic subset of V , then there is a partition into semian-
alytic cells, subordinate to C and in general position with respect to X .

Proof
Consider a covering of V by a locally finite (hence countable) collection of analytic
coordinate charts V�, �D 1; 2; : : : , where each V� lies in a member of C . Given � and
a positive integer q�, let .x1; : : : ; xn/ denote the coordinates of V�, and consider the
q�-grid of V formed by the hyperplanes ¹xi D j=q�º, j 2 Z, i D 1; : : : ; n. Let bC��
denote the closed cubes (of side length 1=q�) determined by the q�-grid. Of course,
we can choose the covering ¹V�º and the q� with the property that, for each �, there is
a big closed cube bQ� � V� with sides determined by the q�-grid, such that the interiors

int bQ� of all bQ� cover V ; in fact, we can assume that V is covered by smaller open
balls (say, with center equal to the center of bQ� and diameter equal to half the side
length of bQ�).

Write Q1 WD bQ1, and C1� WD bC1�, for all �. For each � > 1, set

Q� WD closure of .int bQ�/n\
�<�

bQ� ;

C�� WD closure of .int bC��/n\
�<�

bQ� ; for all �:

Replacing each q� by a large enough integral multiple, if necessary, we can assume
that each C�� is a semianalytic n-cell (in particular, bdryC�� lies in the union of the
zero sets of finitely many analytic functions defined in a neighborhood of C��, given
by the boundary hypersurfaces of bC�� and bQ� , 	 < �). Then the collection of all cells
C��, where bC�� � bQ�, for all �, form a partition of V subordinate to ¹V�º. Assertion
(1) follows.

Clearly, if Y is a semianalytic subset of V , then, after taking a large enough
multiple of q� above, each C�� can be partitioned into finitely many cells, each with
interior in either the interior or exterior of Y , as required by (2).

Given a closed subanalytic subset X of V , dimX D k, we can also assume that,
for each �, every coordinate hyperplane ¹xi D j=q�º of V� intersectsX in a subanalytic
subset of dimension less than k (by a small linear coordinate change, if necessary; in
fact, it is enough that each hyperplane ¹xi D j=q�º that intersects bQ� has this prop-
erty). It follows that, for each cell C�� in the resulting partition, the intersection of
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X with every boundary hypersurface ¹fi .x/ D 0º has dimension less than k. This
proves (3).

Remark 2.5
The proof of Lemma 2.4 shows that, if X is a compact subanalytic subset of Rn, then,
for any open covering C of Rn, there is a partition of Rn into cubes, subordinate to C

and in general position with respect to X .

2.4. Proofs of the main theorems

Proof of Theorem 1.2 (Embedded global smoothing)
(i) The semianalytic case. Suppose that X is a closed semianalytic subset of V . Then
there is a locally finite covering of V by open subsets V� such that, for each �, there
are closed analytic subsets Y� �Z� of V�, dimZi D k, and an open and closed subset
U� of Z�nY�, such that U� is an open subset of the smooth part of X of dimension k
and dim.X \ V�/nU� < k.

By Lemma 2.4, there is a partition P of V into semianalytic n-cells C , subordi-
nate to ¹V�º and in general position with respect to X . It is enough to show that, for
each C 2P such that C \X ¤ ;, there is a mapping 'C W V 0C ! V onto C , satisfy-
ing the conclusion of the theorem with respect to X \C . Indeed, we can then simply
let V 0 be the disjoint union of the V 0C and let ' W V 0! V be the mapping given by 'C
on each V 0C .

Consider such a cell C . Choose � so that C � V�. Take � W S ! V onto C , and
D � S , as in Lemma 2.2. By resolution of singularities, there exist an analytic man-
ifold V 0C of dimension n, a proper analytic surjection 
 W V 0C ! S , and a smooth
closed analytic subset X 0 of V 0C of pure dimension k (X 0 is the strict transform of
Z�), such that B 0 WD 
�1.��1.Y�/[D/ is a simple normal crossings hypersurface in
V 0C transverse to X 0, and 'C WD � ı 
 W V 0C ! V , together with X 0 and B 0, satisfy the
conclusions of the theorem with respect to X \ C (see [5, Theorems 5.10, 5.11], [2,
Theorems 1.6, 1.10]).

(ii) The general subanalytic case. Consider a locally finite covering of V by rel-
atively compact open subsets V�. By Lemma 2.1, for each �, there is a semianalytic
covering ¹���º of X \ V�, of depth p�, say.

Each ��� is a composite of local blowings-up

��� D �
1
�� ı �

2
�� ı � � � ı �

p.�;�/

��
; p.�; �/� p�I

that is,

� i�� W V
i
��!W i

�� ,! V i�1�� ; i D 1; : : : ; p.�; �/;
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where W i
��
� V i�1

��
is an open subset and � i

��
W V i

��
! W i

��
is a blowing-up with

smooth center (V 0
��
WD V ).

By Lemma 2.4, there is a partition P of V into semianalytic n-cells C , subordi-
nate to ¹V�º and in general position with respect to X . Let PX WD ¹C 2P WX \C ¤

;º. We can assume that
(1) PX D

S
�P�, where the P� are disjoint subsets of PX and Q� WD

S
¹C W C 2

P�º � V�;
(2) if C 2P�, then C 2W 1

��
, for some �D �.�;C /.

(This is clear, for example, from the construction of P in the proof of Lemma 2.4(1),
by taking a large enough multiple of q�.)

Now, it is enough to prove that, for each �, there is a mapping '� W V 0� ! V (onto
Q�) satisfying the conclusion of the theorem with respect to X \Q�. Fix �. Our proof
is by induction on the depth p� of the semianalytic covering ¹���º. The case p� D 0
follows from the theorem in the case that X is semianalytic.

Again, it is enough to prove that, for each C 2P�, there is a mapping 'C W V 0C !
V (onto C ) satisfying the conclusion of the theorem with respect to X \ C . Fix
C 2P�. Let B1 denote the exceptional divisor of �1

��
, where �D �.�;C /, and let X1

denote the closure in V 1
��

of .�1
��
/�1.X \C/nB1. Then X1 � V 1

��
has a semianalytic

covering of depth < p�.
By induction, there is a proper analytic mapping  W T ! V 1

��
, where T is an

analytic manifold of dimension n, together with a smooth closed analytic subset Z
of T , dimZ D k, and a simple normal crossings hypersurface E � T transverse to
Z, satisfying the conclusions of the theorem with respect to X1 � V 1

��
. In particular,

 induces an isomorphism of a union of components of ZnE with a smooth open
subanalytic subset of X1 whose complement in X1 has dimension less than k.

Set � WD �1
��
ı  W T ! V . Let � W S ! V denote an analytic mapping onto C ,

with a simple normal crossings hypersurfaceD � S , satisfying Lemma 2.2. Consider
the fiber-product S �V T of � W S ! V and �, and let �S , �T denote the projections
of S �V T to S , T , respectively. By resolution of singularities, there is a surjective
analytic mapping 
 W V 0C ! S �V T , where V 0C is a compact analytic manifold of
dimension n, such that the strict transform X 0C of ��1T .Z/ is smooth, and the union in
V 0C of the inverse images of B1, D, and E is a simple normal crossings hypersurface
B 0C transverse to X 0C . Then the mapping 'C W V 0C ! V given by 
 followed by the
projection to V satisfies the conclusions of the theorem with respect to X \ C , as
required.

Remark 2.6
In the case that X is a closed semialgebraic subset of V DR

n, there are global closed
algebraic subsets Y �Z of Rn, whereZnY is smooth, and an open and closed subset
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U ofZnY , such that U is an open subset of the smooth part ofX of dimension k, and
dimXnU < k (cf. case (i) of the proof above). By resolution of singularities, there is a
sequence of blowings-up with smooth algebraic centers over Y , after which the strict
transformZ0 of Z is smooth, and the inverse image of Y is a simple normal crossings
hypersurface transverse to Z0. We thus get a semialgebraic analogue of Theorem 1.2,
where the mapping in condition (2) of the theorem is one-to-one.

Proof of Theorem 1.1 (Nonembedded smoothing)
By Theorem 1.2, we can assume that X is the closure of an open semianalytic subset
of V . By Lemma 2.4(2), there is a partition of V into semianalytic n-cells compatible
with X . In particular, X is a locally finite union of semianalytic n-cells, so the result
follows from the special case that X is itself a semianalytic n-cell—this is the result
of Lemma 2.2.

The semialgebraic version of Theorem 1.1 can be proved in the same way (see
Remark 2.3(1)).

3. Examples
We begin with two examples of a proper analytic mapping ' W V ! W , where V
is an analytic space of dimension 3 and W D R

3, with the property that there is no
mapping � WW 0!W given as the composite of a sequence of global blowings-up
such that the strict transform '0 of ' by � has all fibers finite (or empty). Each of the
examples below involves the function (1.1), where ı > 0 is small.

Example 3.1
Let S3 WD ¹.x; y; z;w/ 2R4 W x2 C y2 C z2 Cw2 D 1º, and let C WD ¹.x; y; z;w/ 2
S3 W z D 0;y D g.x/º. If ı > 0 is small enough (e.g., ı � 1=3�), then C is a smooth
curve. We define ' W V !W as the composite

V
�C
��! S3

p
�!R

3 �
,�!Z

�0
�!W DR

3;

where
� �0 is the blowing-up of 0 2R3;
� � is the inclusion of the z-coordinate chart, so that �0 ı � W .x; y; z/ 7! .xz;

yz; z/, and ¹z D 0º represents the exceptional divisor D of �0 in this chart;
� p is induced by the projection .x; y; z;w/ 7! .x; y; z/;
� �C is the blowing-up with center C (so �C has 1-dimensional fibers over C ).
Note that p.C / � D. The required property of ' is a consequence of the fact that
p.C / does not extend to a closed analytic curve in Z.
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Indeed, suppose that there is a composite of global blowings-up � W W 0 ! W

such that the strict transform '0 W V 0 ! V of ' by � has all fibers finite. Say that
� D �1 ı �2 ı � � � ı �k , where each �j W Wj ! Wj�1 is a blowing-up with smooth
center Cj�1 �Wj�1 (W0 DW , Wk DW 0). Then there is a commutative diagram

where each � 0j is a composite of finitely many blowings-up with smooth centers. This
can be proved inductively. Given �j WZj !Wj , let TjC1!WjC1 be the strict trans-
form of �j by �jC1, and let �jC1 W TjC1!Zj denote the associated mapping; that
is, �jC1 is the blowing-up of the pullback ideal ��j .ICj /�OZj , where ICj �OWj
is the ideal of Cj (see Section 1.2). By resolution of singularities, �jC1 can be domi-
nated by a finite sequence of blowings-up with smooth centers. More precisely, there
is a composite � 0jC1 W ZjC1! Zj of finitely many blowings-up with smooth cen-
ters, which principalizes ��j .ICj /, and � 0jC1 factors through TjC1, by the universal
mapping property of the blowing-up �jC1. So we get �jC1 WZjC1! TjC1!WjC1.

Let � 0 WD � 01 ı�
0
2 ı � � � ı�

0
k
WZ0!Z. Write  WD �ıp ı�C , and let  0 W V 00!Z0

denote the strict transform of  by � 0. Since '0 has all fibers finite, it follows that  0

has all fibers finite. Indeed, by definition, V 0 and V 00 are closed subspaces of the fiber-
products V �W W 0 and V �Z Z0 � .V �W W 0/�W 0 Z

0, respectively, and moreover,
V 00 � V 0 �W 0 Z

0. This means that each fiber of  0 is a subset of a fiber of '0.
For each j D 0; : : : ; k � 1, let C 0j �Z

0
j denote the smallest closed analytic sub-

set containing ��1j .Cj /n�
�1
j .Dj /, where Dj denotes the exceptional divisor of �j

(D0 DD). Then dimC 0j � 1 (C 0j may be empty). The curve  D ¹.x; y; z/ 2R3 W z D
0;y D g.x/; x < 1=ı�º � Z cannot lie entirely in C 00; therefore, it lifts to a unique
curve 1 �Z1. Likewise, 1 does not lie in C 01, and so on. (Here we use the property
that every subanalytic set containing  is of dimension at least 2; clearly, this property
is inherited by 1, etc.) Finally,  lifts to a unique curve  0 � Z0, and  0 intersects
the union of the inverse images of all ��1j .Dj / in a discrete set. Therefore,  0 has
1-dimensional fibers over the lifting of a nonempty open subset of p.C /, which is a
contradiction.

Remark 3.2
In general, consider a proper analytic mapping ' W V !W which factors through a
blowing-up � W Z!W of a coherent ideal sheaf in OW ; that is, ' D � ı  , where
 W V !Z. Suppose that there is a composite � of global blowings-up over W with
smooth centers, such that the strict transform of ' by � has all fibers finite (or empty).
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Then, by the argument in Example 3.1, the strict transform of  by a composite of
such blowings-up over Z also has all fibers finite.

In Example 3.1, we can replaceW by an arbitrarily small open ball in R
3 centered

at the origin, and restricting ' over such a ball will not change the preceding property.
It is true, however, that ' can be transformed to a morphism with all fibers finite by
blowing up at each step with center that is globally defined in some neighborhood of
the image of the corresponding morphism (e.g., after the first blowing-up �0, with
center globally defined in a neighborhood of the image of  containing p.C /). The
latter phenomenon does not occur in the following example.

Example 3.3
Let R4 DR

3�R!R
3 denote the projection .x; y; z;w/ 7! .x; y; z/, and let S �R

4

denote the algebraic subset defined by

.x2C z2/2.w4C z2w2/� .x2 � z2/2 D 0: (3.1)

Then S is irreducible, ¹x D z D 0º � S , and S maps onto R
3 since we can solve (3.1)

for w2 when x2C z2 ¤ 0. (The closure of Sn¹x D z D 0º maps properly onto R
3.)

Let �0 WM ! R
3 denote the blowing-up of the origin ¹x D y D z D 0º � R

3.
Then there is a commutative diagram

where S 0 denotes the strict transform of S by the blowing-up �0 � id of R3 �R. Let
S 0!R

3 denote the induced mapping.
Let Uz denote the z-coordinate chart of �0; that is, the chart with coordinates

.X;Y;Z/ in which �0 is given by .x; y; z/D .XZ;YZ;Z/. The mapping Uz �R!
R
3 given by the diagram above is .X;Y;Z;w/ 7! .XZ;YZ;Z/, and S 0 is defined in

Uz �R by the equation

.X2C 1/2.w4CZ2w2/� .X2 � 1/2 D 0:

Setting Z D 0, this equation splits as�
.X2C 1/w2 � .X2 � 1/

��
.X2C 1/w2C .X2 � 1/

�
D 0:

Let C � S 0 denote the compact smooth curve defined by

Z D 0; Y D g.X/; .X2C 1/w2C .X2 � 1/D 0;

and let �C W V ! S 0 denote the blowing-up of S 0 with center C . Then the mapping
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' W V
�C
��! S 0 �!R

3 DW

has the required property.
Indeed, suppose that the strict transform of ' by the composite of a sequence

of global blowings-up over W has all fibers finite. Let  W V !M be the mapping
such that ' D �0 ı  . By Remark 3.2, there is a composite � 0 WM 0!M of global
blowings-up, such that the strict transform  0 of  by � 0 has all fibers finite. Then
the curve  D ¹.X;Y;Z/ 2R3 WZ D 0;Y D g.X/;X < 1=ı�º �M can be lifted to
M 0, and this leads to a contradiction by the same argument as in Example 3.1.

Remark 3.4
A construction similar to that in the examples above can be used to show that, in the
real-analytic category, it is not necessarily true that a composite of blowings-up is also
a blowing-up. For example, let �0 WZ1!R

4 be the blowing-up of the origin, and let
H denote a projective hyperplane in the exceptional divisor of �0. Let �H WZ2!Z1

denote the blowing-up with center H . Consider an affine coordinate chart U1 of Z1
with coordinates .x; y;Z;W /, where ¹W D 0º is the exceptional divisor of �0 and
H D ¹Z DW D 0º. Let U2 denote the affine chart of Z2 over U1 with coordinates
.x; y; z;w/ such that �H is given on U2 by .x; y;Z;W /D .x; y; zw;w/. Let �C W
V !Z2 denote the blowing-up with center

C D
®
.x; y; z;w/ 2 U2 WwD 0;x

2C y2C z2 D 1;y D g.x/
¯
;

and set ' WD �0 ı �H ı �C .
We claim that ' is not the blowing-up of an ideal. Suppose that ' is the blowing-

up of an ideal I �OR4 . Then  D �H ı �C is the blowing-up of ��0 I; therefore, the
set AD ¹b 2 Z1 W dim �1.b/ � 2º lies in a real-analytic curve (since, for example,
 admits a proper complexification). But this is impossible, because A contains a
nonempty open subset of ¹Z DW D 0;y D g.x/º.
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[8] A. PARUSIŃSKI, Subanalytic functions, Trans. Amer. Math. Soc. 344, no. 2 (1994),
583–595. MR 1160156. DOI 10.2307/2154496. (3118)

Bierstone

University of Toronto, Department of Mathematics, Toronto, Ontario, Canada;

bierston@math.toronto.edu

Parusiński
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