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Counting collisions in a si'r?lplé dyné.mical system-with‘two billiard balls can be used to estimate 7 to any accuracy.

@

It’s irrational but well-rounded.
— found on & printed T-ghirt

1. Introduction

The remarkable book of V.I. Arnold on differential equations [1] starts with the following sentence:
“The notion of the configuration space alone let us solve a very difficult mathematical problem.” Then
the problem is formulated and solved. The result of this article confirms Arnold’s idea to use config-
uration space for another problem, the problem of calculating the number = with any precision.
There are many ways to calculate 7 with a good precision; some of them are known from ancient
times, some are pretty recent. The methods use various elegant ideas [2]: geometric (inscribing and

circumscribing regular polygons around a circle gives, in particular, the ancient values 3% and 3»19-

for m); number theory (continued fractions allow us to find the regular fraction 355/113 as the simplest
approximation for = accurate to the one millionth place); analytical (that use series, integrals, and
infinite products); and many others (e.g., the Monte Carlo Method) which require modern electronic
devices ~ powerful calculators and computers.

There is also an interesting experimental method for finding 7 discovered by a French mathemati-
cian Georges Louis Leclerc Comte de Buffon (1707-1788) in his article “Sur le jeu de franc-carreau” [3]
published in 1777. Buffon suggested dropping a needle of length L = D/2 at random on a grid of
parallel lines of spacing D. One drops the needle N times and counts the number of intersections, R,
with the grid lines (note that since the needle is shorter than the distance between two consecutive grid
lines, it intersects each time either exactly one line or none of the lines). The frequency of intersection
with a line is B/N; on the other hand, one can show that the probability for the needle to intersect
a grid line is 1/m (for an arbitrary needle of length, L, the probability equals 2L /7 D). Equating the
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4. Calculate the total number of hits in the system: the number of collisions between the balls plus
the number of reflections of the small ball from the wall.

5. Write down the number IT of hits obtained from item #4 on a sheet of paper.

(Note that we do not know a’priori if the number of hits is finite or infinite; we will prove it is
finite.)

Wall

m
)

Fig. 1. Pushing the ball M towards the ball m

3. Investigation of a particular case

For different values of N the preceding Procedure gives us different values for the number II (some
of which could perhaps be infinity). Thus IT = II(N) is a function of the exponent N of the number
100",

Let us investigate the simplest case N = 0, which corresponds to the equality of the masses:
M = m. The laws of conservation yield the following description of the system’s behavior: if one ball
is in the static position and the other one collides with it, then after the collision, the stationary ball
starts moving with exactly the same velocity in the same direction as the second ball moved previously,
while the second ball stops. It looks like the moving ball penetrates through the still ball without
changing its velocity or affecting the still ball®.

Then the moving ball hits the wall and reflects from it. The ball’s velocity changes to the opposite
one and, after that, it passes through the “transparent” ball and goes to infinity.

As you can see, the total number of hits in the system with M = m is 3: two collisions and one
reflection. Thus, IT{(0) = 3.

Note that 3 is the first digit of 7. In what follows, the number of hits, I1, is 31 (two first digits
of 7) and 314 (three digits of m) for, respectively, M = 100m and M = 100%m, i.e., TI(1) = 31 and
II(2) = 314.

4. The main result

Theorem. The number of hits, Il = TI(N), in the system described in the Procedure is alwoys finite
and equal to o number with N -+ 1 digits,

TI(N) = 314159265358979323846264338327950288419716939937510 . . .,

whose first N digits coincide with the first N decimal digits of the number m (starting with 3).
The rest of the article is devoted to the proof of the theorem.

3Ac:t.uali;.r, the same behavior occurs when both identical balls move: after the collision, they just exchange their
velocities; or, equivalently, they penetrate through each other without any effect upon each other. This reasoning solves
easily the following fairly hard (at the first glance) problem: n identical balls move with the same speed along a line
from left to right, and m other balls of the same kind move with the same speed along that line from right to left; how
many collisions could oceur in the system? The answer is now evident: mn, because each left ball penetrates each right
ball.
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Fig. 3. The configuration space of the system

Step 2 (between the first collision and the first reflection). At the moment t;, both balls begin
to move along the horizontal line £. The small ball moves with some velocity u and the big ball with
velocity v, so that the laws of conservation of momentum and energy hold:

muy -+ My =MV,
mu?/2 + Mv?/2 = MV?/2,

where V is the initial (huge!) velocity of the ball M. We will not solve this system of equations
quantitatively with respect to the variables © and v. Our aim is just to describe the behavior of the
configuration point affer the first collision.

Coming back to the initial dynamical system and using the system of equations (1), we can
conclude that, after the first collision, the ball m will move very fast towards the wall (since the big
ball gives it a big momentum) and the ball M also continues to move, a little bit slower than before,
towards the wall. Both coordinates z(t) and y(t) are decreasing on the time interval after the first
collision but before the reflection of the ball m from the wall. Therefore the configuration point P(¢)
moves along a straight line segment inside the angle AOB, where O is the origin, OA is the positive
y-axis, and OB is the ray y = x outgoing from the origin in the first quadrant. Point P(t) travels
from the side OB to the side O A, approaching the origin O.

Step 3 (reflection from the wall). It is not hard to check that the small ball m moves faster than
the big ball after the first collision, i.e. u > v.
Indeed, first note that v < V. This happens because the big ball gives some momentum to the
small ball and accelerates it, so its new velocity v becomes smaller.
Multiplying the first equation of the system (1) by V and subtracting the double of the second
equation yield
Mu-V + Mv.V =MV?
- mu? 4+ M =MV?
mu(V —u)* + Muv(V —v) =0

Mu(V ~v) = mu(u— V).
AsV —v >0, Mv >0, and mu > 0, we conclude that « —V > 0,s0u>V. Thusu > V > 0.8

For simplicity, we consider the velocity of a ball moving from right to left to be positive, and from left to right to be
negative. One can consider just speeds (the absolute values of velocities) instead of the velocities.
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Fig. 5. v = 3, and the second collision

After that, the process repeats once again. This behavior of the system of the balls is reflected
in the motion of the configuration point P (Figure 6).
It is absclutely unclear what kind behavior P exhibits:

(i) either P approaches the vertex O of the configuration angle AQB forever;

(ii) or P approaches O for a finite period of time, then moves away from O and reflects off the sides
of the angle AOR infinitely many times; ’

(ii) or P makes only finitely many reflections off the angle’s sides, and, from some moment 7p moves
freely and rectilinearly.

Cases (i) and (ii) correspond to infinitely many hits in the system, i.e., collisions between the
balls and reflections from the wall, and case (iii) to finitely many collisions and reflections. The
theorem states that only the third case can occur, where the total number of hits in the system is
IT = 314159265. .. .

"By the way, although P approaches vertex O during a finite period of time, P could male infinitely many reflections
before it will start to move away from vertex O.
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Fig. 7. Linear transformation T

Proof. Note that if point P(z,y) has the velocity vector w = (u,v) = (z(t), y(t)) at moment ¢
(different from a reflection), then point P(¢) has the velocity vector

V= (\/H £(t), VM 9(t)) = (vVm u, VM ”)

at that moment. Thus the linear transformation T' of the configuration space {(z,y)} induces the
same linear transformation in the velocity space {{(i,7)}

Consider the following two cases: Case 1, in which point P(X,Y) reflects from the vertical side
X =0 (the Y-axis) of the angle a; and Case 2, in which P(X,Y") reflects off the side Y = /M/m X.

Case 1: Reflection from the Y-axis.

When the small ball reflects from the wall, its velocity u changes to (—u). Then vector v converts
into vector

vi= (\/ﬁ(-—u), VMU) .
which means = 1 — the billiard reflection law (Figure 8).

Case 2: Reflection from the side Y = /M/m X.

This reflection corresponds to the ball collision. We will consider an interval of time in which
only this collision occurs (i.e., the interval between two successive reflections of the ball m from the
wall).

The system of moving balls has unchanging momentum during this interval of time, and the
collision of the balls does not change it. The energy also doesn’t change (it is always constant during
the whole process).

For the sake of convenience, denote the momentum, p, by const; and twice the energy, 2E, by
consty. Suppose the small ball has velocity u and the big ball has velocity v. The system (1) can be
written as follows:

mu + Mv = consty ,

(1" {mu2 + Mv? = consts .

Some interesting geometry is hidden in the system (1'). Namely, consider the constant vector

W= (v, V)
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we obtain
const

cosp = (m 4+ M2 = consts.
v consts ( ) 3

—_

After reflection, point P moves with a new velocity, v', satisfying the same system (1”). Therefore,
the same reasoning for the angle ¥ of P’s reflection from the o’s side ¥ = /M /m X show that

cos 3 = consts {see Figure 9.}

Consequently,
Y=,

and the billiard law is proven for that reflection. The reduction to the billiard system in the angle o
is finished. We shall call the angle AOB “the billiard configuration space” for the initial system.

m = (vVm VM)
Y

q‘-
«

w

vm

Fig. 9. Reflection from the side Y = /M/m X

7. The number of billiard reflections inside angle «

Lemma 2. (a) The marimal number of reflections of a billiard point inside an angle o, over all
possible billiard trajectories, is finite.

(b) This number equals w/c if w/a is an integer, and equals [x/o]+1 if w/a is not an
integer (where the “[]” is the greatest integer function).

(¢) If the initial billiard ray is parallel to one side of the angle «, then the total number of
reflections for this particular trajectory is one fewer than the mazimum (i.e., equals w/a—1 ifvfa € Z

and [n/a) if nfagZ).

Proof. Let us unfold the angle o together with the billiard trajectory ~ in it. We just reflect
angle « in its sides which the particle hits and consider the image of the trajectory  under those
reflections. The trajectory’s image is a straight line, k, that lies in the corridor of reflected angles (see
Figure 10).
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Fig. 11. Ray k is parallel to the Y -azis

is applicable in this case: the number of reflections equals

m
TI(N) = [m] : (8.1)

This is the precise formula; we will now use an approximation for arctan(10™") to simplify (4).

The idea of the rest part of this section is as follows. If we replace the denominator of the fraction
7/ arctan(10™") with the slightly larger number 1077, we get the slightly smaller fraction 7/107" =
=7 - 10V, if the integer part of the initial fraction and the perturbed fraction are the same, we can
substitute [/ arctan(10™")] by [r-10%]. This will give us N correct digits of .

However, the situation is much more delicate than it seems at first glance: the integer parts of
the two fractions could be differentl Fortunately, if NV is sufficiently large, then they will differ by at
most 1. Let us explain what occurs in more detail.

Denote z = 10™" for a moment. Recall that

ot & el
— T AN I VRN _1yn.2ntl
arctan ¢ = 1+t2—/2( t*) dt—Z( Dz /(2n + 1)
o o »=0 n=0
_ B e
B 3 5 7 T

so arctanz =~z as z — 0. We will substitute = for arctan  in the formula (3).
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then formula (6) yields

II(N) =[x 10Y] +1=31415... a;, 999...9 +1

N—k nines
=31415... (ax, + 1) 000...0 .
N—Fk zeros
So, TI(N) gives only & < N correct digits of «, while the last N — k digits in II(V) are incorrect,
compared to those in 7.

Fortunately, this happens (if it happens!} very rarely and does not affect the general result
concerning the whole sequence of integers IL{N) as N — co: the sequence of first digits in TX(0), T1(1),
II(2), ..., II{(N}, ... will stabilize from some number, II(V}, and eventually we will be able to know
all the digits of number .

But most likely formula (6) is false for all N. Then (5) would always work and II(N) would
always give the precise N digits of w. We discuss this in the next section.

10. Some arithmetical questions and a conjecture

It would be very nice if only formula (5), which gives the correct value for II{N), always applied and
formula (6) was always false.
Let us pose four related questions in this connection.

Question 1. Is the formula (5),

J—

Question 2. Is it true that for any positive irrational number a and for any positive = small

eIl()ugh,
[al(:'a“:]] [:]:]
H

Question 3. Is the equality
ﬂr ~ [ .
arctan(1/N)| — |1/N

true for any natural N big enough?

Question 4. Is the equality

il [
arctan(10~V)| ~ |10~V

Question 2 comes as a broad generalization of Question 1, while Questions 3 and 4 arise from
Question 1 if you substitute 10~ for 1 /N and, respectively, 7 for v2. I am confident that the answer
to the Question 1 is “YES” but cannot prove this. I know, with rigorous proofs, the exact answers to
the other three questions (see the answers together with their proofs in the next section).

true for any natural N big enough?

As for Question 1, the modern mathematics is powerless to answer it; in any event, several leading
specialists in number theory and related topics explained to the author of this article that the modern
mathematics is far from a solution to this problem. Here is a quotation from an e-mail of a famous
Australian mathematician, Alf van der Poorten, to the author: “{..] One state of knowledge is so

REGULAR AND CHAOTIC DYNAMICS, V.8, Ne4, 2003 389



PLAYING POOL WITH 7T

11. Solutions to Questions 2, 3, and 4

Solution to Question 2. The answer to Question 2 is negative.

Statement 1. The equality [ ] = [g] cannot hold for all values of .

arctan o

Proof.
Let a be a positive number (no matter, rational or irrational). Let us set z = tan(a/n). Then
the left hand side of the equality equals n, while the right hand side is strictly less than » (since a/n <

tan(a/n)). (A small shift of the value z = tan a does not change the inequality [ a ] > [E] BN |
arctan x

w
1 . . . L = | T ———— ],
Solution to Question 3. Let us denote Ly [arctan(l/ N )]

Statement 2. For each N > 23, either Ly = [#N] or Lyy; = [7(N + 1)].

Proof.
Assume the contrary: Ly # [tN]and Ly41 # [7(V +1)]. Then Ly > «N and L3 > n{N+1).
By Lemma 3, (b), we have

T T
— < "L A =
arctan x + r ¢

s0, plugging z = 1/N and = = 1/(N + 1) we get two inequalities:

7rN<LN<7rN+% )

and
T

N+1

T{N+1)< Lyp <w(N+1)+

Subtracting of the inequalities yields

T

N+1

I

N < Lysg1—Ln<w+

T —

If N =23, thenﬂ'—%>3 and 7T+NLH<4,SOW€0btaiIl

3<LN+1—LN<4 ,

which is a contradiction because Ly.1 — Ly is an integer. Statement 2 is proven. -

Solution to Question 4. The answer to Question 4 is “YES”:

i) =[5

St ' . i h
atement 3. For natural N big enough, [arctan 107 0§

Proof.
g(x)

We write g{z) =3 (f(x)) asm—>01f£1_}n%}m =0. Asz — 0,

Vi _ 2 2 ﬁ(

2

arctanz T — %4_5@4) - 1— %—%—5(9:3) Tz

3.:2 3
1+'§+5($ ))
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Let us think of the obstacle as a plane mirror. Then the two balls have their mirror images on
the other side of the mirror. When the ball m reflects off the mirror, its image also reflects off the
mirror from the other side; when the two balls collide with each other, their images also collide.

Let us simply remove the mirror and substitute the images of the two balls by real balls with the
same masses, m and M, as their preimages. When the two small balls move towards each other with
the same velocities and then collide, they just exchange their velocities, or, in other words, penetrate
each other without any effect. The pairs of balls (m — —M) and (M — —m) collide simultaneously
and we fix this event as one, not two, collisions. Thus the dynamical system

M——m—-——m - M
counts the same number, I, of hits as the previous system “ wall — — m —~ — M ™ does.
The difference between the two systems consist of the following:

1. The wall in the first system plays the role of a ball of infinite mass, and there is no obstacle or
infinite mass in the second system;

2. The configuration space of the first system is 2-dimensional whereas that of the second system
is 4-dimensional: it is the direct sum of two identical copies of the space for the first system and
has the natural symmetries;

3. In the first system, one should distinguish the hits off the wall and the collisions of the balls.
After a collision with the wall, the momentum of the system (of balls alone} changes, which
does not occur when the balls collide with each other. In the second system one counts only the
collisions of balls and uses only formula (1) or (1).

The commonality between the systems is that they carry out the same function:

count the same number II of hits!

13. Closing remarks

The author created the billiard method for finding @ when he was preparing a mathematical colloquium
talk at Eastern Illinois University about balls’ collisions (the so-called “Sinai’s Problem”). When the
procedure was presented to the audience, no one believed it at first, but then the author gave a proof,
the ease of which convinced everyone.

Later, the author talked about his discovery in several other American universities, with the same
reaction of the audience: first complete distrust and then complete acceptance, due to the obviousness
of the proof.

From the experimental (physical} point of view, the central theorem of the presented article (see
sections “Procedure” and “The main result”) is completely proven: the ratio of two real masses, M/m,
that is used in the procedure of calculating , cannot exceed the number of atoms in our Universe,
which is much smaller than 101909099 (aethally, it is even less than 10%%°); but we know (from the
Internet) that our method gives correct first 100,000,000 digits of 7. However, from mathematical
point of view, the Conjecture is a real challenge.
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