Exercices

- 1. Soit A un anneau (pas nécessairement commutatif). On rappelle que $a \in A$ est un diviseur de zéro à gauche, si $a \neq 0$ et s'il existe $b \in A$ avec $b \neq 0$ et vérifiant ab = 0. De même, on dit que a est un diviseur à droite, si $a \neq 0$ et s'il existe $b \in A$ avec $b \neq 0$ et vérifiant ba = 0.
 - (a) On considère l'anneau $A = \operatorname{Mat}_n(k)$ des matrices carrés de taille $n \geq 2$ à coefficients dans un corps k. Montrer qu'une matrice non-nulle $M \in A$ est un diviseur de zéro à gauche (à droite) si est seulement si M n'est pas inversible.
 - (b) Soit k un corps. On note k[T] l'espace vectoriel des polynômes à coefficients dans k en une variable T et $A = (\operatorname{End}(k[T]), +, \circ)$ l'anneau des endomorphismes (= applications k-linéaires) de k[T] dans lui-même.
 - On considère la dérivation $\partial \in A$ définie par $\partial(P) = P'$. Montrer que ∂ est un diviseur de zéro à gauche, mais pas à droite.
 - Trouver un élément $f \in A$ qui est un diviseur à droite, mais pas à gauche.
- 2. Soit A un anneau unitaire. On dit qu'un élément $a \in A$ est inversible s'il existe un élément $b \in A$ tel que ab = ba = 1. Si A n'est pas commutatif, on définit aussi les notions d'inverse à gauche et inverse à droite : un élément $a \in A$ est inversible à gauche (resp. à droite) s'il existe un élément $b_g \in A$ (resp. $b_d \in A$) tel que $b_g a = 1$ (resp. $ab_d = 1$).
 - (a) Montrer que si un élément a admet un inverse à gauche b_g et un inverse à droite b_d , alors $b_g = b_d$.
 - (b) Soit k un corps de caractéristique 0. On note k[T] l'espace vectoriel des polynômes à coefficients dans k en une variable T et $A = (\operatorname{End}(k[T]), +, \circ)$ l'anneau des endomorphismes (= applications k-linéaires) de k[T] dans lui-même.
 - On considère la dérivation $\partial \in A$ définie par $\partial(P) = P'$. Montrer que ∂ admet un inverse à droite (en le donnant explicitement), mais n'admet pas d'inverse à gauche.
 - Trouver un élément $f \in A$ admettant un inverse à gauche, mais pas d'inverse à droite.
 - Qu'est-ce qui change quand k est de caractéristique p > 0?
- 3. Soit V un k-espace vectoriel de dimension quelconque et $A = (\operatorname{End}(V), +, \circ)$ l'anneau des endomorphismes (= applications k-linéaires) de V dans V.
 - Montrer que $f \in A$ est inversible à gauche si et seulement si f est une application injective.
 - Montrer que $f \in A$ est inversible à droite si et seulement si f est une application surjective.
 - On suppose que V est de dimension finie. Montrer que $f \in A$ est inversible à gauche si et seulement si f est inversible à droite.
- 4. Soit A un anneau unitaire. On note 1 l'unité de A et 0_A le neutre (pour +) de A. On rappelle la définition d'un module (à gauche) M sur l'anneau A.
 - (a) (M, +) est un groupe abélien. On note 0_M le neutre.
 - (b) M est muni d'une opération de A, c'est-à-dire on a une application

$$A \times M \to M$$
, $(a, m) \mapsto a.m$

qui vérifie $-1.m = m, \forall m \in M$

$$-(a+b).m = a.m + b.m, \quad \forall m \in M \quad \forall a, b \in A$$

$$-a.(m+n) = a.m + a.n, \quad \forall m, n \in M \quad \forall a \in A$$

$$-(ab).m = a.(b.m), \forall m \in M \forall a, b \in A$$

Montrer que $0_A.m = 0_M$ et que $(-1).m = -m \quad \forall m \in M$.

- 5. Soit M un sous- \mathbb{Z} -module de \mathbb{Z} . Montrer qu'il existe un entier $n \in \mathbb{Z}$ tel que $M = n\mathbb{Z} \subset \mathbb{Z}$.
- 6. On considère les anneaux $A = \mathbb{Z}/5\mathbb{Z}$ et $B = \mathbb{Z}/30\mathbb{Z}$.
 - (a) Est-ce que A est un B-module?
 - (b) Est-ce que B est un A-module?
- 7. On considère l nombres rationnels $r_1, \ldots, r_l \in \mathbb{Q}$ et l'application

$$\phi: \mathbb{Z}^l \longrightarrow \mathbb{Q}, \quad (a_1, \dots, a_l) \mapsto \sum_{i=1}^l a_i r_i.$$

- (a) Montrer que ϕ est une application \mathbb{Z} -linéaire.
- (b) Exemple : on prend l=2 et $r_1=\frac{1}{2}, r_2=\frac{1}{13}$. Déterminer l'image $\operatorname{im}(\phi)$ de l'application ϕ comme sous- \mathbb{Z} -module de \mathbb{Q} .
- (c) Montrer que ϕ ne peut pas être surjectif en construisant de façon explicite un nombre rationnel à partir des nombres r_1, \ldots, r_l qui n'est pas dans $\operatorname{im}(\phi)$.
- (d) Montrer qu'il existe un nombre rationnel $r \in \mathbb{Q}$ tel que $\operatorname{im}(\phi) = r\mathbb{Z} \subset \mathbb{Q}$.
- 8. Soit A un anneau unitaire. On considère l'anneau B = A[T] des polynômes à coefficients dans A en une variable T et les applications

$$\partial: B \to B, \ \partial(P) = P', \quad \text{ev}_0: B \to A, \ \text{ev}_0(P) = P(0).$$

données par la dérivation des polynômes et l'évaluation en T=0 respectivement.

- (a) Est-ce que ∂ et ev₀ sont des applications A-linéaires? B-linéaires?
- (b) Est-ce que ∂ et ev₀ sont des homomorphismes de groupes? homomorphismes d'anneaux?
- 9. On considère l'anneau de Gauss

$$\mathbb{Z}[i] = \{a + ib \mid a, b \in \mathbb{Z}\}, \text{ avec } i^2 = -1.$$

- (a) Montrer que \mathbb{Z} est un sous-anneau de $\mathbb{Z}[i]$.
- (b) Est-ce que $\mathbb{Z}[i]$ est un \mathbb{Z} -module?
- (c) Est-ce que \mathbb{Z} est un $\mathbb{Z}[i]$ -module?
- (d) Déterminer tous les \mathbb{Z} -modules M vérifiant $\mathbb{Z} \subset M \subset \mathbb{Z}[i]$.
- (e) Parmi ces \mathbb{Z} -modules lesquels sont des $\mathbb{Z}[i]$ -modules?
- (f) Parmi ces \mathbb{Z} -modules lesquels sont des sous-anneaux de \mathbb{Z} ?
- 10. On considère deux idéaux $I_1=n_1\mathbb{Z}$ et $I_2=n_2\mathbb{Z}$ de \mathbb{Z} . Montrer les égalités suivantes.
 - (a) $I_1 + I_2 = PGCD(n_1, n_2)\mathbb{Z}$.
 - (b) $I_1 \cdot I_2 = n_1 n_2 \mathbb{Z}$.
 - (c) $I_1 \cap I_2 = PPCM(n_1, n_2)\mathbb{Z}$.
- 11. On considère deux idéaux I_1 et I_2 d'un anneau A. Montrer que si $I_1 + I_2 = A$, alors $I_1 \cdot I_2 = I_1 \cap I_2$.
- 12. Montrer que l'anneau de Gauss $\mathbb{Z}[i]$ est un anneau intègre.
- 13. Montrer que si K est un corps, alors l'anneau des polynômes K[X] est un anneau intègre.

14. On considère des A-modules N_1, N_2 et M qui vérifient $N_1 \subset N_2 \subset M$. Montrer qu'il existe un isomorphisme

$$M/N_2 \longrightarrow (M/N_1)/(N_2/N_1).$$

- 15. On considère deux A-modules M et L et une application A-linéaire $f: M \to L$. Soit $N \subset M$ un sous-A-module tel que $N \subset \ker(f)$.
 - (a) Montrer qu'il existe une application A-linéaire $\overline{f}: M/N \to L$, qui factorise à travers f, c'est-à-dire qu'on a la relation $\overline{f} \circ \pi = f$, où $\pi: M \to M/N$ est l'application naturelle de passage au quotient.

- (b) Montrer que \overline{f} est injectif si et seulement si $N = \ker(f)$.
- (c) Montrer que \overline{f} est un isomorphisme si et seulement si $N = \ker(f)$ et f est surjectif.
- (d) Application : On considère l'application $\mathbb R$ -linéaire d'évaluation en i d'un polynôme à coefficients réels

$$f: \mathbb{R}[X] \to \mathbb{C}, \quad P \mapsto P(i).$$

Montrer que f induit un isomorphisme d'anneaux $\overline{f}: \mathbb{R}[X]/(X^2+1) \to \mathbb{C}$.

- 16. Soit A un anneau commutatif unitaire et soit $a \in A$. On note (a) l'idéal de A engendré par a. Montrer que (a) = A si et seulement si a est inversible dans A.
- 17. Montrer qu'un idéal maximal est premier.
- 18. Déterminer tous les idéaux premiers (resp. maximaux) de l'anneau Z.
- 19. Déterminer tous les idéaux de l'anneau $\mathbb{R}[X]$. Parmi ces idéaux lesquels sont premiers ? maximaux ?
- 20. Déterminer tous les idéaux de l'anneau $\mathbb{C}[X]$. Parmi ces idéaux lesquels sont premiers ? maximaux ?
- 21. Déterminer si les idéaux suivants sont premiers/maximaux
 - (a) $I = (X^2 2X + 1) \subset \mathbb{R}[X],$
 - (b) $I = (17, X 2) \subset \mathbb{Z}[X],$
 - (c) $I = (X Y) \subset \mathbb{R}[X, Y]$.
- 22. (a) Montrer que l'idéal $(X^2+1)\subset \mathbb{Z}[X]$ engendré par le polynôme $X^2+1\in \mathbb{Z}[X]$ est premier, mais pas maximal.
 - (b) Montrer que l'idéal $(2,X^2+1)\subset \mathbb{Z}[X]$ engendré par 2 et X^2+1 n'est pas maximal. Trouver un idéal I vérifiant

$$(2, X^2 + 1) \not\subseteq I \not\subseteq \mathbb{Z}[X].$$

- (c) Montrer que l'idéal $(3,X^2+1)\subset \mathbb{Z}[X]$ engendré par 3 et X^2+1 est maximal. Décrire l'anneau quotient $\mathbb{Z}[X]/(3,X^2+1)$.
- 23. Soit p un nombre premier et $P \in \mathbb{Z}/p\mathbb{Z}[X]$ un polynôme de degré n à coefficients dans le corps $\mathbb{Z}/p\mathbb{Z}$.
 - (a) Montrer que l'anneau quotient $A = \mathbb{Z}/p\mathbb{Z}[X]/(P)$ est un anneau fini de cardinal p^n .

- (b) Montrer que A est un corps si et seulement si P est un polynôme irréductible.
- 24. Soit $I=(2,X^2+1)\subset \mathbb{Z}[X]$ l'idéal engendré par 2 et X^2+1 . Montrer que I n'est pas principal, c'est-à-dire que I ne peut pas être engendré par un seul polynôme $P\in \mathbb{Z}[X]$.
- 25. Soit $P = \sum_{i=0}^{d} a_i X^i \in \mathbb{Z}[X]$ un polynôme non nul à coefficients entiers $a_i \in \mathbb{Z}$. On considère le contenu de P noté c(P) et défini comme

$$c(P) = PGCD(a_0, a_1, \dots, a_d).$$

- (a) Montrer que c(aP) = ac(P) pour tout $a \in \mathbb{Z}$ et $P \in \mathbb{Z}[X]$.
- (b) Montrer que c(PQ) = c(P)c(Q) pour tout $P, Q \in \mathbb{Z}[X]$. (Indication : se ramener au cas c(P) = c(Q) = 1, ensuite par l'absurde supposer qu'il existe un nombre premier p qui divise c(PQ) et réduire modulo p, c'est-à-dire utiliser l'homomorphisme d'anneaux $\mathbb{Z}[X] \to \mathbb{Z}/p\mathbb{Z}[X]$.)
- (c) Application : Soit $P \in \mathbb{Z}[X]$ un polynôme avec $\deg(P) \geq 2$. On suppose qu'il existe une factorisation $P = A \cdot B$ dans $\mathbb{Q}[X]$, c'est-à-dire $A, B \in \mathbb{Q}[X]$ vérifiant $0 < \deg(A) < \deg(P)$ et $0 < \deg(B) < \deg(P)$, alors il existe une factorisation de P dans $\mathbb{Z}[X]$. (Attention : la factorisation dans $\mathbb{Z}[X]$ n'est pas nécessairement donnée par $P = A \cdot B$.)
- (d) Application : Soient $a, b \in \mathbb{Z}$ deux entiers premiers entre eux avec $a \neq 0$. On note $(aX + b) \subset \mathbb{Z}[X]$ l'idéal engendré par le polynôme aX + b dans $\mathbb{Z}[X]$. Montrer que $P \in (aX + b)$ si et seulement si $P(-\frac{b}{a}) = 0$.
- 26. On considère les deux anneaux A = K[X] et $B = K[X^n]$, où K est un corps et $n \in \mathbb{N}^*$. Montrer que A est un B-module libre de rang n. Montrer que $\{1, X, X^2, \dots, X^{n-1}\}$ est une B-base de A.
- 27. On considère le sous-ensemble M de $\mathbb Q$ donné par

$$M = \{ \frac{a}{2^n} \mid a \in \mathbb{Z} \text{ et } n \in \mathbb{N} \}.$$

- (a) Montrer que M est un sous-Z-module de \mathbb{Q} .
- (b) On condidère l'application $f: \mathbb{Z}[X] \to \mathbb{Q}$ donné par $P \mapsto P(\frac{1}{2})$.
 - i. Montrer que f est \mathbb{Z} -linéaire.
 - ii. Montrer que im(f) = M.
 - iii. Montrer que $\ker(f) = (2X 1)$.
 - iv. En déduire qu'il existe un isomorphisme Z-linéaire

$$\overline{f}: \mathbb{Z}[X]/(2X-1) \to M.$$

- (c) Est-ce que M est un \mathbb{Z} -module de type fini?
- 28. On considère l'application $f: \mathbb{Z}[X] \to \mathbb{R}$ définie par $f(P) = P(\sqrt{2})$.
 - (a) Montrer que im(f) est un \mathbb{Z} -module libre et en donner une base.
 - (b) Déterminer $\ker(f)$.
 - (c) Mêmes questions pour l'application f définie par $f(P) = P(\pi)$.
- 29. Montrer que l'anneau de Gauss $\mathbb{Z}[i]$ est euclidien pour la norme complexe.
- 30. Montrer que l'anneau $\mathbb{Z}[i\sqrt{2}]$ est euclidien pour la norme complexe.
- 31. Montrer que $\mathbb{Z}[X]$ n'est pas un anneau principal.
- 32. Montrer que $\mathbb{R}[X,Y]$ n'est pas un anneau principal en montrant que l'idéal (X,Y) n'est pas principal.

- 33. On considère l'anneau de Gauss $\mathbb{Z}[i]$.
 - (a) Déterminer les inversibles de $\mathbb{Z}[i]$
 - (b) Soit $p \in \mathbb{N}$ un nombre premier. Montrer qu'il y a une équivalence entre les deux propriétés suivantes
 - i. Il existe $a, b \in \mathbb{Z}$ tel que $p = a^2 + b^2$.
 - ii. Il existe des éléments non-inversibles $u, v \in \mathbb{Z}[i]$ tel que p = uv.
- 34. En faisant des opérations sur les lignes et les colonnes, calculer les facteurs invariants des matrices à coefficients entiers suivantes

$$\begin{pmatrix} 1 & 2 \\ 6 & 17 \\ -3 & -6 \end{pmatrix}, \qquad \begin{pmatrix} 1 & -2 & 1 \\ 2 & 2 & 8 \\ 5 & -10 & 5 \end{pmatrix}.$$

En déduire les classes d'isomorphisme des noyaux et conoyaux des applications \mathbb{Z} -linéaires de \mathbb{Z}^n dans \mathbb{Z}^m déterminées par ces deux matrices.

35. On considère l'application

$$f: \mathbb{Z}[i] \to \mathbb{Z}/5\mathbb{Z}, \qquad a+ib \mapsto a+3b \mod 5.$$

- (a) Est-ce que f est un homomorphisme d'anneaux?
- (b) Montrer que ker(f) = (2+i).
- (c) En déduire qu'on a un isomorphisme d'anneaux $\overline{f}: \mathbb{Z}[i]/(2+i) \to \mathbb{Z}/5\mathbb{Z}$.
- 36. Soit $z = u + iv \in \mathbb{Z}[i]$ avec PGCD(u, v) = 1. On pose $n = u^2 + v^2$.
 - (a) Montrer qu'il existe un entier $c \in \{0, \dots, n-1\}$ vérifiant $u + cv \equiv 0$ [n]. (Indication : Si $v \neq 0$, montrer que v est inversible dans $\mathbb{Z}/n\mathbb{Z}$ et prendre $\overline{c} = -uv^{-1} \in \mathbb{Z}/n\mathbb{Z}$)
 - (b) Montrer que l'entier c vérifie la congruence $c^2+1\equiv 0 \ [n].$
 - (c) Montrer que l'application

$$f: \mathbb{Z}[i] \to \mathbb{Z}/n\mathbb{Z}, \qquad a+ib \mapsto a+cb \mod n$$

est un homomorphisme d'anneaux qui induit un isomorphisme

$$\overline{f}: \mathbb{Z}[i]/(u+iv) \to \mathbb{Z}/n\mathbb{Z}.$$

- 37. (a) Calculer PGCD(3, 2+i) et PGCD(6+3i, 1+3i) dans l'anneau de Gauss $\mathbb{Z}[i]$.
 - (b) Déterminer le conoyau de l'application

$$\mathbb{Z}[i] \to \mathbb{Z}[i] \times \mathbb{Z}[i], \qquad z \mapsto (3z, (2+i)z).$$

(c) Montrer que le conoyau de l'application

$$\mathbb{Z}[i] \to \mathbb{Z}[i] \times \mathbb{Z}[i], \qquad z \mapsto ((6+3i)z, (1+3i)z).$$

est donnée par l'application

$$\mathbb{Z}[i] \times \mathbb{Z}[i] \to \mathbb{Z}[i] \times \mathbb{Z}/5\mathbb{Z}, \qquad (z_1, z_2) \mapsto ((1+i)z_1 - 3z_2, \overline{f}(z_1)),$$

5

où \overline{f} est défini dans l'exercice précédent.

38. Soit p un nombre premier $\neq 2$. On considère les deux applications $f, g: (\mathbb{Z}/p\mathbb{Z})^* \to (\mathbb{Z}/p\mathbb{Z})^*$ définies par

$$f(x) = x^2$$
 et $g(x) = x^{\frac{p-1}{2}}$ $\forall x \in (\mathbb{Z}/p\mathbb{Z})^*$.

- (a) Montrer que ker(g) = im(f).
- (b) En déduire que les 3 propositions suivantes sont équivalentes :
 - i. $p \equiv 1 \mod 4$
 - ii. $\overline{-1}$ est un carré dans $\mathbb{Z}/p\mathbb{Z}$
 - iii. $X^2 + \overline{1} \in \mathbb{Z}/p\mathbb{Z}[X]$ n'est pas un polynôme irréductible
- 39. On considère deux entiers $a, b \in \mathbb{N}^*$ et on note $d = \operatorname{PGCD}(a, b)$ et $m = \operatorname{PPCM}(a, b)$.
 - (a) Montrer qu'on a une suite exacte de groupes

$$0 \to \mathbb{Z}/m\mathbb{Z} \xrightarrow{i} \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z} \xrightarrow{p} \mathbb{Z}/d\mathbb{Z} \to 0,$$

où les homomorphismes i et p sont définis par

$$i(x[m]) = (x[a], x[b])$$
 et $p(x_1[a], x_2[b]) = x_1[d] - x_2[d]$.

(b) On note $u, v \in \mathbb{Z}$ les entiers apparaissant dans l'identité de Bézout au + bv = d et on note $\alpha = \frac{a}{d}$ et $\beta = \frac{b}{d}$. On définit les homomorphismes p' et i'

$$p': \mathbb{Z}/d\mathbb{Z} \to \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}, \quad p'(x[d]) = (x\alpha u[a], -x\beta v[b])$$

$$i': \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}, \quad i'(x_1[a], x_2[b]) = \beta v x_1 + \alpha u x_2[m].$$

Montrer que p' et i' sont des scindages de la suite exacte précédente, c'est-à-dire que

$$i' \circ i = \text{Id}$$
 et $p \circ p' = \text{Id}$.

(c) En déduire un isomorphisme

$$\Phi: \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z} \longrightarrow \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/d\mathbb{Z},$$

qu'on donnera de manière explicite.

- 40. Déterminer les facteurs invariants des groupes abéliens suivants
 - (a) $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$
 - (b) $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/15\mathbb{Z}$
 - (c) $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$
- 41. Soit p un nombre premier. Parmi les groupes d'ordre p^4 suivants, trouver ceux qui sont isomorphes
 - (a) $(\mathbb{Z}/p\mathbb{Z})^4$
 - (b) $(\mathbb{Z}/p^2\mathbb{Z}) \times (\mathbb{Z}/p^2\mathbb{Z})$
 - (c) $(\mathbb{Z}/p^3\mathbb{Z}) \times (\mathbb{Z}/p\mathbb{Z})$
 - (d) $(\mathbb{Z}/p^4\mathbb{Z})$
 - (e) $\ker(f)$, $f: (\mathbb{Z}/p\mathbb{Z})^5 \to \mathbb{Z}/p\mathbb{Z}$, $(x_1, \dots, x_5) \mapsto x_1 + \dots + x_5$
 - (f) $\ker(q), g: (\mathbb{Z}/p^5\mathbb{Z}) \to \mathbb{Z}/p^5\mathbb{Z}, x \mapsto px$

42. On considère les deux matrices

$$M_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad M_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

- (a) Calculer les invariants de similitude, ainsi que les polynômes minimaux et caractéristiques de M_1 et M_2 .
- (b) Est-ce que M_1 et M_2 sont semblables?
- 43. Déterminer les invariants de similitude des matrices

$$A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 1 \\ 2 & -2 & -2 \end{pmatrix}, \qquad B = \begin{pmatrix} 3 & 2 & -5 \\ 2 & 6 & -10 \\ 1 & 2 & -3 \end{pmatrix}.$$

44. On considère la matrice de Jordan d'ordre r

$$J_r(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & 0 & \lambda & 1 \\ 0 & \dots & 0 & 0 & \lambda \end{pmatrix}$$

avec $\lambda \in K$ sur la diagonale et 1 au-dessus. Calculer par récurrence sur r les invariants de similitude de la matrice $J_r(\lambda)$.

- 45. Déterminer à similitude près toutes les matrices M carrées d'ordre 4 nilpotentes, c'est-à-dire vérifiant $M^4 = 0$. Donner pour chaque classe de similitude un représentant.
- 46. Déterminer le corps de fractions $Fr(\mathbb{Z}[i])$ de l'anneau de Gauss $\mathbb{Z}[i]$.
- 47. Donner le degré des extensions de corps de Q suivantes :

$$\mathbb{Q}(\sqrt{2}), \qquad \mathbb{Q}(\sqrt{3}), \qquad \mathbb{Q}(\sqrt{2}, \sqrt{3}), \qquad \mathbb{Q}(\sqrt{2} + \sqrt{3}).$$

- 48. (a) Donner le polynôme minimal de $\sqrt{2} + \sqrt{3}$ sur \mathbb{Q} , ainsi que sur $\mathbb{Q}(\sqrt{3})$.
 - (b) Donner le polynôme minimal de $\sqrt{2} \sqrt{3}$ sur \mathbb{Q} .
- 49. Donner le degré de l'extension $\mathbb{Q}(\sqrt{2}, \sqrt[3]{7})$ de \mathbb{Q} .
- 50. On considère l'extension de corps $L = \mathbb{Q}[X]/(X^3 2)$ de \mathbb{Q} et on note $\omega_1, \omega_2, \omega_3$ les trois racines complexes du polynôme $X^3 2$.

7

- (a) Donner le degré $[L:\mathbb{Q}].$
- (b) Pour chacune des trois racines complexes on note L_i l'image de l'application

$$\phi_i: L \to \mathbb{C}, \quad \overline{X} \mapsto \omega_i.$$

Donner une base de chaque \mathbb{Q} -espace vectoriel L_i .

- (c) Déterminer les intersections $L_i \cap L_j$ pour $i \neq j$.
- 51. On considère le corps fini $\mathbb{F}_4 = \mathbb{F}_2[X]/(X^2 + X + 1)$.
 - (a) Donner une base de \mathbb{F}_4 comme \mathbb{F}_2 -espace vectoriel.
 - (b) Etablir la table de multiplication de \mathbb{F}_4 .

52. On considère les deux polynômes dans $\mathbb{F}_2[X]$

$$P_1 = X^3 + X^2 + 1$$
 et $P_2 = X^3 + X + 1$.

- (a) Montrer que P_1 et P_2 sont les seuls polynômes irréductibles de degré 3 dans $\mathbb{F}_2[X]$.
- (b) On note L_i le corps fini $\mathbb{F}_2[X]/(P_i)$. On considère le morphisme de \mathbb{F}_2 -algèbres

$$\Phi: \mathbb{F}_2[X] \to \mathbb{F}_2[X], \quad X \mapsto X + 1.$$

Montrer que Φ est un isomorphisme.

- (c) Montrer que Φ induit un isormorphisme de corps de L_1 avec L_2 .
- 53. Pour chacune des extensions suivantes $K \subset L$ déterminer le groupe ${\rm Aut}_K(L)$ des automorphismes de L sur K
 - (a) $K = \mathbb{Q}$ et $L = \mathbb{Q}(\sqrt{2})$
 - (b) $K = \mathbb{Q}(\sqrt{2})$ et $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$
 - (c) $K = \mathbb{Q}$ et $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$
 - (d) $K = \mathbb{Q}$ et $L = \mathbb{Q}(\sqrt{2} + \sqrt{3})$
 - (e) $K = \mathbb{F}_2$ et $L = \mathbb{F}_4$
 - (f) $K = \mathbb{F}_2$ et $L = \mathbb{F}_8$
- 54. On considère l'extension L de $\mathbb Q$ engendré par $\sqrt[3]{2}$ et $\omega=e^{\frac{2i\pi}{3}}$ dans $\mathbb C$

$$L = \mathbb{Q}(\sqrt[3]{2}, \omega).$$

- (a) Déterminer le degré $[L:\mathbb{Q}]$.
- (b) Déterminer le groupe des automorphismes $\operatorname{Aut}_{\mathbb{O}}(L)$.
- (c) Donner un élément primitif ainsi que son polynôme minimal.
- 55. Soit K un corps. On note K(X) le corps de fractions rationnelles en X et à coefficients dans K. Est-ce que les extensions suivantes sont algébriques? finies? Si oui, donner leur degré.
 - (a) $K \subset K(X)$
 - (b) $K(X^2) \subset K(X)$
 - (c) $K(\frac{1}{X^3+X}) \subset K(X)$
 - (d) $K(\frac{X-1}{X+1}) \subset K(X)$
- 56. Soit K un corps et $\alpha \in L$, où L est une extension de K. Montrer que α est algébrique sur K si et seulement si $K(\alpha)$ est une extension finie de K.
- 57. On considère le sous-ensemble $\overline{\mathbb{Q}}$ de \mathbb{C} défini par

$$\overline{\mathbb{Q}} = \{ \alpha \in \mathbb{C} \mid \alpha \text{ alg\'ebrique sur } \mathbb{Q} \}.$$

Montrer que $\overline{\mathbb{Q}}$ est un corps algébriquement clos. On pourra utiliser le fait que \mathbb{C} est algébriquement clos.

- 58. Soit K un corps fini d'ordre p^n avec p un nombre premier. En utilisant la correspondance de Galois déterminer tous les sous-corps de K. Exemple : donner la liste de tous les sous-corps de \mathbb{F}_{64} .
- 59. Soit K un corps de caractéristique p > 0. On note K(X) le corps de fractions rationnelles en X et à coefficients dans K.

(a) Montrer que l'extension $K(X^p) \subset K(X)$ est non-séparable de degré p et que

$$\operatorname{Aut}_{K(X^p)}(K(X)) = \{\operatorname{id}\}.$$

(b) Montrer que l'extension $K(X^p-X)\subset K(X)$ est séparable de degré p et que

$$\operatorname{Aut}_{K(X^p-X)}(K(X)) = \mathbb{Z}/p\mathbb{Z} = \langle \sigma \rangle,$$

où σ est l'automorphisme de K(X) défini par $\sigma(X) = X + 1$.

- 60. On considère le polynôme $P = X^3 + 3 \in \mathbb{Q}[X]$. Soit L le corps de décomposition de P dans \mathbb{C} . On note $\omega = e^{\frac{2i\pi}{6}} \in \mathbb{C}$.
 - (a) Ecrire les racines de P en fonction de $\sqrt[3]{3}$ et ω .
 - (b) Déduire que P est irréductible sur \mathbb{Q} .
 - (c) Montrer que $\omega \in L$.
 - (d) Déterminer le polynôme minimal de ω sur \mathbb{Q} ainsi que sur $\mathbb{Q}(\sqrt[3]{3})$.
 - (e) Déduire que $[L:\mathbb{Q}]=6$ et que $\mathrm{Gal}_{\mathbb{Q}}(L)=\mathcal{S}_3$.
 - (f) Donner la liste des sous-corps de L contenant $\mathbb Q.$ Donner un générateur pour chaque sous-corps.
 - (g) On considère le polynôme $Q = X^6 9$. Montrer que L est le corps de décomposition de Q. On identifie $\operatorname{Gal}_{\mathbb{Q}}(L)$ à un sous-groupe du groupe symétrique \mathcal{S}_6 via son action sur les racines de Q. Donner la liste des éléments de $\operatorname{Gal}_{\mathbb{Q}}(L)$ comme sous-groupe de \mathcal{S}_6 .
- 61. On considère le polynôme $P = X^6 3 \in \mathbb{Q}[X]$. Soit L le corps de décomposition de P dans \mathbb{C} . On note $\omega = e^{\frac{2i\pi}{6}} \in \mathbb{C}$.
 - (a) Montrer que $L = \mathbb{Q}(\sqrt[6]{3}, \omega)$.
 - (b) Montrer qu'on a des inclusions de corps

$$\mathbb{Q} \subset \mathbb{Q}(\sqrt{3}) \subset \mathbb{Q}(\sqrt[6]{3})$$
 et $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{3}) \subset \mathbb{Q}(\sqrt[6]{3})$.

- (c) Justifier que $\sqrt[6]{3} \notin \mathbb{Q}(\sqrt{3})$.
- (d) Montrer que $[L:\mathbb{Q}(\sqrt{3})]=6$ et que $[L:\mathbb{Q}]=12$.
- (e) En identifiant $\operatorname{Gal}_{\mathbb{Q}}(L)$ à un sous-groupe de \mathcal{S}_6 donner la liste des éléments de $\operatorname{Gal}_{\mathbb{Q}}(L)$.
- (f) Donner la liste des sous-corps M de L contenant $\mathbb Q$. Pour chaque M dire si M est une extension galoisienne sur $\mathbb Q$ et donner un système de générateurs.
- 62. Pour $n \in \mathbb{N}^*$ soit $\Phi_n \in \mathbb{C}[X]$ le polynôme unitaire dont les racines sont simples, égales aux racines primitives n-ièmes de l'unité dans \mathbb{C} . Le polynôme Φ_n est appelé le n-ième polynôme cyclotomique.
 - (a) Montrer que $\prod_{d|n} \Phi_d = X^n 1$. En déduire par récurrence que pour tout $n \ge 1$ $\Phi_n \in \mathbb{Z}[X]$. (Indication : utiliser la multiplicativité du contenu d'un polynôme à coefficients entiers).
 - (b) Montrer que le corps de décomposition du polynôme X^n-1 est égal à l'extension $L=\mathbb{Q}(\zeta)$, où $\zeta=e^{\frac{2i\pi}{n}}\in\mathbb{C}$.
 - (c) Montrer que l'extension $\mathbb{Q} \subset L$ est galoisienne.
 - (d) Soit $\sigma \in \operatorname{Gal}_{\mathbb{Q}}(L)$. Montrer qu'il existe un entier l premier à n tel que $\sigma(\zeta) = \zeta^{l}$.
 - (e) Construire un homomorphisme de groupes injectif

$$\iota: \operatorname{Gal}_{\mathbb{Q}}(L) \hookrightarrow (\mathbb{Z}/n\mathbb{Z})^*.$$

(Remarque : Cet homomorphisme ι est en fait un isomorphisme, ce qui implique Φ_n est le polynôme minimal de ζ . La démonstration de ce résultat est plus difficile).

- 63. Suite de l'exercice précédent. On admet que $\operatorname{Gal}_{\mathbb{Q}}(L) = (\mathbb{Z}/n\mathbb{Z})^*$. On suppose dans ce exercice que n = 11.
 - (a) Justifier que $Gal_{\mathbb{Q}}(L) = \mathbb{Z}/10\mathbb{Z}$.
 - (b) Soit c la conjugaison complexe. Justifier que $c \neq \text{Id dans } \text{Gal}_{\mathbb{Q}}(L)$.
 - (c) On pose $H = \langle c \rangle \subset \operatorname{Gal}_{\mathbb{Q}}(L)$. Montrer que $\zeta + \overline{\zeta}$ est un générateur du sous-corps L^H de L fixé par H. (Indication : Calculer le polynôme minimal de ζ sur $\mathbb{Q}(\zeta + \overline{\zeta})$)
 - (d) Montrer que l'extension $\mathbb{Q} \subset L^H$ est galoisienne et que $\operatorname{Gal}_{\mathbb{Q}}(L^H) = \mathbb{Z}/5\mathbb{Z}$.
 - (e) En déduire le polynôme minimal de $\zeta + \overline{\zeta}$ sur \mathbb{Q} . (Réponse : $X^5 + X^4 4X^3 3X^2 + 3X + 1$)
 - (f) On considère le sous-groupe $H' \subset \operatorname{Gal}_{\mathbb{Q}}(L)$ d'ordre 5. Montrer que H' est engendré par l'automorphisme $\zeta \mapsto \zeta^4$. Trouver un générateur de l'extension $\mathbb{Q} \subset L^{H'}$ ainsi que son polynôme minimal. (Réponse : générateur $\zeta + \zeta^4 + \zeta^5 + \zeta^9 + \zeta^3$, polynôme minimal $X^2 + X + 3$).
- 64. Soient P,Q deux polynômes séparables dans K[X] sans racine commune dans une clôture algébrique de K. On note L_P,L_Q et L_{PQ} les corps de décomposition des polynômes P,Q et PQ.
 - (a) Montrer que l'extension $K \subset L_{PQ}$ est galoisiennne.
 - (b) Montrer qu'on a un homomorphisme de groupes

$$\operatorname{Gal}_K(L_{PQ}) \hookrightarrow \operatorname{Gal}_K(L_P) \times \operatorname{Gal}_K(L_Q)$$

injectif.

(c) Etudier le cas particulier $K = \mathbb{Q}$, $P = X^2 + 1$ et $Q = X^4 + 1$.