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MULTIPARAMETER PERTURBATION THEORY OF MATRICES

AND LINEAR OPERATORS

ADAM PARUSIŃSKI AND GUILLAUME ROND

Abstract. We show that a normal matrix A with coefficients in C[[X]],
X = (X1, . . . , Xn), can be diagonalized, provided the discriminant ΔA of its
characteristic polynomial is a monomial times a unit. The proof is an adapta-
tion of our proof of the Abhyankar-Jung Theorem. As a corollary we obtain
the singular value decomposition for an arbitrary matrix A with coefficient in
C[[X]] under a similar assumption on ΔAA∗ and ΔA∗A.

We also show real versions of these results, i.e., for coefficients in R[[X]],
and deduce several results on multiparameter perturbation theory for normal
matrices with real analytic, quasi-analytic, or Nash coefficients.

1. Introduction

The classical problem of perturbation theory of linear operators can be stated as
follows. Given a family of linear operators or matrices depending on parameters,
with what regularity can we parameterize the eigenvalues and the eigenvectors?

This problem was first considered for families depending on one parameter. For
the analytic dependence the classical results are due to Rellich [21–23] and Kato
[13]. For instance, by [13] the eigenvalues, eigenprojections, and eigennilpotents of a
holomorphic curve of (n×n)-matrices are holomorphic in a complement of a discrete
set with at most algebraic singularities. By [22] the eigenvalues and eigenvectors of
a real analytic curve of Hermitian matrices admit real analytic parametrization.

More recently, the multiparameter case has been considered, first by Kurdyka
and Paunescu [14] for real symmetric and antisymmetric matrices depending an-
alytically on real parameters, and then for normal matrices by Rainer [18], [19]
depending again on real parameters. The main results of [14], [18], and [19] state
that the eigenvalues and eigenspaces depend analytically on the parameters after
blowings-up in the parameter space. Note that for normal matrices this generalizes
also the classical one-parameter case (there are no nontrivial blowings-up of one
dimensional nonsingular space). For a review of both classical and more recent
results see [18] and [20].

In this paper we show, in Theorem 2.5, that the families of normal matrices
depending on a formal multiparameter can be diagonalized formally under a simple
assumption that the discriminant of its characteristic polynomial (or the square-free
form of the characteristic polynomial in general) equals a monomial times a unit.

Received by the editors June 18, 2019, and, in revised form, September 24, 2019.
2010 Mathematics Subject Classification. Primary 47A55; Secondary 13F25, 14P20, 15A18,

26E10.
The authors’ research was supported in part by ANR project LISA (ANR-17-CE40-0023-03).

c©2020 American Mathematical Society

2933

https://www.ams.org/tran/
https://www.ams.org/tran/
https://doi.org/10.1090/tran/8061


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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Of course, by the resolution of singularities, one can make the discriminant normal
crossings by blowings-up and thus recover easily the results of [14], [18], and [19];
see Section 5.

As a simple corollary of the main result we obtain in Section 3 similar results for
the singular value decomposition of families of arbitrary, not necessarily normal,
matrices. Again, by the resolution of singularities, we can make the discriminant of
the family normal crossings by blowings-up. This way we obtain a global version of
the singular value decomposition theorem after blowings-up in both the real case
and the complex one.

Our choice of the formal dependence on parameters is caused by the method of
proof that is purely algebraic, but it implies analogous results for many Henselian
subrings of the ring of formal power series (see Section 4), in particular, for the
analytic, quasi-analytic, and algebraic power series (i.e., Nash function germs).
The assumption that the rings are Henselian cannot be dropped. If we want to
study the eigenvalues in terms of the coefficients of the matrix or its characteristic
polynomial, we need the Implicit Function Theorem.

All these results are of a local nature. In the last section we give a simple example
of a global statement of a family of matrices defined on an open set U that can be
diagonalized globally on U . This is true under the assumption that the discriminant
of its characteristic polynomial is locally normal crossings at every point of U and
that U is simply connected (see Theorem 6.1). We do not know a fully satisfactory
general global theorem and we would like to state it as an open problem.

Another novelty of this paper is the method of proof. Recall that in [14] the au-
thors first reparameterize (by blowing up) the parameter space in order to get
the eigenvalues real analytic. Then they solve linear equations describing the
eigenspaces corresponding to irreducible factors of the characteristic polynomial.
This requires one to resolve the ideal defined by all the minors of the associated
matrices. A similar approach is adapted in [18] and [19]. First the eigenvalues
are made analytic by blowings-up, and then further blowings-up are necessary, for
instance to make the coefficients of matrices and their differences normal crossing.

Our approach is different. We adapt the algorithm of the proof of the Abhyankar-
Jung Theorem of [17] and use a version of Hensel’s lemma to handle directly the
matrices (and hence implicitly the eigenvalues and eigenspaces at the same time).
This simplifies the proof and avoids unnecessary blowings-up. We note that we
cannot deduce our result directly from the Abhyankar-Jung Theorem. Indeed, even
under the assumption that the discriminant of the characteristic polynomial is a
monomial times a unit, the Abhyankar-Jung Theorem implies only that its roots,
that is, the eigenvalues of the matrix, are fractional power series of the parameters,
that is, the power series with positive rational exponents.

In a recent paper, Grandjean [9] shows results similar to these of [14], [18],
and [19] but by a different approach. Similarly to our strategy, he does not treat
the eigenvalues first. Otherwise his approach is quite different. He considers the
eigenspaces defined on the complement of the discriminant locus, denoted DA, and
constructs an ideal sheaf FA with the following property. If FA is principal, then
the eigenspaces extend to DA. The construction of the ideal sheaf FA is quite
involved; we refer the reader to [9] for details.

1.1. Notation and conventions. For a commutative ring R and positive integers
p and q, we denote by Matp,q(R) the set of matrices with entries in R with p rows
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and q columns. When p and q are equal to a same integer d, we denote this set by
Matd(R).

Let X = (X1, . . . , Xn) represent an n-tuple of indeterminates. These indetermi-
nates will be replaced by real variables in some cases. We denote by K[X] (resp.,
K[[X]], resp., K{X}) the ring of polynomials (resp., formal power series, resp.,
convergent power series) in X1, . . . , Xn.

We say that f ∈ C[[X]] is a monomial times unit if f = Xαa(X) = Xα1
1 · · ·

Xαn
n a(X) with a(0) �= 0.
For a matrix A = A(X) ∈ Matd(C[[X]]), we denote by A∗ its adjoint; i.e., if the

entries of A(X) form the series

ai,j(X) =
∑
α∈Nn

ai,j,αX
α,

then A∗(X) is the matrix whose entries are the bi,j(X) defined by

bi,j(X) = aj,i(X) =
∑
α∈Nn

aj,i,αX
α.

A matrix A ∈ Matd(C[[X]]) is called normal if AA∗ = A∗A and unitary if AA∗ =
A∗A = Id. The set of unitary matrices is denoted by Ud(C[[X]]).

For a matrix A ∈ Matd(C[[X]]), we denote by PA(Z) = Zd + c1(X)Zd−1 +
· · · + cd(X) its characteristic polynomial and by ΔA ∈ C[[X]] the first nonzero
generalized discriminant of PA(Z). Let us recall that ΔA equals∑

r1<···<rl

∏
i<j;i,j∈{r1,...,rl}

(ξi − ξj)
2,

where the ξi are the roots of PA(Z) in an algebraic closure of C((X)) and l is the
number of such distinct roots. Since ΔA is symmetric in the ξi it is a polynomial
in the ck. Let us notice that

(1) ΔA = μ1 · · ·μlΔ
′
A,

where the μi are the multiplicities of the distinct roots of PA and Δ′
A is the discrim-

inant of the reduced (i.e., square-free) form (PA)red of its characteristic polynomial.
One can look at [27, Appendix IV] or [16, Appendix B] for more properties of these
generalized discriminants (or subdiscriminants) and at [25] or [1] for an effective
way of computing them.

2. Reduction of normal matrices

2.1. A version of Hensel’s lemma for normal matrices. We begin by stating
and proving the main technical tool for the reduction of normal matrices. This result
is a strengthened version of Cohn’s version of Hensel’s lemma (see [6, Lemma 1]).

Lemma 2.1. Let A(X) ∈ Matd(C[[X]]) be a normal matrix. Assume that A(0) =(
Bo

1 0
0 Bo

2

)
, with Bo

i ∈ Matdi
(C), d = d1 + d2, and such that the characteristic

polynomials of Bo
1 and Bo

2 are coprime.
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Then there is a unitary matrix U ∈ Ud(C[[X]]), U(0) = Id, such that

U−1AU =

(
B1 0
0 B2

)
,(2)

and Bi(0) = Bo
i , i = 1, 2.

Proof. Consider

Ψ = (Ψ1,Ψ2,Ψ3,Ψ4) :

Ud(C[[X]])×Matd1
(C[[X]])×Matd2

(C[[X]])×Matd2,d1
(C[[X]])→Matd(C[[X]]),

defined by

(U, Y1, Y2, Y3) → U

(
Bo

1 + Y1 0
Y3 Bo

2 + Y2

)
U∗ =

(
T1 T4

T3 T2

)
(3)

where Ψi(U, Y1, Y2, Y3) = Ti, i = 1, 2, 3, 4.
Recall that a tangent vector at Id to Ud(C[[X]]) is a matrix u that is skew-

hermitian u = −u∗. We shall write it as

u =

(
z1 x
−x∗ z2

)
.(4)

The differential of Ψ at (Id, 0, 0, 0) on the vector (u,y1,y2,y3) is given by

dΨi(u,y1,y2,y3) = yi + ziB
o
i −Bo

i zi, i = 1, 2,(5)

dΨ3(u,y1,y2,y3) = y3 − x∗Bo
1 +Bo

2x
∗,(6)

dΨ4(u,y1,y2,y3) = xBo
2 −Bo

1x.(7)

This differential is a linear epimorphism thanks to Lemma 2.4, which we state and
prove below, due to Cohn [6]; see also [26]. Therefore, we may apply the Implicit
Function Theorem (IFT).

More precisely, we apply the IFT to the map of finitely dimensional manifolds

Ψ|M : M := Ud(C)×Matd1
(C)×Matd2

(C)×Matd2,d1
(C) → Matd(C),

which by Lemma 2.4 is a submersion at (Id, 0, 0, 0). Note that the unitary group
Ud(C) is not a complex manifold but only a nonsingular real algebraic variety.
Therefore, it is convenient to work in the Nash real algebraic set-up. By the Nash

IFT (see e.g. Corollary 2.9.8 of [5]) there exist open sets U ⊂ M , V ⊂ R2d2

=
Matd(C), with (Id, 0, 0, 0) ∈ U and Ψ(Id, 0, 0, 0) = A(0) ∈ V , and local Nash
diffeomorphisms

θ1 : U ′ ⊂ R
N −→ U , θ1(0) = (Id, 0, 0, 0),

θ2 : V −→ V ′ ⊂ R
2d2

, θ2(A(0)) = 0

such that θ2 ◦ Ψ|M ◦ θ1(t1, . . . , tN ) = (t1, . . . , t2d2). Here N is the dimension of M

as a real manifold, i.e., N = d2+2d21+2d22+2d1d2. The condition that θi are Nash
diffeomorphisms means that their components are given by algebraic power series
with real coefficients.

Now we have that A(X) = A(0) + A(X) where A(0) = 0. Therefore θ2(A(X))
is well defined and

θ2(A(0) +A(X)) = (t1(X), . . . , t2d2(X)),
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where the ti(X) are real (formal) power series vanishing at 0. Let us choose freely
real (formal) power series t2d2+1(X), . . . , tN (X) vanishing at 0. We set

(U(X), Y1(X), Y2(X), Y3(X)) = θ1(t1(X), . . . , tN (X)).

This is well defined since the ti(X) are power series vanishing at 0. Then we have

Ψ(U(X), Y1(X), Y2(X), Y3(X)) = A(X)

and

(U(0), Y1(0), Y2(0), Y3(0)) = (Id, 0, 0, 0).

This means that there are matricesB1 = Bo
1+Y1(X), B2 = Bo

2+Y2(X), B3 = Y3(X)
such that

U−1AU =

(
B1 0
B3 B2

)
.(8)

The matrix on the right-hand side is normal and block triangular. Therefore it is
block diagonal. This ends the proof of the lemma. �

Remark 2.2. Lemma 2.1 remains valid if we replace C[[X]] by any subring contain-
ing the ring of algebraic power series and stable under composition with algebraic
power series.

Remark 2.3. The matrix U is not unique since N > 2d2.

Lemma 2.4 ([6, Lemma 2.3], [26]). Let R be a unitary commutative ring, A ∈
Matp(R), B ∈ Matq(R), C ∈ Matp,q(R), such that PA and PB are coprime; i.e.,
there exist polynomials U and V such that UPA+V PB = 1. Then there is a matrix
M ∈ Matp,q(R) such that AM −MB = C.

Proof. By assumption there exist polynomials U and V such that UPA+V PB = 1.
Set Q = V PB. Then Q(A) = Ip and Q(B) = 0. Let us write Q(T ) =

∑r
i=0 qiT

i

and set M =
∑r

i=1 qi
∑i−1

k=0A
kCBi−k−1. Then

AM −MB = A

r∑
i=1

qi

i−1∑
k=0

AkCBi−k−1 −
r∑

i=1

qi

i−1∑
k=0

AkCBi−k−1B

=

r∑
i=0

qiA
iC − C

r∑
i=0

qiB
i = Q(A)C − CQ(B) = C.

�

2.2. Complex normal matrices.

Theorem 2.5. Let A(X) = (ai,j)i,j=1,...,d ∈ Matd(C[[X]]) be normal and suppose
that ΔA = Xα1

1 · · ·Xαn
n g(X) with g(0) �= 0. Then there is a unitary matrix U ∈

Ud(C[[X]]) such that

U(X)−1A(X)U(X) = D(X),

where D(X) is a diagonal matrix with entries in C[[X]].
If, moreover, the last nonzero coefficient of PA is a monomial times a unit,

then the nonzero entries of D(X) are also of the form of a monomial times a unit
Xαa(X), and their exponents α ∈ Nn are well ordered.
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Proof. We prove Theorem 2.5 by induction on d. Thus we suppose that the theorem
holds for matrices of order less than d. Our proof follows closely the proof of the
Abhyankar-Jung Theorem given in [17], which is algorithmic and based on Theorem
1.1 of [17]. The analog of this theorem for our set-up is Proposition 2.7. For its
proof we will need the following easy generalization of Theorem 1.1 of [17] to the
case of matrices with a not necessarily reduced characteristic polynomial.

Proposition 2.6. Let P (Z) = Zd + c2(X)Zd−2 + · · · + cd(X) ∈ C[[X]][Z] and
suppose that there is ci �≡ 0. If the discriminant Δ of (P )red equals a monomial

times a unit, then the ideal (c
d!/i
i (X))i=2,...,d ⊂ C[[X]] is principal and generated by

a monomial.

Proof. By the Abhyankar-Jung Theorem (see e.g. [17]), there is q ∈ Nn, qi ≥ 1 for
all i, such that the roots of Pred are in C[[X1/q]] and moreover their differences are
fractional monomials. The set of these roots (without multiplicities) coincides with
the set of roots of P . Then we argue as in the proof of Proposition 4.1 of [17]. �

We note that the exponents make the c
d!/i
i (X) for i = 2, . . . , d homogeneous of

the same degree as functions of the roots of P . In the case of the characteristic
polynomial of a matrix, these coefficients will become homogeneous of the same
degree in terms of the entries of the matrix.

Proposition 2.6 implies easily its analog for normal matrices.

Proposition 2.7. Suppose that the assumptions of Theorem 2.5 are satisfied and
that, moreover, A is nonzero and Tr(A(X)) = 0. Then the ideal (aij)i,j=1,...,d ⊂
C[[X]] is principal and generated by a monomial.

Proof. We denote by PA(Z) = Zd + c2(X)Zd−2 + · · · + cd(X) ∈ C[[X]][Z] the
characteristic polynomial of A(X). Since Tr(A(X)) = 0 we have that c1(X) = 0.
Since A(X) is nonzero, one of the ci is nonzero. Therefore, by Proposition 2.6 and

(1), the ideal (c
d!/i
i (X))i=2,...,d is principal and generated by a monomial. This is

still the case if we divide A by the maximal monomial that divides all entries of
A. Thus we may assume that no monomial (that is not constant) divides A. If
A(0) = 0, then there is j such that all the coefficients ci(X) of PA are divisible by
Xj . Therefore, for normal matrices, by Lemma 2.8, A|Xj=0 = 0, which means that
all entries of A are divisible by Xj , a contradiction. Thus A(0) �= 0, which ends the
proof. �
Lemma 2.8. Let A(X) ∈ Matd(C[[X]]) be normal. If every coefficient of PA is
zero, ci(X) = 0, i = 1, . . . , d, then A = 0.

Proof. By induction on the number of variables n. The case n = 0 is obvious since
the matrix A(0) is normal.

Suppose ci(X) = 0 for i = 1, . . . , d. Consider A1 = A|X1=0. By the inductive
assumption A1 ≡ 0; that is, every entry of A is divisible by X1. If A �= 0, then we
divide it by the maximal power Xm

1 that divides all coefficients of A. The resulting

matrix, which we denote by Ã, is normal, and the coefficients of its characteristic
polynomial PÃ are c̃i(X) = X−im

1 ci(X) = 0. This is impossible because then

PÃ1
= 0 and Ã1 �= 0, which contradicts the inductive assumption. �

Now we can finish the proof of Theorem 2.5. We suppose that A is nonzero
and make a sequence of reductions simplifying the form of A(X). First we note
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that we may assume Tr(A(X)) = 0. Indeed, we may replace A(X) by Â(X) =
A− Tr(A(X))Id. Then we may apply Proposition 2.7 and hence, after dividing A
by the maximal monomial that divides all entries of A, assume that A(0) �= 0.

Thus suppose A(0) �= 0 and Tr(A(X)) = 0. Denote by P o(Z) the characteristic
polynomial of A(0). Since A(0) is normal, nonzero, of trace zero, it has at least
two distinct eigenvalues. Therefore, after a unitary change of coordinates, we may
assume that A(0) is block diagonal,

A(0) =

(
Bo

1 0
0 Bo

2

)
,(9)

with Bo
i ∈ Matdi

(C), d = d1 + d2, and with the resultant of the characteristic
polynomials of Bo

1 and Bo
2 nonzero. By Lemma 2.1 there is a unitary matrix

U ∈ Ud(C[[X]]), U(0) = Id, such that

U−1AU =

(
B1 0
0 B2

)
,(10)

and Bi(0) = Bo
i , i = 1, 2.

Note that the matrices Bi satisfying the formula (10) have to be normal since A
is normal. Moreover, PU−1AU = PA = PB1

PB2
. This shows that the discriminants

of (PB1
)red and (PB2

)red divide the ΔA, and hence we may apply to B1 and B2 the
inductive assumption.

For the last claim we note that the extra assumption implies that each nonzero
eigenvalue of A is a monomial times a unit. Moreover the assumption on the dis-
criminant implies the same for all nonzero differences of the eigenvalues. Therefore
by [2, Lemma 4.7], the exponents of these monomials are well ordered. The proof
of Theorem 2.5 is now complete. �
2.3. Real normal matrices. This is the real counterpart of Theorem 2.5.

Theorem 2.9. Let A(X) ∈ Matd(R[[X]]) be normal and suppose that ΔA =
Xα1

1 · · ·Xαn
n g(X) with g(0) �= 0. Then there exists an orthogonal matrix O ∈

Matd(R[[X]]) such that

O(X)−1 ·A(X) ·O(X) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1(X)
. . . 0

Cs(X)
λ2s+1(X)

0
. . .

λd(X)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(11)

where s ≥ 0, λ2s+1(X), . . . , λd(X) ∈ R[[X]] and the Ci(X) are (2× 2)-matrices of
the form [

a(X) b(X)
−b(X) a(X)

]
(12)

for some a(X), b(X) ∈ R[[X]]. If A(X) is symmetric we may assume that s = 0;
i.e., O(X)−1 ·A(X) ·O(X) is diagonal.

If, moreover, the last nonzero coefficient of PA is a monomial times a unit, then
the nonzero entries of O(X)−1 ·A(X) ·O(X) are of the form of a monomial times
a unit Xαa(X), and their exponents α ∈ Nn are well ordered.
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Proof. This corollary follows from Theorem 2.5 by a classical argument.
By Theorem 2.5 there exists an orthonormal basis of eigenvectors of A(X) in

C[[X]]d such that the corresponding eigenvalues are

λ1(X), λ1(X), . . . , λs(X), λs(X), λ2s+1(X), . . . , λd(X),

where λi(X) ∈ C[[X]]\R[[X]] for i ≤ s, λi(X) ∈ R[[X]] for i ≥ 2s + 1, and a(X)
denotes the power series whose coefficients are the conjugates of a(X).

If vi(X) ∈ C[[X]]d is an eigenvector associated to λi(X) /∈ R[[X]], then vi(X) is
an eigenvector associated to λi(X). So we can assume that A(X) has an orthonor-
mal basis of eigenvectors of the form v1, v1, v2, v2, . . . , vs, vs, v2s+1, . . . , vd where
v2s+1, . . . , vd ∈ R[[X]]d. Now let us define

u1 =
v1 + v1√

2
, u2 = i

v1 − v1√
2

, . . . , u2s−1 =
vs + vs√

2
, u2s = i

vs − vs√
2

,

and

u2s+1 = v2s+1, . . . , ud = vd.

The vectors ui are real and form an orthonormal basis. We have that

A(X)u2k−1 = A(X)
vk + vk√

2
=

1√
2
(λkvk + λkvk)

=
1√
2
(
1√
2
λk(u2k−1− iu2k)+

1√
2
λk(u2k−1+ iu2k)) =

λk + λk

2
u2k−1+ i

λk − λk

2
u2k

and

A(X)u2k = i
λk − λk

2
u2k−1 +

λk + λk

2
u2k.

Therefore in the basis u1, . . .ud the matrix has the form (11).
If A(X) is symmetric, then the matrix (11) is also symmetric, and hence the

matrices Ci(X) are symmetric. Therefore we may assume that s = 0. �

3. Singular value decomposition

Let A ∈ Matm,d(C). It is well known (cf. [8]) that

A = UDV −1,(13)

for some unitary matrices V ∈ Um(C), U ∈ Ud(C), and a (rectangular) diagonal
matrix D with real nonnegative coefficients. The diagonal elements of D are the
nonnegative square roots of the eigenvalues of A∗A; they are called singular values
of A. If A is real, then V and U can be chosen orthogonal. The decomposition (13)
is called the singular value decomposition (SVD) of A.

Let A ∈ Matm,d(C[[X]]). Note that

(14) if A∗Au = λu, then (AA∗)Au = λAu.

Similarly, if AA∗v = λv, then (A∗A)A∗v = λA∗v. Therefore the matrices A∗A and
AA∗ over the field of formal power series C((X)) have the same nonzero eigenvalues
with the same multiplicities. In what follows we suppose m ≤ d. Then PA∗A =
Zd−mPAA∗ .



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

PERTURBATION THEORY OF MATRICES AND LINEAR OPERATORS 2941

Theorem 3.1. Let A = A(X) ∈ Matm,d(C[[X]]), m ≤ d, and suppose that
ΔA∗A = Xα1

1 · · ·Xαn
n g(X) with g(0) �= 0. Then there are unitary matrices V ∈

Um(C[[X]]), U ∈ Ud(C[[X]]) such that

D = V (X)−1A(X)U(X)

is (rectangular) diagonal.
If A = A(X) ∈ Matm,d(R[[X]]), then U and V can be chosen real (that is,

orthogonal) so that V (X)−1A(X)U(X) is block diagonal as in (11).

Proof. We apply Theorem 2.5 to A∗A and AA∗. Thus there are U1 ∈ Ud(C[[X]]),
U2 ∈ Um(C[[X]]) such that D1 = U−1

1 A∗AU1 and D2 = U−1
2 AA∗U2 are diagonal.

If A(X) is real, then A∗A and AA∗ are symmetric, so we may assume by Theorem
2.9 that U1 and U2 are orthogonal.

Set Â = U−1
2 AU1. Then

Â∗Â = (U−1
2 AU1)

∗U−1
2 AU1 = U−1

1 A∗AU1 = D1,

ÂÂ∗ = U−1
2 AU1(U

−1
2 AU1)

∗ = U−1
2 AA∗U2 = D2.

Thus by replacing A by Â we may assume that both A∗A and AA∗ are diagonal
and we denote them by D1 and D2, respectively.

There is a one-to-one correspondence between the nonzero entries of D1 and D2,
that is, the eigenvalues of A∗A and AA∗. Let us order these eigenvalues (arbitrarily)

λ1(X), . . . , λr(X).(15)

By permuting the canonical bases of C[[X]]m and C[[X]]d we may assume that the
entries on the diagonals of A∗A and AA∗ appear in the order of (15) (with the
multiplicities), completed by zeros.

Since A sends the eigenspace of λ of A∗A to the eigenspace of λ of AA∗, A is block
(rectangular) diagonal in these new bases, with square matrices Aλ on the diagonal
corresponding to each λ �= 0. By symmetry A∗ is also block diagonal in these new
bases with the square matrices A∗

λ for each λ �= 0. Since A∗
λAλ = AλA

∗
λ = λI, the

matrix Aλ is normal. Thus Theorem 2.5 shows that there exist unitary matrices

U ′ and V ′ such that V ′−1
AU ′ is diagonal. Similarly, by Theorem 2.9 we conclude

the real case. �

Example 3.2. Consider square matrices of order 1, that is, d = m = 1, and
identify such a matrix with its entry a(X) ∈ C[[X]]. Then the assumption on the
discriminant is always satisfied. Let us write

a(X) = a1(X) + ia2(X), a1(X), a2(X) ∈ R[[X]].

A unitary 1×1-matrix corresponds to a series u(X) = u1(X)+iu2(X), with u1(X),
u2(X) ∈ R[[X]] such that u2

1 + u2
2 = 1. It is not possible in general to find unitary

u and v such that v(X)a(X)u(X) ∈ R[[X]], and hence in Theorem 3.1 we cannot
assume that the entries of D are real power series. Indeed, since all matrices of
order 1 commute it is sufficient to consider the condition a(X)u(X) ∈ R[[X]] that
is equivalent to

a1u2 + a2u1 = 0.

But if gcd(a1, a2) = 1, for instance a1(X) = X1, a2(X) = X2, then X1|u1 and
X2|u2, and hence we see that u(0) = 0, which contradicts u2

1 + u2
2 = 1.
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A similar example in the real case, with A being a block of the form (12) and
a(X) = X1, b(X) = X2, shows that we cannot require D to be diagonal in the real
case. Indeed, in this case the (double) eigenvalue of A∗A is a2(X) + b2(X) and it
is not the square of an element of R[[X]].

Theorem 3.3. Suppose in addition to the assumption of Theorem 3.1 that the
last nonzero coefficient of the characteristic polynomial of ΔA∗A is of the form

Xβ1

1 · · ·Xβn
n h(X) with h(0) �= 0. Then, in the conclusion of Theorem 3.1, both in

the real and the complex case, we may require that V (X)−1A(X)U(X) be (rectan-
gular) diagonal with the entries on the diagonal in R[[X]].

Moreover the nonzero entries of V (X)−1A(X)U(X) are of the form of a mono-
mial times a unit Xαa(X) (we may additionally require that a(0) > 0), and their
exponents α ∈ Nn are well ordered.

Proof. By the extra assumption each nonzero eigenvalue of A∗A is a monomial
times a unit. The assumption on the discriminant implies the same for all nonzero
differences of the eigenvalues. Therefore by [2, Lemma 4.7], the exponents of these
monomials are well ordered.

In the complex case by Theorem 3.1 we may assume A is diagonal. Thus it
suffices to consider A of order 1 with the entry a(X). Write a(X) = a1(X)+ia2(X)
with ai(X) ∈ R[[X]]. By assumption, |a|2 = λ = Xβh(X) , h(0) �= 0, where λ is
an eigenvalue of A∗A. If a21(X) + a22(X) is a monomial times a unit, then the ideal
(a1(X), a2(X)) is generated by a monomial, (a1(X), a2(X)) = Xγ(ã1(X), ã2(X)),
2γ = β, and ã21(0) + ã22(0) �= 0. Thus

a(X)u(X) = Xγ(ã21 + ã22)
1/2

with u(X) = ã1−iã2

(ã2
1+ã2

2)
1/2 .

Let us now show the real case. It suffices to consider A of the form given
by (12). By assumption, a(X)2 + b(X)2 is a monomial times a unit, and this is
possible only if the ideal (a(X), b(X)) is generated by a monomial, (a(X), b(X)) =
Xγ(a0(X), b0(X)) and a20(0) + b0(0)

2 �= 0. Then[
a b
−b a

]
1

(a20 + b20)
1/2

[
a0 −b0
b0 a0

]
= Xγ

[
(a20 + b20)

1/2 0
0 (a20 + b20)

1/2

]
.

�

4. The case of a Henselian local ring

Let K=R or C. For every integer n∈N, we consider a subring of K[[X1, . . . , Xn]],
denoted by K{{X1, . . . , Xn}}. For subrings, we consider the following properties:

(P1) K{{X1, . . . , Xn}} contains K[X1, . . . , Xn],

(P2)
K{{X1, . . . , Xn}} is a Henselian local ring with maximal ideal generated by the Xi,

(P3) K{{X1, . . . , Xn}}∩ (Xi)K[[X1, . . . , Xn]]=(Xi)K{{X}} for every i = 1, . . . , n.

Let us stress the fact that a ring K{{X}} satisfying (P1), (P2), (P3) is not nec-
essarily Noetherian.

The ring of algebraic K〈X〉 or convergent power series K{X} over K satisfies
(P1), (P2), (P3). In fact any ring satisfying (P1), (P2), (P3) has to contain the
ring of algebraic power series. The ring of germs of K-valued functions defined in
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a given quasi-analytic class (i.e., satisfying (3.1) - (3.6) of [4]) also satisfies (P1),
(P2), (P3).

Moreover we have the following lemma.

Lemma 4.1. Let K{{X}} be a ring satisfying (P1), (P2), (P3). Let f1, . . . , fp ∈
K{{X}} be vanishing at 0, and let g(Y ) ∈ K〈Y1, . . . , Yp〉. Then

g(f1, . . . , fp) ∈ K{{X}}.

Proof. Since K〈Y 〉 is the Henselization of K[Y ], we can write

g(Y ) = q0(Y ) +
m∑
i=1

qi(Y )gi(Y ),

where the qi are polynomials and the gi are series of K〈Y 〉, gi(0) = 0, satisfying the
Implicit Function Theorem. That is, for every i = 1, . . . ,m, there is a polynomial
Pi(Y, T ) ∈ K[Y, T ] such that

Pi(0, 0) = 0,
∂Pi

∂T
(0, 0) �= 0,

and Pi(Y, gi(Y )) = 0. Let us set f = (f1, . . . , fp) and

Fi(X,T ) = Pi(f(X), T ) ∈ K{{X}}[T ].
We have

Fi(0, 0) = 0,
∂Fi

∂T
(0, 0) �= 0.

Thus Fi = 0 has a unique solution in K[[X]] (and even in K{{X}}) vanishing at 0.
But gi(f1, . . . , fp) is clearly this solution; hence gi(f1, . . . , fp) ∈ K{{X}}. Therefore
g(f1, . . . , fp) ∈ K{{X}}. �

We remark that the only tools we use for the proofs of Theorems 2.5, 2.9, and 3.1
are the fact that the ring of formal power series is stable by division by coordinates,
the Implicit Function Theorem (via Lemma 2.1, which is equivalent to the Henselian
property), and the fact that the ring of formal power series contains the ring of
algebraic power series and is stable under composition with algebraic power series
(via Lemma 2.1; see Remark 2.2). Therefore, we obtain the following.

Theorem 4.2. Theorems 2.5 (for K = C), 2.9 (for K = R), and 3.1 remain valid
if we replace K[[X]] by a ring K{{X}} satisfying (P1), (P2), (P3).

5. Rectilinearization of the discriminant

Often the discriminant ΔA does not satisfy the assumption of Theorem 2.5;
that is, it is not a monomial times a unit. Then, in general, it is not possible to
describe the eigenvalues and eigenvectors of A as (even fractional) power series of
X. But this property can be recovered by making the discriminant ΔA normal
crossings by means of blowings-up. This involves a change of the indeterminates
X1, . . . , Xn understood now as variables or local coordinates. Note that in the
previous sections all the algebraic operations concerned the matrices themselves
and not the indeterminates X1, . . . , Xn. To stress this difference we will say that
we work now in the geometric case.

In particular, in the complex case, such a change of local coordinates may affect
the other assumption of Theorem 2.5, A being normal. Consider, for instance, the
following simple example.
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Example 5.1 ([14, Example 6.1]). The eigenvalues of the real symmetric matrix

A =

[
X2

1 X1X2

X1X2 X2
2

]
are 0 and X2

1 +X2
2 , but the eigenvectors of A cannot be chosen as power series in

X1, X2. The discriminant ΔA = (X2
1 + X2

2 )
2 does not satisfy the assumption of

Theorem 2.5.
Nevertheless, after a complex change of variables Y1 = X1+ iX2, Y2 = X1− iX2,

the discriminant ΔA becomes a monomial Y 2
1 Y

2
2 . But in these new variables the

matrix A is no longer normal, since this change of variables does not commute with
the complex conjugation.

The above phenomenon does not appear if the change of local coordinates is
real. Therefore, in the normal case we need to work in the real geometric case. We
begin with this case.

Let M be a real manifold belonging to one of the following categories: real
analytic, real Nash, or defined in a given quasi-analytic class. In general, the
Nash functions are (real or complex) analytic functions satisfying locally algebraic
equations; see e.g [5] for the real case. Thus f : (Kn, 0) → K is the germ of a
Nash function if and only if its Taylor series is an algebraic power series. By a
quasi-analytic class we mean a class of germs of functions satisfying (3.1) - (3.6)
of [4].

We denote by OM the sheaf of complex-valued regular (in the given category)
functions on M . Let p ∈ M and let f ∈ OM,p. We say that f is normal crossings
at p if there is a system of local coordinates at p such that f is equal, in these
coordinates, to a monomial times a unit.

Theorem 5.2 (Compare Theorem 6.2 of [14]). Let M be a manifold defined in one
of the following categories:

(i) real analytic;
(ii) real Nash;
(iii) defined in a given quasi-analytic class (i.e., satisfying (3.1) - (3.6) of [4]).

Let A ∈ Matm,d(OM (M)) and let K be a compact subset of M . Then there exist
a neighborhood Ω of K and the composite of a finite sequence of blowings-up with
smooth centers π : U −→ Ω, such that locally on U :

(a) if A is a complex normal matrix, then A ◦ π satisfies the conclusion of
Theorem 2.5;

(b) if A is a real normal matrix, then A ◦π satisfies the conclusion of Theorem
2.9;

(c) if A is not necessarily a square matrix, then A ◦ π satisfies the conclusion
of Theorems 3.1 and 3.3.

Proof. It suffices to apply the resolution of singularities—[12] in the Nash case, [2]
in the analytic case, [4] in the quasianalytic case—to f := ΔA in the cases (a) and
(b) and to f := ΔA∗A in the case (c). Then f becomes normal crossing, that is,
locally a monomial times a unit, and we conclude by Theorem 4.2. �
Remark 5.3. In the analytic and Nash cases, if A ∈ Matm,d(OM ), then there exists
a globally defined, locally finite composition of blowings-up with nonsingular centers

π : M̃ → M such that (a), (b), and (c) are satisfied. Indeed this follows from [12]
and [3, Section 13].
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Now we consider the complex geometric case. Let M be a complex manifold
belonging either to the complex analytic category or the complex Nash category.
We denote by OM the sheaf of complex-valued regular (in the given category)
functions on M . Let p ∈ M and let f ∈ OM,p. As in the real case, we say that f
is normal crossings at p if there is a system of local complex coordinates at p such
that f is equal, in these coordinates, to a monomial times a unit.

Theorem 5.4. Let M be a manifold defined in the complex analytic or Nash cat-
egory. Let A ∈ Matm,d(OM ). Then there exists a locally finite composition of

blowings-up with nonsingular centers π : M̃ → M such that the following holds:

For every p ∈ M̃ , there are an open neighborhood of p, Up ⊂ M̃ , and invert-
ible matrices V ∈ Matm(O

˜M
(Up)), U ∈ Matd(O˜M

(Up)) such that V (A ◦ π)U is
rectangular diagonal.

Proof. Indeed in Theorem 3.1, the indeterminates X can be replaced by complex
variables (but here the matrices U(X) and V (X) are no longer unitary since the
Xi are complex variables). Therefore the proof of Theorem 5.4 is identical to the
proof of Theorem 5.2, cases (a) and (b). �

6. The global affine case

Let U be an open set of Rn. We denote by O(U) the ring of complex-valued
Nash functions on U , i.e., the ring of real-analytic functions on U that are algebraic
over C[X1, . . . , Xn]. For every point x ∈ U , we denote by O(U)x the localization of
O(U) at the maximal ideal defining x, i.e., the ideal mx := (X1−x1, . . . , Xn−xn).

The completion of O(U)x, denoted by Ôx, depends only on x and not on U and is
isomorphic to C[[X1, . . . , Xn]]. The theorem below can be compared to Theorem
6.2 of [14], but note that the latter one is only local.

Theorem 6.1. Let U be a nonempty simply connected semialgebraic open subset
of Rn. Let the matrix A ∈ Matd(O(U)) be normal and suppose that ΔA is normal
crossings on U . Then:

(i) the eigenvalues of A are in O(U). Let us denote by λ1, . . . , λs these distinct
eigenvalues;

(ii) there are Nash vector subbundles Mi of O(U)d such that

O(U)d = M1 ⊕ · · · ⊕Ms;

(iii) for every u ∈ Mi, Au = λiu.

Proof. We have that PA ∈ O(U)[Z]. For every x ∈ U and Q(Z) ∈ O(U)[Z] let us

denote by Qx the image of Q in Ôx[Z]. By assumption ΔAx is normal crossings for
every x ∈ U .

By Theorem 4.2, locally at every point of U , the eigenvalues of A can be rep-
resented by Nash functions, and therefore, since U is simply connected, they are
well-defined global functions of O(U). Let us denote these distinct eigenvalues by
λ1,. . . , λs for s ≤ d. We set

Mi = Ker(λiId −A) for i = 1, . . . , s,

where λiId − A is seen as a morphism defined on O(U)d. Thus the Mi are sub-
O(U)-modules of O(U)d.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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For an O(U)-module M , let us denote by Mx the O(U)x-module O(U)xM and

by M̂x the Ôx-module ÔxM . By flatness of O(U) −→ O(U)x and O(U)x −→
Ô(U)x, we have that Mix is the kernel of λiId − A seen as a morphism defined on

O(U)dx, and M̂ix is the kernel of λiId − A seen as a morphism defined on Ôd
x (see

[15, Theorem 7.6]).
By Theorem 2.5, for every x ∈ U , we have that

M̂1x ⊕ · · · ⊕ M̂sx = Ôd
x.

Now let us set

N = O(U)d/(M1 + · · ·+Ms).

By assumption for every x ∈ U , we have that N̂x = 0. Because O(U) is Noetherian
(see [24, Théorème 2.1]), O(U)x is Noetherian. So since N is finitely generated the

morphism Nx −→ N̂x is injective (see [15, Theorem 8.11]). Therefore Nx = 0 for
every x ∈ U .

Thus for every x ∈ U , Ann(N) �⊂ mx where

Ann(N) = {f ∈ O(U) | fN = 0}
is the annihilator ideal of N . Since the maximal ideals of O(U) are exactly the
ideals mx for x ∈ U (see [5, Lemma 8.6.3]), Ann(N) is not a proper ideal of O(U);
i.e., Ann(N) = O(U), and O(U)d = M1 ⊕ · · · ⊕Ms.

For every x, we have that Mix/mxMix is a C-vector space of dimension ni,x

that may depend on x (this vector space is included in the eigenspace of A(x)
corresponding to the eigenvalue λi(x); this inclusion may be strict since there may
be another λj such that λj(x) = λi(x)). So by Nakayama’s lemma every set of
ni,x elements of Mi whose images form a C-basis of Mix/mxMix is a minimal set
of generators of Mix. Therefore they make also a minimal set of generators of
the Frac(O(U))-vector space Ker(λiId −A), where λiId −A is seen as a morphism
defined on (Frac(O(U)))d. In particular ni,x is the dimension of the Frac(O(U))-
vector space Ker(λiId −A) and it is independent of x.

Now let u1, . . . , uni
∈ Mi be vectors whose images in Mix/mxMix form a basis

of Mix/mxMix. We can write

uj = (uj,1, . . . , uj,d)

where the uj,k are Nash functions on U . So there is an ni×ni minor δ of the matrix
(uj,k) that does not vanish at x, and hence there is a neighborhood V of x in U
such that for every x̃ ∈ V , δ(x̃) �= 0 and the images of u1, . . . , uni

form a basis of
Mix̃/mx̃Mix̃. We define the morphism of O(V )-modules

Φ : O(V )d −→ Mi(V )

by Φ(a1, . . . , ad) =
∑ni

j=1 ajuj . Since the uj generate the stalksMix for every x ∈ V ,

Φx : O(V )dx −→ Mix is an isomorphism for every x ∈ V , so Φ is an isomorphism
by [11, Proposition II.1.1]. Hence Mi is a Nash subbundle of dimension ni. �
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