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CHAPTER I

Semialgebraic sets

The class of semialgebraic subsets of Rn is the smallest collection of subsets containing all

{x ∈ Rn : P (x) > 0}, where P (x) = P (x1, ..., xn) is a polynomial, which is stable under finite

intersection, finite union and complement.

Thus X ⊂ Rn is semialgebraic if and only if there exist polynomials fij(x) and gij(x),

i = 1, ..., p, j = 1, ..., q, such that

X =

p⋃
i=1

{x ∈ Rn : fij(x) = 0, gij(x) > 0, j = 1, ..., q}.

A map f : A→ Rm, where A ⊂ Rn, is semialgebraic if the graph Γf of f is a semialgebraic

subset of Rn × Rm.

Example I.1. The semialgebraic subsets of R are precisely the finite unions of points and

intervals (that includes the empty set ∅).

Example I.2. The (double) cone X = {(x, y, z) ∈ R3;x2 + y2 = z2} ⊂ R3 is algebraic. Its

projection on the x, z-plane,

πx,z(X) = {(x, z) ∈ R2; ∃y x2 + y2 = z2} = {(x, z) ∈ R2; z2 − x2 ≥ 0}

is not algebraic but it is semialgebraic.

Example I.3. The (simple) cone X = {(x, y, z) ∈ R3;x2 + y2 = z2, z ≥ 0} ⊂ R3 is semialge-

braic but not algebraic (why ?). Find an algebraic subset Z of R4 such that X = π(Z), where

π : R4 → R3 is the standard projection on the first three coordinates.

1. Tarski-Seidenberg Theorem

Theorem I.4. (Tarski-Seidenberg Theorem, geometric form)

Let A be a semi-algebraic subset of Rn+1 and let π : Rn+1 → Rn denote the projection on the

first n coordinates. Then π(A) is a semialgebraic subset of Rn.

Theorem I.5. (Tarski-Seidenberg Theorem, quantifier elimination form)

Let Φ be a first order formula with parameters in R. Then there exists a quantifier-free first

order formula with parameters in R, Ψ, with the same free variables x1, x2, . . . , xn as Φ, such

that for every x ∈ Rn, Φ(x1, x2, . . . , xn) ⇐⇒ Ψ(x1, x2, . . . , xn).

A first order formula (of the language of ordered fields with parameters in R) S = (Sn))n∈N
is constructed by the following rules

(1) If P ∈ R[X1, . . . , Xn], then

P (x1, . . . , xn) = 0 and P (x1, . . . , xn) > 0

are first order formulas.
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(2) If Φ(x1, . . . , xn) and Ψ(x1, . . . , xn) are first-order formulas, then

Φ ∧Ψ, Φ ∨Ψ, Φ⇒ Ψ, ¬Φ

are first order formulas.

(3) If Φ(y, x) is a first order formula, where y = (y1, . . . , yp) and x = (x1, . . . , xn), then

∃x∈AΦ(y, x) and ∀x∈AΦ(y, x)

are first-order formulas.

1.1. Proof of Tarski-Seidenberg Theorem.

Theorem I.6. (First structure theorem) Let F = {P1(x, y), . . . , Ps(x, y)} be a finite family

of real polynomials in (x, y) ∈ Rn × R. There exists a finite partition of Rn into finitely many

connected semi-algebraic Ai, i = 1, . . . , k, such that for each i there are li (li could be zero)

continuous functions ξi,j : Ai → R satisfying

(i) For each x ∈ Ai
ξi,1(x) < · · · < ξi,li(x)

and ξi,j are all the roots of those polynomials of one variable y, y → Pr(x, y), that are

not identically equal to zero.

(ii) The graphs of ξi,j

(G) {(x, y) ∈ Ai × R; y = ξi,j(x)}, i = 1, . . . , li,

and the bands between two such graphs

(B) {(x, y) ∈ Ai × R; ξi,j(x) < y < ξi,j+1(x)} i = 0, 1, . . . , li,

where ξi,0 ≡ −∞, ξi,li+1 ≡ +∞, are connected and semi-algebraic.

(iii) For each r, the sign of Pr(x, y) is constant on the above defined sets of type G or B, in

other words the sign of Pr(x, y) depends only on the signs of y − ξi,j(x).

Let X ⊂ Rn × R be a semi-algebraic set defined by signs conditions in P1(x, y), . . . , Ps(x, y).

Then X is a finite union of some sets of type B and G. In particular, X has a finite number of

connected components and each component is semi-algebraic.

The first structure theorem implies that the projection π(X) of X by π : Rn+1 → Rn is a

semi-algebraic set, that is the Tarski-Seidenberg theorem. Indeed, X is a finite union of graphs

and bands and the projection of each of these is one of the sets Ai.

Exercise I.7. Suppose F1 ⊂ F . Show that if the theorem holds for F then it holds for F1.

Remark I.8. Suppose, moreover, that the family {P1(x, y), . . . , Ps(x, y)} is stable by ∂/∂y.

Then we may require additionally that

(iv) Each graph or band of (ii) is given by the sign conditions on {P1(x, y), . . . , Ps(x, y)},
that is it coincides with one of the sets

{(x, y) ∈ Ai × R; sgnPr(x, y) = ε(r), r = 1, . . . , s},

where ε(r) = 0 or −1 or 1.

(v) each ξi,j(x) is a simple root of one of Pr(x, ·).
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Given α = (α0, . . . , αm) ∈ Cm+1 and k ∈ N. We denote by Bm,k the set of these α for which

the polynomial

Pα(z) = α0z
m + α1z

m−1 + · · ·+ αm ∈ C[z]

has exactly k distinct complex roots. We denote B̃m,k = Bm,k ∩{α0 6= 0}.

Lemma I.9. The set B̃m,k(R) = B̃m,k ∩Rm+1 is semi-algebraic.

Lemma I.10. Let A ⊂ B̃m,k(R) = B̃m,k ∩Rm+1 be connected. Then, there exists r ≤ k and r

continuos functions ξi : A → R, i = 1, . . . , r, such that for each α ∈ A, ξ1(α) < · · · < ξr(α) are

all real roots of Pα.

Lemma I.11. Thom’s Lemma

Let F = {P1(y), . . . , Ps(y)} be a stable under differentiation finite family of one variable poly-

nomials. Let X ⊂ R be given by sign conditions on Pi(y)

X = {y ∈ R; sgnPr(y) = ε(r), r = 1, . . . , s},(1)

ε(r) = 0 or −1 or 1. Then X is one of the following

(1) X = ∅,
(2) X = a single point. (possible only if ∃Pi 6≡ 0 such that εi = 0),

(3) X is an open (non-empty) interval.

In particular X is connected.

Proof. Induction on the number of polynomials. We may suppose that maxP∈F degP =

degPs. Then F ′ = F\{Ps} is stable under differentiation and we apply the inductive assumption

to it. Let X be a set given by sign conditions on F ′. The cases (1) and (2) being trivial, we may

assume that X is a non-empty open interval I = (a, b). Since P ′s is of constant sign on I, the

polynomial Ps is either constant, or strictly monotone on I, and the lemma easily follows. �

Exercise I.12. For each sign condition sgnP (y) = ε define its closure sgnP (y) ∈ ε, where

1 = {0, 1}, −1 = {0,−1}, 0 = {0}. Show that if X 6= ∅ is given by (1) then

X = {y ∈ R; sgnPr(y) ∈ ε(r), r = 1, . . . , s}.(2)

If X = ∅ then {y ∈ R; sgnPr(y) ∈ ε(r), r = 1, . . . , s} can be either a point or empty.

Proof of Theorem I.6. Induction on the number of variables.

We suppose first that the family F = {P1(x, y), . . . , Ps(x, y)} is stable under ∂
∂y . Let

P (x, y) =
∏

Pi(x, y) = α0(x)ym + · · ·+ αm(x), α0 6≡ 0,(3)

where the product is taken over those Pi ∈ F that are not identically equal to zero. Consider α

as a polynomial map

α : Rn → Rm+1.

Fix k ∈ N such that α−1(B̃m,k(R)) is non-empty. By Lemma I.9, α−1(B̃m,k(R)) is semi-algebraic.

Let A be a connected component α−1(B̃m,k(R)). It is semi-algebraic by the inductive assumption

on dimension. By Lemma I.10, there exist continuous functions defined on A, ξ1 < · · · < ξk,

such that ξ1(x), . . . , ξk(x) are all real roots of one variable polynomial P (x, ·) = Pα(x).

It is clear that the graphs and bands over A are connected and hence for each r, sgnPr is

constant on the band sets. In order to have it constant on the graph sets we may, using again
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Lemma I.9, subdivide A so that the number of complex roots of each Pr(x, ·) is constant on A,

and use Lemma I.10. (Actually, this step is not necessary, see Exercise I.19 below).

We now show that the bands and the graphs are semi-algebraic (we need it for induction).

By Thom’s Lemma each band or graph coincides with a set of the form

{(x, y) ∈ A× R; sgnPr(x, y) = ε(r), r = 1, . . . , s},

that is semi-algebraic. In this way we have partitioned Rn \ α−10 (0).

It remains to consider the zero set of α0. It can be partitioned by a similar type of argument.

More precisely, for any r = 1, . . . , s, fix an integer dr ∈ {0, 1, . . . ,degy Pr,−∞}. Here degy
denotes the degree with repect to y. Denote d = (d1, . . . , ds) and consider the set

Ad = {x ∈ Rn; degPr(x, ·) = dr for each r = 1, . . . , s},

where, by convention, the degree is equal to −∞ means that the polynomial is identically equal

to zero. If Ad is non-empty, then we consider the family of polynomials Fd{Pd,i} where we remove

from the polynomials Pr of F all the terms with yk, k > dr, and proceed as before. Considering all

such non-empty Ad we partition the complement of A−∞ = {x ∈ Rn;Pi(x, ·) ≡ 0, i = 1, . . . , s}.
For x ∈ A−∞ the statement of theorem is obvious.

If F = {P1(x, y), . . . , Ps(x, y)} is not stable under ∂
∂y we complete it by adding all the partial

derivatives in y and use Exercise I.7. �

1.2. Subresultants and continuity of roots. In this section we sketch the proofs of

Lemma I.9 and Lemma I.10. The details are left to the reader as exercises. Lemma I.9 follows

from the existence of subresultants.

Proposition I.13. (Existence of subresultants, see e.g. [1])

Let

P (z) = a0z
p + a1z

p−1 + · · ·+ ap, Q(z) = a0z
q + a1z

p−1 + · · ·+ aq,

be one variable polynomials of C[z]. Then there exists polynomials

ri(P,Q) = ri(a0, . . . , ap, b0, . . . , bq), i = 0, 1, . . .min{p, q},

with integer coefficients, such that the following conditions are equivalent

(1) P and Q have at least k + 1 common roots (counted with multiplicities),

(2) the degree of the gratest common divisor of P and Q is ≥ k + 1

(3) r0(P,Q) = · · · = rk(P,Q) = 0.

By Proposition I.13 the set

Wk = {α ∈ Cm+1; α0 6= 0, Pα has at most k distinct roots}

= {α ∈ Cm+1; α0 6= 0, Pα, P
′
α have at least m− k common roots (with multiplicities)}

is constructible. So is B̃m,k = Wk \Wk−1. Consequently, the sets B̃m,k(R) = B̃m,k ∩Rm+1 is

semi-algebraic.

Now we show Lemma I.10. For simplicity we fix α0 = 1. We are interested in the map

π : Cm → Cm, πi(ξ1, . . . , ξm) = (−1)iσi(ξ1, . . . , ξm),

that is the map that associates to the roots of

Pα(z) = zm + α1z
m−1 + · · ·+ αm
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its coefficients.

Exercise I.14.

(a) Show that |ξi| < 1 + maxj{|πj(ξ1, . . . , ξm)|}.
(b) Show that π is proper.

Let Sm be the symmetric group of m elements. The group Sm acts on Cm by permuting

the coordinates and the map π is Sm invariant. This group action can be used in the following

exercise.

Exercise I.15.

(a) Let A ⊂ Cn. Show that if π−1(A) is closed so is A.

(b) Let U ⊂ Cn. Show that if π−1(U) is open so is U .

(c) Show that π is open (the image of an open set is open).

Remark I.16. The map π can be identified with the quotient map q : Cm → Cm/Sm,

that is we have a natural identification Φ : Cm/Sm → Cm. Exercise I.15 shows that Φ is

a homeomorphism, for the quotient topology on Cm/Sm. (The quotient topology on Cm/Sm
is the finest topology for which the quotient map q is continuous. This means that a subset

U ⊂ Cm/Sm is open (closed) if and only if q−1(U) is open (closed).)

Fix α̃ ∈ Cn and suppose that Pα̃ has exactly k distinct complex roots ρ1, . . . , ρk of mul-

tiplicities, respectively, m1, . . . ,mk, m1,+ · · · + mk = m. Let ε > 0 be small enough so that

Ui = {z ∈ C; ‖z − ρi‖ < ε} are disjoint. The set

U = {ξ = (ξ1, . . . , ξm); such that exactly mi coordinates of ξ are in Ui, i = 1, . . . , k}

is open in Cn and, by Exercise I.15, π(U) contains a neighborhood V of α̃. If α ∈ V ∩ B̃m,k then

Pα has exactly one root in each of Ui, and this root is of multiplicity mi. So these roots define

the functions

ξi : V ∩ B̃m,k → Ui ⊂ C,
that are clearly continuous.

For α ∈ V ∩ B̃m,k(R) the coefficients of the polynomials Pα are real so if ξi(α) is a root so

is its complex conjugate ξi(α).

Exercise I.17. Show that if ξi(α̃) is real so is ξi(α) for each α ∈ V ∩ B̃m,k(R). Show that

the number of real roots among ξ(α) is constant on V ∩ B̃m,k(R).

Exercise I.18. Show that the set of these α ∈ B̃m,k(R) for which the number of real distinct

roots is r is open and closed in B̃m,k(R). Complete the proof of Lemma I.10.

Exercise I.19. We keep the assumption α0 = 1. Show that the subsets Wk ⊂ Cm, defined

above, are closed in Cm. As a corollary show that the the number of distinct roots function

k(α) : Cm → N, that associates to Pα the number of its distinct complex roots, is upper semi-

continuous.

Suppose now

P (x, z) =
∏
i

Qi(x, z) =
∏
i

(zdi + bi,1(x)zdi−1 + · · ·+ bi,di(x))

where x ∈ X, where X is a connected topological space, and bi,j are continuous. Show that if

the number of distinct complex roots of P (x, ·) is constant on X so is the number of distinct

complex roots of each factor Qi(x, ·)
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CHAPTER II

O-minimal structures

1. Definition

A structure expanding R as an ordered real closed field is a collection S = (Sn))n∈N, where

each Sn is a set of subsets of the affine space Rn, satisfying the following axioms :

(1) All algebraic subsets of Rn are in Sn.

(2) For every n, Sn is a Boolean subalgebra of the powerset of Rn (that is Sn is stable by

the set theoretic operations ∪, ∩, \).
(3) If A ∈ Sn and B ∈ Sm, then A×B ∈ Sn+m.

(4) If π : Rn+1 → Rn is the projection on the first n coordinates and A ∈ Sn+1, then

π(A) ∈ Sn.

The structure S is called o-minimal (short for order-minimal) if, moreover, it satisfies:

(5) The elements of S1 are precisely the finite unions of points and intervals.

The elements of Sn are called the definable subsets of Rn. A map f : A → Rm, where

A ⊂ Rn, is called definable if the graph of f is a definable subset of Rn × Rm.

Exercise II.1. If f : A→ Rm is definable then A is definable.

Proposition II.2. Let f : A→ Rm, A ⊂ Rn, be definable. Let A′ ⊂ A and B ⊂ Rm. Then

the image f(A′) and the inverse image f−1(B) are definable.

In particular if f : Rn → R is a polynomial then {x ∈ Rn; f(x) > 0} is defnable. As a

corollary we obtain that every semi-algebraic set is definable in S.

Exercise II.3. Show that the semialgebraic subsets of Rn, n ∈ N, form an o-minimal

structure (use the Tarski-Seindeberg Theorem).

A first order formula in an o-minimal structure S = (Sn))n∈N is constructed by the following

rules

(1) If P ∈ R[X1, . . . , Xn], then

P (x1, . . . , xn) = 0 and P (x1, . . . , xn) > 0

are first order formulas.

(2) If A ⊂ Rn is definable then

x ∈ A,
where x = (x1, . . . , xn), is a first order formula.

(3) If Φ(x1, . . . , xn) and Ψ(x1, . . . , xn) are first-order formulas, then

Φ ∧Ψ, Φ ∨Ψ, Φ⇒ Ψ, ¬Φ

are first order formulas.
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(4) If Φ(y, x) is a first order formula, where y = (y1, . . . , yp) and x = (x1, . . . , xn), and

A ⊂ Rn is definable, then

∃x∈AΦ(y, x) and ∀x∈AΦ(y, x)

are first-order formulas.

Theorem II.4. If Φ(x1, . . . , xn) is a first-order formula, then the set of (x1, . . . , xn) ∈ Rn
for which the formula Φ(x1, . . . , xn) is true is definable.

Example II.5. If A ⊂ Rn is definable then the closure A of A is definable.

A = {x ∈ Rn; ∀ε > 0∃y ∈ A such that
n∑
i=1

(xi − yi)2 < ε2}.

Exercise II.6. Show that the interior of a definable subset of Rn is definable.

Exercise II.7. Show that the set {(x, y) ∈ R2; ∃n ∈ N y = nx} is not definable (whatever

is the o-minimal structure).

1.0.1. More exercises.

(1) Show that the definable functions A→ R form an R-algebra.

(2) Let f = (f1, . . . , fp) be a map from A ⊂ Rn to Rp. Show that f is definable if and only

if each of its coordinate functions fi is definable.

(3) Show that the composition of two definable maps is definable.

(4) Let A ⊂ Rn be definable non-empty. Show that the function x → dist(x,A), defined

on Rn, is definable.

(5) Let f : A → Rm be definable. Show that the set of points x ∈ A such that f is

continuous at x is definable.

1.0.2. Monotonicity Theorem.

Theorem II.8. (Monotonicity Theorem, for a proof see e.g. [5])

Let f : (a, b) → R be a definable function. Then there exists a finite subdivision a = a0 < a1 <

· · · < ak = b such that, on each interval (ai, ai+1), f is continuous and either constant or strictly

monotone.

Exercise II.9. Let f : (a, b)→ R be definable. Then limx→a+ f(x) and limx→b− f(x) exist

in R ∪ {−∞,+∞}.

Corollary II.10. (o-minimal Classical  Lojasiewicz Inequality)

Let f, g : A → R be two continuous proper definable function. Suppose that f−1(0) ⊂ g−1(0).

Then there is a continuous strictly increasing definable ϕ : [0,∞)→ [0,∞), ϕ(0) = 0, such that

ϕ(0) = 0

|g(x)| ≤ ϕ(|f(x)|), for all x ∈ A.

Moreover if

Proof. We may suppose that f and g are non-negative and that f−1(0) 6= ∅. Consider

ψ(t) = max{g(x);x such that f(x) ≤ t}.
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ψ(t) is definable and increasing though not necessarily neither continuous nor strictly increasing.

Then we replace ψ by a strictly increasing continuous definable function (complete the details).

�

2. Cellular Decomposition.

Definition II.11. A cdcd (cylindrical definable cell decomposition) of Rn is a finite partition

of Rn into definable sets {Ci}i∈I , called cells, constructed recursively as follows :

n = 1 A cdcd of Rn is a finite subdivision a1 < · · · < al. The cells are the points {ai} and the

intervals (ai, ai+1), i = 0, . . . , l, where a0 = −∞ and al+1 = +∞.

n > 1 A cdcd of Rn is given by a cdcd of Rn−1 and, for each cell D of Rn−1, continuous

definable functions ζD,i : D → R such that on D

ζD,1 < · · · < ζD,l(D).

The cells of Rn are the graphs

ΓζD,i
:= {(x, ζD,i(x)); x ∈ D}, 1 ≤ i ≤ l(D),

or the bands

BζD,i,ζD,i+1
:= {(x, y); x ∈ D and ζD,i(x) < y < ζD,i+1(x)}, 0 ≤ i ≤ l(D),

where ζD,0 = −∞ and ζD,l(D)+1 = +∞.

For each cell we define its dimension by dim(ΓζD,i
) := dimD and dim(BζD,i,ζD,i+1

) := dimD+ 1.

Proposition II.12. For each cell C of a cdcd of Rn, there is a definable homeomorphism

θC : C → RdimC .

Theorem II.13. (Uniform Finiteness) Let A ⊂ Rn be a definable set such that for every

x ∈ Rn−1, the set

Ax = {y ∈ R; (x, y) ∈ A}
is finite. Then there exists k ∈ N such that for all x ∈ Rn−1 the cardinality |Ax| ≤ k.

Theorem II.14. (Cell Decomposition) Let A1, . . . , Ak be definable subsets of Rn. Then there

is a cdcd of Rn such that each Ai is a union of cells.

Theorem II.15. (Piecewise Continuity) Let A ⊂ Rn be definable and let f : A → R be

definable. Then there is a cdcd of Rn adapted to A such that for every cell C contained in A,

f |C is continuous.

Remark II.16. Similarly, for p ∈ N or p =∞ or p = ω we define a Cp cdcd decomposition.

Such a decomposition always exists for p finite, but not always for p =∞. For semialgebraic sets

or subanalytic sets there exists always a Cω decomposition. Moreover for these two o-minimal

structures a C∞ definable function is automatically Cω.

Exercise II.17. Prove (by induction on n) that a cell is open in Rn if and only if its

dimension is n. Prove that the union of cells of dimension n is dense in Rn.

Let A ⊂ Rn be definable. Show that if A has non-empty interior then A has non-empty interior

as well.
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2.0.1. Definable choice and curve selection lemma.

Theorem II.18. (Definable choice)

Let A be a definable subset of Rm × Rn. Denote by p : Rm × Rn → Rm the projection on the

first m coordinates. Then there is a definable map f : p(A) → Rn, not necessarily continuous,

such that, for every x ∈ p(A), (x, f(x)) ∈ A.

Theorem II.19. (Curve selection Lemma)

Let A be a definable subset of Rn, b ∈ A. Then there is a continuous definable map γ : [0, 1)→
Rn, such that γ(0) = b and γ((0, 1)) ⊂ A.

Exercise II.20. Show that a definable function f : A → R is continuous if and only if, for

every continuous definable γ : [0, 1)→ A

lim
t→0+

f(γ(t)) = f(γ(0)).

Theorem II.21. (Compactness criterion)

Let A be a definable subset of Rn. The following properties are equivalent:

(1) A is compact.

(2) Every definable continuous map (0, 1)→ A extends by continuity to a map [0, 1)→ A.

Exercise II.22. (Properness criterion)

Let f : A→ B be a definable continuous map. Show that the following properties are equivalent:

(1) f is proper.

(2) For every definable map γ : (0, 1)→ A if limt→0+ f ◦ γ(t) exists in B then limt→0+ γ(t)

exists in A.

2.0.2. Connected Components. Recall that a topological space Y is connected if ∅ and Y are

the only open and closed subsets of Y . A connected component of a topological space X is a

maximal (with respect to the inclusion) non-empty connected subset of X.

Exercise II.23. Show that the connected components of a topological space X form a

partition of X (that is, they are disjoint and their union is the whole space). Every connected

component of X is closed in X. Every nonempty connected open and closed subset of X is a

connected component of X.

Give an example of a topological space X and a connected component Y of X such that Y is

not open in X.

Exercise II.24. Let A be a definable subset of Rn and let {Ci}i∈I be a cdcd of Rn such

that A is a union of cells. Show that :

(1) Each cell is connected.

(2) Each connected component of A is a union of cells.

(3) Each connected component of A is definable and open and closed in A.

Exercise II.25. Let A ⊂ Rn be definable and connected. Show that A is definably arc-wise

connected : for all x, y ∈ A there is a defiinable continuous γ : [0, 1] → A such that γ(0) = x

and γ(1) = y.
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2.0.3. Dimension. The dimension of definable sets behaves in natural way and corresponds

to the intuitive understanding of dimension. We follow the approach of [5] and quote main

results.

Definition II.26. The dimension of a definable set A is the sup of d such that there exists

an injective definable map from Rd to A. By convention, the dimension of the empty set is −∞.

The main tool that allows to transform this definition to a reasonable notion is the following

definable version of Brouwer’s Invariance of Domain. In the definable set-up it can be shown by

elementary arguments, see [5] .

Lemma II.27. Let A be a definable open subset of Rn. Let F : U → Rn be definable,

continuous and injective. Then F (U) is open.

Theorem II.28.

(1) dimRn = n

(2) if f : A→ Rn is definable then dim f(A) ≤ dimA.

(3) if f : A→ B is definable injective then dimA ≤ dimB.

(4) dimA ∪B = max{dimA,dimB}
(5) Let C be a cdcd adapted to A. Then dimA = maxC1⊂A dimCi.

(6) dimA×B = dimA+ dimB.

(7) Let A ⊂ Rn × Rm be definable. For x ∈ Rm we denote by Ax = {y ∈ Rn; (x, y) ∈ A}.
Then, for each d ∈ N

Xd = {x ∈ Rm; dimAx = d}

is definable and dim(A ∩ (Xd × Rn)) = d+ dimXd.

(8) Let A 6= ∅ be definable. Then dim(A) = dimA and dim(A \ Int(A)) < dimA.

We leave this theorem to the reader as exercise.

3. Derivabilty.

Exercise II.29. Let f : I → R be a definable function defined on an open interval I ⊂ R.

Then f is differentiable outside a finite subset of I. (Hint: use monotonicity, Theorem II.8)

Exercise II.30. Let f : I → R be a definable function defined on an open interval I ⊂ R.

Then for each k ∈ N there is a finite subset M(k) of I such that f is of class Ck on I \M(k).

Exercise II.31.

(1) Let A ⊂ R2 be semialgebraic and nowhere dense in R2. Show that there exists a

polynomial P (x, y) ∈ R[x, y], P 6≡ 0, such that A ⊂ P−1(0).

(2) Let f : I → R be a semi-algebraic function defined on an open interval I ⊂ R. Then

there is a finite set M ⊂ I such that f is of class Cω on I \M . (Hint : use the Implicit

Function Theorem).

Exercise II.32. Let f : U → R be a definable function defined on an open definable U ⊂ Rn.

Then for each k ∈ N there is a definable subset M(k) ⊂ U , dimM(k) < n, such that f is of

class Ck on U \M(k).

Exercise II.33. Let f : [0, ε) → R, ε > 0, be definable and continuous. Suppose that

f(0) = 0 and f(t) > 0 for t > 0. Show that
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(1) If limt→0+ f
′(t) = 0 then f is differentiable at 0 and f ′(0) = 0,

(2) Reciprocally, if f ′(0) = 0 then there is ε′ > 0 such that f ′(t) is continuous and strictly

increasing on [0, ε′) and moreover

f(t) ≤ tf ′(t), for t ∈ (0, ε′),

Exercise II.34. Let f : [0, ε)→ R, ε > 0, be continuous definable. Suppose that limt→0+ f
′(t)

exists. Show that f is differentiable at 0 and f ′(0) = lim
t→0+

f ′(t),

Exercise II.35. (Definable L’Hôspital Rule)

Let f, g : (0, ε)→ (0,+∞), ε > 0, be definable. Suppose that

lim
t→0+

f(t) = lim
t→0+

g(t) = 0

Then

lim
t→0+

f(t)

g(t)
= lim

t→0+

f ′(t)

g′(t)
.

(Hint: By a change of variable reduce to the case g(t) ≡ t.)

3.1. C1-curve selection lemma. Consider continuous definable arcs γ : [0, ε) → Rn,

where ε > 0. Replacing ε by a smaller positive number, if necessary, we may always assume that

γ is C1 on (0, ε). By Monotonicity Theorem, replacing ε by an even smaller positive number,

we can, moreover, assume that γ is either constant or injective.

Exercise II.36. Let γ : [0, ε)→ Rn be a continuous injective definable arc. Show that

lim
t→0+

γ′(t)

‖γ′(t)‖
∈ Sn−1 exists .

Exercise II.37. Suppose that a definable continuous γ : [0, ε) → Rn is injective definable

and that γ(0) = 0. Reparametrize γ by the distance to the origin r = ‖γ(t)‖. Write for r > 0

γ(r) = rθ(r), θ(r) ∈ Sn−1.

Show that

lim
r→0+

rθ′(r) = 0

and then that limr→0+ θ(r) = limr→0+(rθ(r))′. Therefore γ(r) is of class C1.

As a corollary we get the following strengthening of the curve selection lemma.

Theorem II.38. (C1-curve selection Lemma)

Let A be a definable subset of Rn, b ∈ A. Suppose that b is not an isolated point of A. Then

there is a C1 definable map γ : [0, 1)→ Rn, such that γ((0, 1)) ⊂ A\{b}, γ(0) = b and γ′(0) 6= 0.

Exercise II.39. Write an explicit γ satisfying the above theorem for A = {(x2 = y3} \
{(0, 0)} ⊂ R2, b = (0, 0). Show that in this example we cannot require γ to be C2.

Exercise II.40. Show that for an arbitrary continuous arc γ(t)→ γ(0) = 0, not identically

equal to 0,

lim
t→0+

γ(t)

‖γ(t)‖
= lim

r→0+
θ(r) = lim

r→0+
(rθ(r))′ = lim

t→0+

γ′(t)

‖γ′(t)‖
∈ Sn−1.
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3.2. Definable Sard Theorem. Let f : U → Rm be a differentiable map defined on an

open definable U ⊂ Rn. A point x ∈ U is called a critical (or singular) point of f if the rank of

the Jacobian matrix of f at x satisfies

rank Jf (x) < m.

Denote the set of critical points of f by C(f). The map x → Jf (x) is definable and, hence, so

is the set C(f). If the Jacobian matrix Jf (x) is of maximal rank then we say that x is a regular

point of f .

Exercise II.41. Let f : U → R be a differentiable definable function defined on an open

definable U ⊂ Rn. Then the set of critical values of f is finite.

Let A be a connected component of C(f). Show that f is constant on A.

Exercise II.42. (Definable Sard Theorem)

Let f : U → Rm be a differentiable definable map defined on an open definable U ⊂ Rn. Then the

set of critical values of f : f(C(f)), is definable and nowhere dense in Rm (i.e. dim f(C(f)) < m).

(Hint: if m ≤ n then use definable choice)

4. Examples of o-minimal structures.

(1) Ralg - Semialgebraic sets form an o-minimal structure (check the axioms). This is

the smallest o-minimal structure contained in any other o-minimal structure.

(2) Rexp is the smallest structure that contains the real exponential function exp(x) = ex.

This structure contains also the logarithm function log : (0,∞)→ R and the functions

xr : (0,∞)→ R for r ∈ R.

(3) Ran - Globally subanalytic sets is the smallest structure that contains all restricted

analytic functions, that is the restriction to [−1, 1]n of analytic functions defined in a

neighbourhood of the cube [−1, 1]n.

(4) RR
an - the smallest structure that contains Ran and the functions xr : (0,∞) → R for

r ∈ R.

(5) Ran,exp - the smallest structure that contains Rexp and Ran.

Exercise II.43. Show that there is no o-minimal structure that contains the graph of x→
sinx, x ∈ R.

Definition II.44. An o-minimal structure {Sn} is called polynomially bounded if for every

definable function f : R→ R there exists N ∈ N such that

f(t) = O(tN ) as t→ +∞.

Exercise II.45. Show that the o-minimal structure of semialgebraic sets is polynomially

bounded.

Exercise II.46. Show that an o-minimal structure is polynomially bounded if and only if

for every f : R → R definable and continuous at 0, f(0) = 0, there is N ∈ N∗ and ε > 0 such

that for |t| ≤ ε
|f(t)| ≤ |t|

1
N .

The structures Ran, and RR
an are polynomially bounded. An o-minimal structure that con-

tains the real exponential function is not polynomially bounded (why ?).
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Theorem II.47. (Miller, Growth Dychotomy)

An o-minimal structure is either polynomially bounded or it contains the real exponential func-

tion.
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CHAPTER III

L-regular decomposition

A cdcd decomposition can be used to study several properties of definablity but not to study

the topology since it is not clear from the construction how the cells are joined together. In

particular an arbitrary cdcd is not a stratification. A cdcd constructed in a generic system

of coordinates has better properties, see Theorem V.8 for instance, and is used to construct

triangulations.

In this chapter we introduce an L-regular decomposition in cells, called L-regular cells, that

allow to study various metric properties of definable sets. But its construction requires to work

in many generic system of coordinates at the same time.

1. Triangulation

We just quote the results, see for instance [5]

Theorem III.1. Let A be a closed and bounded definable subset of Rn and let Bi, i = 1, ..., k,

be definable subsets of A. Then there exist a finite simplicial complex K with vertices in Qn and

a definable homeomorphism Φ : |K| → A such that each Bi is a union of images by Φ of open

simplices of K.

Theorem III.2. Let X be a closed and bounded definable subset of Rn and let f : X → R
be a continuous definable function. Then there exist a finite simplicial complex K in Rn+1 and

a definable homeomorphism ρ : |K| → X such that f ◦ ρ is an affine function on each simplex

of K.

Moreover, given finitely many definable subsets Bi, i = 1, ..., k, of X, we may choose the

triangulation ρ : |K| → X so that each Bi is a union of images of open simplices of K.

As a corollary one obtains a local conic structure.

Theorem III.3 ((Local Conic Structure)). Let A be a closed definable subset of Rn and let

a ∈ A. There are an r > 0 and a definable homeomorphism h from the cone with vertex a and

base S(a, r) ∩A onto B(a, r) ∩A, satisfying h|S(a,r)∩A = Id and ‖h(x)− a‖ = ‖x− a‖ for all x

in the cone.

The theorem of triangulation of continuous definable functions cannot be generalized to all

continuous definable maps. The simplest example is the blowing-up map f(x, y) = (x, xy).

Indeed, consider f restricted to the unit square f : [0, 1]2 → R2. There is no way to choose

triangulations Φ : |K| → [0, 1]2 and Ψ : |L| → f([0, 1]2) such that Ψ−1 ◦ f ◦ Φ is affine on every

simplex of K.

2. L-regular cells

We define, by induction on n, a class of subsets of Rn. For any x ∈ Rn let us write

x = (x′, xn) ∈ Rn−1 × R. We say that A ⊂ Rn is a standard L-regular cell in Rn with constant
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C, if A = {0} for n = 0, and for n > 0 the set A is of one of the following forms:

(graph) A = Γh = {(x′, xn) ∈ Rn−1 × R; xn = h(x′), x′ ∈ A′}

or

(band) A = Bf,g = {(x′, xn) ∈ Rn−1 × R; f(x′) < xn < g(x′), x′ ∈ A′}

where A′ is a standard L-regular cell in Rn−1 with constant C, f, g, h : A′ → R are C1 functions

(or functions of the regularity Cp, p = 1, 2, ...,∞, ω, we fix at the beginning) such that f(x′) <

g(x′) for x′ ∈ A′, and

(4) ‖df(x′)‖ ≤ C, ‖dg(x′)‖ ≤ C, ‖dh(x′)‖ ≤ C

for all x′ ∈ A′. We call A′ the base of the cell A.

We say that B ⊂ Rn is an L-regular cell in Rn with constant C, if there exists an orthogonal

change of variables ϕ : Rn → Rn such that ϕ(B) is a standard L-regular cell (with constant C)

in Rn. By convention the empty set is an L-regular set (with any constant).

We say that A ⊂ Rn verifies the Whitney property with constant M > 0, or is M -quasi-

convex, if any two points x, y ∈ A can be joined in A by a piecewise smooth arc of length

≤M |x− y|. It is easily seen by induction on dimension that

Lemma III.4. Any L-regular cell in Rn with constant C is M -quasi-convex, where M =

(C + 1)n−1. Moreover A is also M -quasi-convex.

3. L-regular decomposition with parameter

The following result was proven in [9, Proposition 1.4].

Theorem III.5. Let Ak ⊂ Rn × Rp, k ∈ K, be a finite collection of definable sets in an

o-minimal structure. Then there exist finitely many disjoint definable sets Bi ⊂ Rn ×Rp, i ∈ I,

and linear orthogonal mappings ϕi : Rn → Rn, i ∈ I, such that:

a) for every t ∈ Rp, each ϕi(Bi
t) is a standard L-regular cell in Rn with constant C. The

constant C = Cn depends only on n.

b) For every t ∈ Rp, the family Bi
t ⊂ Rn, i ∈ I, is a stratification of Rn.

c) For any k ∈ K there exists Ik ⊂ I such that Akt =
⋃
i∈Ik

Bi
t, for every t ∈ Rp.

Remark III.6. Let ε > 0, we say that Γ, a d-dimensional C1 submanifold of Rn, is ε-flat if

for every pair x, y ∈ Γ we have δ(Tx, Ty) ≤ ε, where δ is a fixed metric on the grasmannian Gd,n.

Given ε > 0, it follows from the proof of [9, Proposition 1.4], that we can additionally require

that

d) for each i ∈ I, Bi
t is a definable family of ε-flat cells.

More precisely, let us, for each d < n, fix a finite covering Gd,n =
⋃

Θε
d,ν . Then we may require

that for each i ∈ I, di = dimBi
t, there exists νi such that for eavery (x, t) ∈ Bi

TxB
i
t ∈ Θε

di,νi
.
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CHAPTER IV

 Lojasiewicz Inequalities

1. Classical  Lojasiewicz Inequality

Let us recall first

Theorem IV.1. (o-minimal classical  Lojasiewicz Inequality)

Let f, g : A → R be two continuous proper definable functions. Suppose that f−1(0) ⊂ g−1(0).

Then there is a continuous strictly increasing definable ϕ : [0,∞)→ [0,∞), ϕ(0) = 0, such that

ϕ(0) = 0

|g(x)| ≤ ϕ(|f(x)|), for all x ∈ A.

If the structure is polynomially bounded we obtain the classical  Lojasiewicz Inequality.

Theorem IV.2 (classical  Lojasiewicz Inequality). Let A be compact definable and let f, g :

A → R be two continuous definable functions such that f−1(0) ⊂ g−1(0). Then there are an

exponent N ∈ N and a constant C > 0 such that

|g(x)|N ≤ C|f(x)|, for all x ∈ A.

Exercise IV.3. Let f : X → R be a continuous definable function defined on a compact

X ⊂ Rn and let Y = f−1(0). Show that there are an exponent N ∈ N and constants c, C > 0

such that

cdist(x, Y )N ≤ |f(x)| ≤ C dist(x, Y )1/N , for all x ∈ X.

Exercise IV.4. Let f : U → R be a real analytic function defined on a open U ⊂ Rn and

let Y = f−1(0). Let x0 ∈ U . Show that there are an exponent N ∈ N≥1, a constant C > 0 and

a neigbourhood U ′ of x0 such that

|f(x)| ≤ C dist(x, Y )N , for all x ∈ X.

Exercise IV.5 (Hölder Continuity). Let f : X → R be a continuous definable function

defined on a closed X ⊂ Rn. Show that f is locally Hölder continuous.

Exercise IV.6 (Regular separation). Let X,Y be two closed definable subsets of Rn. Let

x0 ∈ X ∩ Y . Then there are a neighbourhood U of x0, an exponent N ∈ N, and a positive

constant c > 0 such that

cdist(x,X ∩ Y )N ≤ dist(x,X) + dist(x, Y ), for all x ∈ X ∈ U.
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2.  Lojasiewicz Gradient Inequality

Theorem IV.7. Let f : Ω → R be a differentiable definable function defined on an open

bounded definable Ω ⊂ Rn. Suppose f(x) > 0 for all x ∈ Ω. Then there exist c > 0, ρ > 0 and a

continuous definable function Ψ : [0,∞)→ [0,∞), such that

‖ grad(Ψ ◦ f)(x)‖ ≥ c,

for every x ∈ Ω, f(x) ∈ (0, ρ).

The above result is due to K. Kurdyka [8]. It implies the original  Lojasiewicz Gradient

Inequality.

Theorem IV.8. ( Lojasiewicz Gradient Inequality)

Let f : U → R be a real analytic function defined on an open neighbourhood U ⊂ Rn of the origin.

Suppose f(0) = 0. Then there exist an exponent α < 1, a constant C > 0 and a neigbourhood

U ′ of 0, such that

|f(x)|α ≤ C ‖ grad f(x)‖ for x ∈ U ′.

The strength and the usufulness of this result is the fact the exponent α is strictly bigger than

1. The above inequality holds (locally) for any differentiable function definable in a polynomially

bounded o-minimal structure as also follows from Kurdyka’s result.

The following inequality is valid in an arbitrary o-minimal structure.

Exercise IV.9. (o-minimal version of Bochnak- Lojasiewicz Inequality)

Let f : U → R be a differentiable definable function defined on an open neighbourhood U ⊂ Rn
of the origin. Suppose f(0) = 0. Then there exist C > 0 and a neigbourhood U ′ of 0 such that

|f(x)| ≤ C ‖x‖ ‖ grad f(x)‖ for x ∈ U ′.

(Hint: by the C1-curve selection lemma it suffices to check it any C1 definable arc γ : [0, ε)→ U ,

γ(0) = 0 and γ′(0) 6= 0. )
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CHAPTER V

Regular points. Stratifications

In this chapter we suppose that k is either an integer ≥ 1, or in the semi-algebraic case we

consider additionally k = ω. In the latter case, Cω means real analytic.

Let k ∈ N ∪ {ω}, k ≥ 1. We say that a definable X ⊂ Rn is k-regular (of dimension d) at

p ∈ X if there is a neighbourhood U of p in Rn such that X ∩ U is Ck-submanifold of U of

dimension d. In this case we also say that p is a k-regular point of X.

We denote by Regk(X) the set of all k-regular p ∈ X of dimension dimX. We say that X

is k-regular if Regk(X) = X, that is if X is a pure-dimensional locally closed Ck-submanifold of

Rn.

1. Good coordinates

Theorem V.1. Let X ⊂ Rn, dimX < n, be closed and definable. Let π : Rn → Rn−1 be a

generic affine projection. Then π|X is proper with finite fibres.

To be more precise, in the above statement we mean that there exists a definable subset

A ⊂ RP(n − 1), dimA < n − 1, such that every affine projection π : Rn → Rn−1 such that

[kerπ] /∈ A satisfies the statement.

Proof. Define the limit set of X at infinity as

X∞ = {p ∈ RP(n− 1); ∃γ : (0, ε)→ X, lim
t→0+

‖γ(t)‖ = +∞, lim
t→0+

[γ(t)] = p},

where γ are definable. It can be checked easily (exercise) that X∞ is closed and definable,

dimX∞ ≤ dimX − 1. Note that in the definition of X∞ we may replace limt→0+ [γ(t)] by

limt→0+ [γ′(t)], since the identity of exercise II.40 holds also for the arcs going to infinity. It is

easy to check (exercise), that π|X is proper if and only if [kerπ] /∈ X∞.

Let Π : Rn × Rn−1 → Rn−1 × Rn−1 be given by Π(x, u) = (πu(x), u), where

πu(x) = (x1, . . . , xn−1)− xnu

is a linear projection with kernel spanned by (u, 1). We show that for generic u ∈ Rn−1, the

restriction of πu to X is finite-to-one. Suppose that this is not the case. Then, by Definable

Choice, there is an open non-empty definable U ⊂ Rn−1, a definable C1 map ϕ : U → Rn, and

ε > 0 such that

ψ(u, λ) = ϕ(u) + λ(u, 1) ∈ X for u ∈ U, λ ∈ [0, ε).

But the Jacobian determinant of ψ, is of the form

detDψ(u, λ) = λn−1 +

n−2∑
i=0

ai(u)λi

and hence cannot be identically equal to zero. Therefore the image of ψ is of dimension n and

cannot be a subset of X. �
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Proposition V.2. Let X ⊂ Rn, dimX < n, be closed and definable and suppose such that

the restriction π|X of the standard projection π : Rn → Rn−1 is proper with finite fibres. Let

Y ⊂ π(X) be a definable set such that every y ∈ Y satisfies :

there is a basis of neighbourhoods V of y such that V ∩ Y is connected.(5)

Then every continuous ζ : Y → R whose graph is contained in X extends continuously to Y .

Proof. Consider the closure of the graph of ζ, Γζ ⊂ X. It suffices to show that the

projection Γζ → Y is a bijection. For this suffices, by the assumption on X, to show that the

fibres of this projection are connected.

Let y ∈ Y and let Ui, i ∈ I, be a basis of neighbourhoods of y as in the assumption. Then

the closures Ai of ζ(Ui ∩ Y ) are connected, so they are closed intervals. The intersection of Ai
equals π−1(y) ∩ Γζ so the latter set is connected as claimed. �

Exercise V.3. Let Y ⊂ Rn be an open cell of a cdcd decomposition. Show that there is a

definable A ⊂ Fr(Y ), dimA ≤ n− 2, such that every y ∈ Fr(Y ) \A satisfies condition (5).

Exercise V.4. Let f : Y → R be a continuous bounded definable function defined on an

open Y ⊂ Rn. Suppose moreover that there is a definable A ⊂ Fr(Y ), dimA ≤ n− 2, such that

every y ∈ Fr(Y ) \ A satisfies condition (5). Show that there B ⊂ Y \ Y , dimB ≤ n − 2, such

that f extends by continuity on Y \B.

2. Stratifications.

We call a cdcd (cylindrical definable cell decomposition) of Rn, see definition II.11, k-regular

if all the functions ζD,i of the definition II.11, are of class Ck. Then, the cells are k-regular. The

first part of the next theorem is an easy application of exercise II.30.. The second part is more

delicate and follows from the IFT (Implicit function theorem) similarly to exercice II.31.

Theorem V.5. Let A1, . . . , Am be definable subsets of Rn and k ∈ N Then there is a k-

regular cdcd of Rn such that each Ai is a union of cells. In the semi-algebraic case the theorem

also holds for k = ω.

Exercise V.6. Let X ⊂ Rn be definable and d = dimX. Let Xd denote the set of these

points x ∈ X that X is of dimension d at x (that is X intersected with any sufficiently small

neighbourhood of x is of dimension d). Show that Xd is definable of pure dimension d and

dim(X \Xd) < d.

Moreover, show that Regk(X) of X contains a definable open dense subset of Xd. (We again

assume k ∈ N, k ≥ 1 in general and additionally k = ω in the semi-algebraic case.)

Definition V.7. By a (definable) Ck-stratification of X ⊂ Rn we mean a finite decomposi-

tion (disjoint union)

X =
⊔
Si∈S

Si,

where the sets Si, called strata, are definable and k-regular. Unless otherwise stated we always

assume that the strata Si are connected and that the stratification satisfies the following condi-

tion:

(Frontier condition) For each stratum S ∈ S, (S̄ \ S) ∩X is a union of strata.

Theorem V.8. Let A1, . . . , Am be definable subsets of Rn and k ∈ N, k ≥ 1. Then, after

a generic linear change of coordinates in Rn, there is a k-regular cdcd of Rn, that is also a
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Ck-stratification of Rn, such that each Ai is a union of cells. In the semi-algebraic case the

theorem holds also for k = ω.

Proof. The construction of a cdcd adapted to Ai is algorithmic. Before the first step we

choose a system of coordinates in Rn so that the projection πn−1 : Rn → Rn−1 restricted to

X =
⋃
Fr(Ai) is proper and finite. Then all the cells of the graph type are contained in X.

Suppose that a cdcd C of Rn is defined by a cdcd D of Rn−1 and Ck functions ζD,i, D ∈ D
with graphs contained in X. We also assume that the cdcd D satisfies two conditions :

• D satisfies frontier condition.

• each D ∈ D satisfies condition (5) at all its points

Then it suffices to show that C also satisfies these two conditions. If the cell C ∈ C is the graph

ζD,i : D → R, then it follows from Proposition V.2 since ζD,i extends continuously onto D. A

similar argument works for the cells of the band type. The details are left as exercise. �

A similar argument gives the following result (exercise).

Proposition V.9. Let U ⊂ Rn be a open definable. Then there exists a closed definable

subset Y ⊂ U \U , dimY ≤ n− 2, such that for every p ∈ U \ (U ∪ Y ), either p ∈ Int(U) or the

pair (U,U \ U) near p is a Ck-manifold with boundary.

Proposition V.10. Let X ⊂ Rn be definable. Then for each d ≤ dimX and for each

k ∈ N, k ≥ 1, the set of k-regular of dimension d points of X is definable.

Proof. We show it for d = dimX. Fix the projection πd : Rn → Rd, for instance the

standard one πd(x1, . . . , xn) = (x1, . . . , xd). We claim that the set of points of p ∈ X such that

in a neighbourhood of p, X coincides the graph a Ck definable function ϕ : U → Rn−d, defined

on an open definable neighbourhood of πd(p) in Rd, is definable. Indeed, firstly if we skip the

k-regularity requirement for ϕ then the set of these points can be expressed by a first order

formula. Then the regularity condition can be added by exercise II.32. We denote this set by

Topπd,k(X), the set of topographic points with respect to the projection πd.

Now consider the finite set of orthogonal projection πI : Rn → Rd, onto the coordinate

d-subspaces of Rn, thus indexed by I ⊂ {1, . . . , n}, |I| = d. Then Regk(X) is the union of all

TopπI ,k(X). �

The analogous statement holds also in the semi-algebraic case and k = ω, but its proof is

much more difficult.

3. Singularities in codimension 1

Proposition V.11. Fix k ∈ N, k ≥ 1. Let X ⊂ Rn be a definable closed of dimension

d. Then there exists a closed definable subset Y ⊂ X, dimY ≤ d − 2 such that any p ∈
X \ (Regk(X) ∪ Y satisfies the following property:

there are m ∈ N and a neighbourhood V of p such that Regk(X) ∩ V = X1 t . . . tXm,(6)

with Xi connected, and such that for every i = 1, . . . ,m, the closure of each Xi in V

is a C1manifold with boundary V ∩ (X \Regk(X)).

Proof. The case n = d is given in Proposition V.9. Thus we may suppose that n > d.

Suppose first that Regk(X) is L-topographic, the graph of ϕ : U → Rn−d, and that the

projection πd : Rn → Rd restricted to X is proper and finite. By Proposition V.9 we may

suppose that (U,U \ U) is a manifold with boundary. Moreover, by Exercise V.4, we may
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suppose that ϕ and the first order partial derivatives of ϕ extend to the boundary. It is a nice

exercise to show that these properites imply that the graph of ϕ is a C1 manifold. (One can

easily reduce to the case U being the half space xd ≥ 0.)

Now the proposition in the general case follows from Proposition VI.5. �

The next lemma is a corollary of Proposition V.11 and is left as exercise.

Lemma V.12. Wing lemma.

Let X,Y be definable subsets of Rn. Suppose that Y ⊂ X \ X. Then there is a definable

subset V ⊂ X and a definable subset S ⊂ Y , dimS < dimY such that every p ∈ Y \ S has a

neighbourhood Up ⊂ Rn such that (V ∩ Up, Y ∩ Up) is a C1 manifold with boundary.

Note that the C1 curve selection lemma is a special case of this theorem.
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CHAPTER VI

Integration on definable sets

Let X ∈ Rn be definable dimX = d. In this section introduce the integration along X.

Roughly speaking the idea is the following. Firstly we show that d-dimensional volume of X is

locally finite (that is finite on any relatively compact subset of X). This allows us to introduce

the d-dimensional volume on X which we denote by dvold orHd. In the process of integration we

may ignore any definable subset of X of dimension smaller than d since its d-dimensional volume

is zero. Then we show that the bounded definable functions (or forms) are locally integrable on

X. Our main tool will the decomposition into L-topographic sets.

1. L-topographic sets.

We call a definable subset X ⊂ Rn topographic of class Ck, k ∈ N ∪ {ω}, k ≥ 1, if, after a

linear change of coordinates in Rn, X is the graph of a Ck definable map ϕ : U → Rn−d, defined

on an open definable U ⊂ Rd. Such X is called L-topographic of class Ck if, moreover, the partial

derivatives ∂ϕ/∂ui of ϕ are bounded on U .

Exercise VI.1. Show that a cell of a k-regular cdcd is topographic of class Ck.

Exercise VI.2. Let X ⊂ Rn be L-topographic, the graph of a Ck definable function ϕ :

U → Rn−d. Show that the projection πd : Rn → Rd restricted to X is proper and finite.

(Hint: Consider the case n = d+ 1.)

The importance of L-topographic sets follows from the following two propositions.

Proposition VI.3. A bounded L-topographic set of dimension d is of finite d-volume.

Proof. For a C1 injective map Φ : U → Rn defined on an open bounded U ⊂ Rd, the d-

volume of its image is given in terms of the Gramm determinant of det(〈∂Φ/∂ui, ∂Φ/∂uj〉), i, j =

1, . . . , d as follows

vold(Φ(U)) =

∫
U

√
det(〈∂Φ/∂ui, ∂Φ/∂uj〉) du1 . . . dud.(7)

Thus the proposition follows from the following lemma, left as exercise. �

Lemma VI.4. Let U ⊂ Rd be definable and bounded and let the function f : U → R be a

bounded definable function. Then f is integrable with respect to the standard Lebesgue measure

on Rd. Moreover if Y ∈ U be definable of dimension smaller than d then∫
U
f du1 . . . dud. =

∫
U\Y

f du1 . . . dud..
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Proposition VI.5. Let X be definable of dimension d, k ∈ N, k ≥ 1. Then X can be

decomposed as a finite disjoint union of L-topographic sets of class Ck and a definable set of

dimension strictly smaller of d.

Moreover, given ε > 0 we may choose choose these topographic sets to be ε-flat (in the sense

of Remark III.6).

We will show Proposition VI.5 in subsection 1.

Corollary VI.6. Let X ⊂ Rn be a bounded definable of dimension d. Then the d-

dimensional volume of X is finite.

2. Integration on definable sets. Volume form

Let X ⊂ Rn be definable of dimension d. The formula (7) and allows us to define the

integration with respect to the d-density of X. Thus for given f : X → R, the integral of f , if

it exists, can be expressed in terms of local parametrisation, as follows. Let Φ : U → X be an

injective C1 map Φ : U → X defined on an open U ⊂ Rd. Then∫
ϕ(U)

f dvold =

∫
U
f(Φ(u))

√
det(〈∂Φ/∂ui, ∂Φ/∂uj〉) du1 . . . dud.(8)

The integration along X can be reduced to the subvariety case since, if X ′ ⊂ X is a definable

C1 regular set such that dimX \X ′ < d, for instance X ′ = Reg1(X), then∫
X
f dvold =

∫
X′
f dvold.

Similarly to Lemma VI.4 and Corollary VI.6 we have the following result.

Corollary VI.7. Let X ⊂ Rn be a bounded definable of dimension d and let f : X → R be

definable and bounded. Then f is integrable.

Let M be a smooth oriented d-dimensional submanifold of Rn. The volume form ωM of M is

a d form on M that is characterized in terms of local parametrization as follows. Let Φ : U → V

be an orientation preserving C1 diffeomorphism from an open U ⊂ Rd onto an open V ⊂ M .

Then

Φ∗ωM =
√

det(〈∂Φ/∂ui, ∂Φ/∂uj〉) du1 ∧ . . . ∧ dud.

Exercise VI.8. Let M be a d-dimensional oriented submanifold of Rn and let ωM be the

volume form of M . Let p ∈ M and let ~v1, . . . , ~vd be a system of vectors in TpM . Show that

ωM (p)(~v1, . . . , ~vd) equals, up to a sign, the d-volume of the parallelepiped spanned by ~v1, . . . , ~vd.

Exercise VI.9. Let M ⊂ Rn be a smooth hypersurface defined by f(x) = 0 and oriented

by grad f
‖ grad f‖ . Show that the volume form of M is

ω =

n∑
i=1

(−1)i−1
∂f/∂xi
‖ grad f‖

dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

In particular the volume form of the sphere Sn−1 oriented by the outward unit normal vector

field is

ω =
n∑
i=1

(−1)i−1xi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.
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Exercise VI.10. Let X ⊂ Rn be a 1-regular definable set of dimension d. Suppose that X is

bounded and oriented. Let η be a differential form of degree d on Rn with definable coefficients

that is

η =
∑

ηI dxI ,

where I = {i1 < . . . < id}, dxI = dxi1 ∧ . . . ∧ dxid , and ηI are definable functions defined on X.

Show that, if ηI are bounded on X, then η is integrable on X.
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CHAPTER VII

Further properties

1. Tangent and normal bundles

Throughout this section we suppose X ⊂ Rn to be k-regular definable of dimension d.

We identify the underlying total spaces of the tangent and the normal bundles to X with the

following subsets of Rn × Rn.

TX = {(x, v) ∈ X × Rn; v ∈ TxX},
NX = {(x, v) ∈ X × Rn; v ⊥ TxX}

Exercise VII.1.

(1) Suppose that V is topographic given by the graph of ϕ : U ⊂ Rd → Rn−d. Write

explicit parmetrisations of TV and NV . Show that TV and NV can be trivialised by

definable trivialisations.

(2) Prove that TX and NX are definable and k − 1-regular. (In the semialgebraic case

they are Cω if so is X.)

(3) Denote SNX = NX ∩ Rn × Sn−1 the unit bundle of NX. Show that SNX is a

(k − 1)-regular definable set of dimension n− 1. Show that NX is orientable.

Proof of Proposition VI.5. Suppose first that X ⊂ Rn is an oriented hypersurface. The

Gauss map of X

ν : X → Sn−1

associates to p ∈ X the unit oriented normal vector to TpX.

Exercise VII.2. Suppose that X is the graph of ϕ : U → R, where U ⊂ Rn−1. Write a

formula for the Gauss map in terms of the partial derivatives of ϕ. Show that X is L-topographic

if and only if there is C > 0 such that for all x ∈ X

max
j<n
|νj(x)| < C|νn(x)|.

We continue the proof. The graph of ν is a definable subset of SNX. By dimensional reasons

the generic fibres of ν are finite. For i = 1, . . . n consider the set

Si = {v ∈ Sn−1, |vi| > max
j 6=i
|vj | }

and its inverse image Xi = ν−1(Si). Thus we have

X = X1 ∪ · · · ∪Xn ∪ Y,

where dimY < n − 1 provided the system of coordinates of Rn is chosen sufficiently generic

(it follows from the next subsection). Then the projection πi : Rn → Rn−1, πi(x1, . . . xn) =

(x1, . . . , x̂i, . . . , xn), restricted to Xi is open and has finite fibres. Let Ai = πi(Xi) ⊂ Rn−1.
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Choose a cdcd of Rn−1 adapted to Ai and let C be an open cell. Denote XC = π−1i (C) ∩ Xi.

Then

XC → C

is a finite covering of C. Since the cell C is homeomorphic to (0, 1)n this covering has to be

trivial. Hence XC is a disjoint union of topographic sets. They are L-topographic by Exercise

VII.2. This ends the proof in the oriented hypersurface case. The same argument applies to the

non-oriented case since the definition of Si does not depend on the choice of orientation.

A similar argument can be used in the general d-dimensional case by replacing the Gauss

map by the classifying map of the normal bundle NX of X (or, alternatively, of TX)

γ : X → G(n, n− d),

where G(n, n− d) is the Grassmanian of non-oriented (n− d)-vector subspaces of Rn. �

2. The transversality of a general translate

We give an o-minimal version of a theorem of Kleiman [The transversality of a general

translate, Compositio Math., tome 28, no. 3 (1974), p. 287–297].

A groupG is will be called a definable group ifG is definable as a set and the group operations:

multiplication and taking the inverse, are definable. We say that G is a Ck group, if G and the

group operations are Ck regular. We are mostly interested in the algebraic subgroups of the

linear group GL(n,R) or the affine group Aff(n,R) = Rn n GL(n,R), such as the orthogonal

group O(n) or the group of isometries Isom(n). These groups are real algerbaic, in particular

Cω.

Theorem VII.3. Let G be a definable group. Suppose that G acts transitively on a definable

set X and the action G×X → X is definable. Let f : Y → X and g : Z → X be definable. For

s ∈ G denote by sf : Y → X the composition of f and the multiplication by s, and by (sY )×X Z
the fibred product of sf and g.

(1) there is an open dense definable U ⊂ G such that for s ∈ U

dim(sY )×X Z ≤ dimY + dimZ − dimX

(2) Suppose, moreover, that G,X, Y, Z are k-regular for k ≥ 1, and that the action of G

on X and the maps f : Y → X and g : Z → X are k-regular. Then, there is an open

dense definable U ⊂ G such that for s ∈ U , (sY )×X Z is either empty or k-regular of

dimension dimY + dimZ − dimX.

Proof of (1). Recall first the definition of fiber product

(sY )×X Z = {(y, z) ∈ Y × Z; sf(y) = g(z)} ⊂ Y × Z.

Consider

V = {(s, y, z) ∈ G× Y × Z; sf(y) = g(z)} ⊂ G× Y × Z.

and the induced projections π1 : V → G and π2 :→ Y × Z. Then (sY ) ×X Z = π−11 (s). The

dimension of V can be computed using the other projection since π−12 (y, z) equals {s; sf(y) =

g(z)} and, hence, is of dimension dimG− dimX. Thus

dimV = dimY + dimZ + dimG− dimX

and the generic fibres of π1 are of dimension not greater than dimY + dimZ − dimX, as

claimed. �
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Suppose that the action G×X → X is transitive definable and Ck, k ≥ 1. Consider

V0 = {(s, x1, x2) ∈ G×X ×X; sx1 = x2} ⊂ G×X ×X(9)

π : V0 → X ×X, π(s, x1, x2) = (x1, x2).

By transitivity of the action, π is surjective. The group G×G acts on V0 by (s1, s2)(s, x1, x2) =

(s2ss1, s
−1
1 x1, s2x2).

Exercise VII.4.

(1) Using the definable choice and the group action show that π admits locally, in a neigh-

bourhood of any (x1, x2) ∈ X ×X, a definable Ck section.

(2) Fix x0 ∈ X. Show that for any x ∈ X there is a neighbourhood U in X, and a Ck

definable map ρx,x0 : U → G such that for every y ∈ U

ρx,x0(y) y = x0.

(3) Fix x0 ∈ X and let Gx0 denotes the isotropy subgroup of x0. Show that π is locally

trivial in the following sense : for any (x1, x2) ∈ X there is a neighbourhood U =

U1 ×U2 ⊂ X ×X and definable Ck maps ρi : Ui → G, i = 1, 2, such that the following

diagram is commutative

Gx0 × U
pr2

��

µ
// π−1(U)

π

��

U
id

// U

where µ(s, x1, x2) = ((ρ2(x2))
−1s ρ1(x1), x1, x2) is a definable Ck diffeomorphism and

pr2 is the projection on the second factor.

Proof of (2) of Theorem VII.3. We keep the notation the proof of first part of theorem.

The map π2 : V → Y × Z is the pull-back of π of (9)

V

π2
��

(f,g)∗
// G×X

π
��

Y × Z
(f,g)

// X ×X

and therefore, by Exercise VII.4, is a definable Ck locally trivial fibration. As a consequence

we obtain that V is k-regular. Now (2) of Theorem VII.3 follows from Sard Theorem, Exercise

II.42 that can be easily extended to maps with values in regular sets. �

Exercise VII.5. Let g : Z → X be definable, Y ⊂ X. Show that for S ∈ G generic

dim g−1(sY ) ≤ dimZ − dimX + dimY.

3. Invariant forms

Consider TRn = Rn × Rn and denote its elements as (x, v) ∈ TRn. In order to distinguish

the factors we sometimes write x ∈ Rnx, v ∈ Rnv . Denote by α = vdx =
∑

i vidxi the canonical

1-form on TRn and let β = vdv =
∑

i vidvi.

Consider the map

h : TRn × R→ Rn, hi(x, v, ρ) = x+ ρv.
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Proposition VII.6. There are κi ∈ (
∧iRnx) ∧ (

∧n−i−1Rnv ) such that

‖v‖2h∗(dx1 ∧ . . . ∧ dxn) = (α+ ρβ + ‖v‖2dρ) ∧
n−1∑
i=0

ρn−i−1κi.(10)

Proof.

hi∗(dx1 ∧ . . . ∧ dxn) =(dx1 + ρdv1) ∧ . . . ∧ (dxn + ρdvn)+

dρ ∧
n∑
i=1

(−1)i−1vi (dx1 + ρdv1) ∧ · · · ∧ ̂(dxi + ρdvi) ∧ · · · ∧ (dxn + ρdvn).

Thus the forms κi are defined be developing the second summand

n∑
i=1

(−1)i−1vi (dx1 + ρdv1) ∧ · · · ∧ ̂(dxi + ρdvi) ∧ · · · ∧ (dxn + ρdvn) =

n−1∑
i=0

ρn−i−1κi.

As for the first summand we have

‖v‖2(dx1 + ρdv1) ∧ . . . ∧ (dxn + ρdvn)

=
∑
i

vi(dxi + ρdvi) ∧
n∑
i=1

(−1)i−1vi (dx1 + ρdv1) ∧ · · · ∧ ̂(dxi + ρdvi) ∧ · · · ∧ (dxn + ρdvn).

�

The forms α, β, and κi are G-invariant, for the group G = Isom+(Rn) of oriented euclidean

motions of Rn.

Remark VII.7. Replace TRn by the unit tangent bundle STRn = Rn×Sn−1. Since ‖v‖ = 1

and β = 1
2d‖v‖

2 = 0 on Sn−1, the formula (10) takes on STRn × R the form

h∗(dx1 ∧ . . . ∧ dxn) = (α+ dρ) ∧
n−1∑
i=0

ρn−i−1κi.(11)

It is shown in [Joe Fu, Kinematic formulas in integral geometry, Indiana Univ. Math J, 39

(1990), 1115–1154] that the exterior algebra of Isom+(Rn)-invariant differential forms on STRn
is generated by the canonical 1-form α, its differential ω = dα, and the forms κ0, . . . , κn−1.

Exercise VII.8. Show that κ0 depends only on v and κ0 restricted to Sn−1 coincides with

the volume form on Sn−1.

Proposition VII.9. Let M be a m-dimensional submanifold of Rn. Then κm restricted to

the unit normal bundle SNM to M is nowhere zero. In particular, SNM is canonically oriented

by κm.

Proof. Suppose that the tangent space TpM at p ∈ M is given by xm+1 = · · · = xn = 0.

Then the fibre SNpM over p is the (n − m − 1)-sphere given by v1 = · · · = vm = 0. Let

v ∈ SNpM . Let (p, v) ∈ SNM . Since SNM ⊂ Rn × Rn we may identify the tangent space

T(p,v)SNM with a linear subspace of Rn × Rn. Then κm as an exterior form on T(p,v)SNM

equals

dx1 ∧ . . . ∧ dxm ∧
n∑

i=m+1

(−1)i−1vi dvm+1 ∧ · · · ∧ d̂vi ∧ · · · ∧ dvn.

This form does not vanish on T(p,v)SNM . Moreover
∑n

i=m+1(−1)i−1vi dvm+1∧· · ·∧d̂vi∧· · ·∧dvn
is, up to a sign, the volume form of SNpM . �
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Exercise VII.10. Let M ⊂ Rn be a compact m dimensional submanifold. Show that

σn−m−1V olm(M) =

∫
SNM

κm,

where σn−m−1 denotes the volume of Sn−m−1.

Exercise VII.11. Let M be an m-dimensional submanifold of Rn. Then

(1) dκm restricted to the normal bundle NM to M is nowhere zero.

(2) Let α =
∑

i vidxi be the canonical 1-form. Show that α restricted to on NM is

identically zero.

4. Normal (characteistic) cycle

4.1. Lagrangian and Legandrian cycles. We say that a connected submanifold L ⊂
STRn is Legandrian if there is a submanifold M ⊂ Rn such that L is an open subset of SNM .

By Proposition VII.9 every Legandrian submanifold of STRn is canonically oriented.

Remark VII.12. The classical definition of Legandrian manifold says that L is Legandrian

if it is of dimension n− 1 and the canonical 1-form α vanishes on L. It can be shown that both

definitions are equivalent.

We say that a definable set L ⊂ STRn is Legandrian if dimL = n − 1 and Regk(L) is

Legandrian. A Legandrian chain is a formal finite integral combination of Legandrian definable

sets
∑
niLi, with the regular part of each Li oriented. We identify −L and L with the opposite

orientation, as well as L1 + L2 with L1 ∪ L2, if dimL1 ∩ L2 < n− 1 and the orientation on the

regular part of L1 ∪ L2 is given by those of L1 and L2.

A Legandrian cycle is a Legendrian chain whose boundary, in the sense we explain below, is

zero.

Let
∑
mjLj be a Legandrian chain of STRn. We may suppose that Lj are disjoint and

X =
⋃
Lj is k-regular. Then the boundary of L is a formal integral combination of (n − 2)-

dimensional oriented definable C1 manifolds, included in X \X defined as follows. Fix a generic

point of p ∈ X \X that satisfies (6) of Proposition V.11. Fix an orientation of V ∩(X \Regk(X)),

and the compatible with it orientations of Xi. The chain structure on L gives the integral

coefficient ni to each of Xi. Now the coefficient assigned to V ∩ (X \Regk(X)), with the given

orientation, is defined to be
∑
ni.

We say that a connected submanifold L ⊂ TRn is Lagrangian if it is of dimension n and

the canonical 2-form ω = dα vanishes on L. There are two typical examples to Lagrangian

manifolds : the normal bundle NM to a submanifold M of Rn and the graph of the gradient of

a C2 function defined on an open subset of Rn.

We say that a Lagrangian submanifold L is conical (or R+-homogeneous) if it is stable by

the action of R+, t(p, v) = (p, tv). Then its intersection with STRn is Legandrian. Conversely,

the semi-cone over a Legandrian submanifold M is Lagrangian. This way we establish the

correspondence between the conical Lagrangian submanifolds of TRn and the Legandrian sub-

manifolds of STRn, that is bijective if we do not take into account the zero section of TRn, that

is conical and Lagrangian. Similarly to the Legandrian case we define the Lagrangian cycles.
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Proposition VII.13. Let L be a conical Lagrangian cycle of TRn. Then L ∩ STRn is a

Legandrian cycle.

Conversely, let L′ be a Legandrian cycle of STRn and denote by R+L
′ the semi-cone over

L′. Then there exists a Lagrangian cycle L̃ supported on the zero section of TRn such that

L̃ + R+L
′ is a conical Lagrangian cycle. Moreover, L̃ is unique up to a multiple of the zero

section of TRn.
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