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Abstract

This paper deals with a model for traffic flow based on a system of
conservation laws [2]. We construct a solution of the Riemann Problem
at an arbitrary junction of a road network. Our construction provides
a solution of the full system. In particular, all moments are conserved.
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1 Introduction

Macroscopic modelling of vehicular traffic started with the work of Lighthill
and Whitham (LWR) [25]. Since then there has been intense discussion
and research, see [26, 8, 2, 19, 20, 21, 6, 24] and the references therein.
Today, fluid dynamic models for traffic flow are appropriate to describe
traffic phenomena as for example congestion and stop-and-go waves [18,
14, 22]. The case of road networks based on the LWR model has been
considered in particular in [17, 5, 16]. In a recent preprint [12] Garavello
and Piccoli consider a road network based on the Aw–Rascle (AR) model [2]
of traffic flow. We thank them for the preprint. Here, in contrast to [12], we
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†Laboratoire J. A. Dieudonné, Université de Nice, F-06108 Nice Cedex 2, France.

rascle@math.unice.fr

1



propose a modelling of the junctions conserving the mass and the pseudo-
”momentum” ρv w. We will discuss below further differences between the
two modelings.

We consider a finite directed graph as a model for a road network with
unidirectional flow. Each road i = 1, . . . , I is modelled by an interval Ii :=
[ai, bi] ⊂ R possibly with ai = −∞ or bi = ∞. Each vertex of the graph
corresponds to a junction. For a fixed junction k the set δ−k contains all road
indices i which are incoming roads, so that ∀i ∈ δ−k : bi = k. Similarly, δ+

k

denotes the indices of outgoing roads: ∀j ∈ δ+
k : aj = k. We skip the index

k whenever the situation is clear.

The evolution of ρi(x, t) and vi(x, t) on each road i is given by the AR
model [2]

∂tρi + ∂x(ρivi) = 0, (1.1a)

∂t(ρiwi) + ∂x(ρiviwi) = 0, (1.1b)

wi = vi + pi(ρi), (1.1c)

where for each i ρ 7→ pi(ρ) is a known function (“traffic pressure”) with the
following properties

∀ρ : ρp′′i (ρ)) + 2p′i(ρ) > 0 and pi(ρ) ∼ ργ near ρ = 0 (1.2)

and where γ > 0. The conservative form of (1.1) is

∂t

(

ρi

yi

)

+ ∂x

(

yi − ρipi(ρi)
(yi − ρipi(ρi))yi/ρi

)

= 0,

where yi = ρiwi = ρ(vi + pi(ρi)). Since wi and vi are related by (1.1), we
choose to describe solutions in terms of ρi and ρivi. For a motivation and a
complete discussion of these equations we refer to Section 2 and reference [2],
respectively.

We consider weak solutions of the network problem as in [17]: Given a set
i = 1, . . . , I of smooth functions φi : [0, +∞] × Ii → R

2 having compact
support in Ii = [ai, bi], which are ”smooth” across each junction k, i.e.,

φi(bi) = φj(aj) ∀i ∈ δ−k ,∀j ∈ δ+
k . (1.3)

Then a set of functions

Ui = (ρi, ρivi), i = 1, . . . , I (1.4)
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is called a weak solution of (1.1) if and only if equations (1.5) hold for all
families of test functions {φi}i∈I with the property (1.3).

I
∑

i=1

∫ ∞

0

∫ bi

ai

(

ρi

ρiwi

)

· ∂tφi +

(

ρivi

ρiviwi

)

· ∂xφidxdt

−

∫ bi

ai

(

ρi,0

ρi,0wi,0

)

· φi(x, 0)dx = 0, (1.5a)

wi(x, t) = vi(x, t) + p†i (ρi(x, t)). (1.5b)

Here, Ui,0(x) =
(

ρi,0(x), (ρi,0vi,0)(x)
)

are the initial data. The functions

p†i (·) are initially unknown. The explicit form of each p†i depends on the

initial data and the type of junction. Near any junction k the function p†i is
equal to pi for all incoming roads. The same is true on all outgoing roads
of the junction if there is only one incoming road. This is discussed in
Sections 3 and 4. In Section 6 we discuss the case where p†i 6= pi and give

arguments for the necessity of introducing p†i . At this point let us just note

that in the general case p†i depends on a mixture of the incoming flows.

In the case of a single junction we derive from (1.5a), (1.5b) the Rankine-
Hugoniot conditions for piecewise smooth solutions

∑

i∈δ−

(ρivi)(b
−
i , t) =

∑

i∈δ+

(ρivi)(a
+
i , t), (1.6a)

∑

i∈δ−

(ρiviwi)(b
−
i , t) =

∑

i∈δ+

(ρiviwi)(a
+
i , t). (1.6b)

Properties (1.6a) and (1.6b) correspond to conservation of mass and of
(pseudo)-“momentum”. We remark that the solution constructed in [12]
does not conserve the (pseudo-) “momentum”, see Proposition 2.3 in [12]
and therefore is not a weak solution in the sense of (1.5a), (1.6a) and (1.6b).

In the next sections we discuss the construction of weak solutions in the
sense of (1.5) for initial data constant on each road:

(ρi,0, ρi,0vi,0) = Ui,0 = consti. (1.7)

We consider a single junction. We look for solutions to Riemann problems
on each road i as if the road were extended to ] −∞,∞[:

∂t

(

ρi

ρiwi

)

+ ∂x

(

ρivi

ρiviwi

)

= 0, Ui(x, 0) =

(

U− x < x0

U+ x > x0

)

. (1.8)
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Depending on the road, only one of the Riemann data is defined for t = 0:

If i ∈ δ− : U− = Ui,0 , x0 = bi and if i ∈ δ+ : U+ = Ui,0 , x0 = ai. (1.9)

We construct an (entropy) solution to (1.5) such that all generated waves
have non-positive (i ∈ δ−) or non-negative (i ∈ δ+) speed. Moreover, the
solutions satisfy conditions (1.6a) and (1.6b).

We have to impose additional conditions [12] to obtain a unique solution.
First, the flux ρv is nonnegative. Next, it has to be distributed according
to a priori given ratios, see Section 3 to 7 for further details. Finally, we
require that the total flux be maximized subject to the other conditions.

The paper is organized as follows. In Section 2 we discuss the general prop-
erties of the Riemann problem for the equation (1.1). First, we construct the
demand and supply functions, which are necessary to determine the flux at
the junction. Refer to [23, 9, 10] for the presentation of supply and demand
functions for first-order models. Next, we define admissible states on each
road at the junction and finally we construct all intermediate states in the
solution of (1.1).

In Section 3 we consider the easiest possible situation, namely, two roads
connected by a junction. In Section 4 we extend the results to a junction
with one incoming and two outgoing roads. For the results on two incoming
and one outgoing road we need a description of the mixture of flows on the
outgoing road. Therefore we briefly revisit the main results of [1] and [3] in
Section 5. In Section 6 we solve the case of two incoming and two outgoing
roads and define homogenized flow. In Section 7 we consider the general
case of an intersection with an arbitrary number of incoming and outgoing
roads.

2 Preliminary discussion

The conservative variables are ρi and yi := ρiwi. We assume ∀i : 0 ≤ ρi ≤
ρmax = 1 and ∀i : 0 ≤ vi ≤ vmax = 1. Furthermore, we set

Ui := (ρi, ρivi), U := (ρ, ρv) (2.1)

and we skip the subindex i at ρi and vi whenever the intention is clear. The
system (1.1) is strictly hyperbolic if ρi > 0 for all i. The eigenvalues are

λ1,i(U) = v − ρp′i(ρ) and λ2,i(U) = v. (2.2)
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The right eigenvectors corresponding to λ1,i and λ2,i are

r1,i =

(

1
−p′i(ρ)

)

and r2,i =

(

1
0

)

.

Let ∇ denote the gradient with respect to (ρ, v). We recall that k is called a
genuinely nonlinear characteristic family if ∇λk,i(ρ, v) ·rk,i(ρ, v) 6= 0,∀(ρ, v).
Depending on the initial data, the associated waves are rarefaction or shock
waves. If ∇λk,i(ρ, v) · rk,i(ρ, v) = 0,∀(ρ, v), then k is called a linearly degen-
erated characteristic family and the associated waves are contact disconti-
nuities. We refer to Definition 7.2.1 and 7.5.1 in [7] for more details.

Here, k = 1 is a genuinely nonlinear and k = 2 is linearly degenerated
characteristic family for all roads i. Moreover, the 1–shock and 1–rarefaction
curves coincide and we have a 2-contact discontinuity, see [2]. For each road
i the Riemann invariants are

wi(U) = v + pi(ρ) and vi(U) = v. (2.3)

Let us be more specific on the physical interpretation of w and p(·). Other
descriptions than (2.3) could be envisioned. In particular, the additive role
of pi(·) in wi (like in the Payne-Whitham model, [26]) is not essential. It
was introduced in [2] for ”historical” reasons, but it has a draw-back: The
associated individual fundamental diagram, see Figure 1 below, implies a
zero speed at a maximal (jam) traffic density which is different for each
category of car-driver pair, i.e., each pairing (wi, pi). We keep the above
expression (2.3) throughout the paper for sake of simplicity. As noted in [3],
the only crucial property of wi is that it is a Lagrangian marker. As an
example assume that on each road i, the (pseudo)- pressure is pi(ρ) :=
vmax − Vi(ρ), where e.g. vmax is the maximal speed on all roads and Vi(ρ)
is an equilibrium speed on road i. Therefore, the function U := (ρ, v) →
wi(U) = v + pi(ρ) describes the distance to equilibrium. The ”momentum”
equation tells us that each value w is a Lagrangian property, like a label or
a color. Hence, when passing from road i to another road j, each driver will
preserve its ”color”. In other words, he will keep the same value w, which
will now satisfy:

wj(U) = w = wi(U).

This simple observation will be essential in the sequel. In particular, it will
lead to a very natural homogenization problem in Section 6.

The classical description by first order models is just a particular case of
our second order model. It corresponds to setting all the w equal to the
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same constant. So our description can be drastically simplified when no
sophisticated information is needed.

We return to the mathematical description. Usually, we draw the level
curves of the Riemann invariants (in short the Riemann invariants) in the
(ρ, ρv) plane. An example of the curves is depicted in Figure 1. There is a
one-to-one correspondence to the (ρ, y) plane, see [2].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

ρ

ρ 
v

w(U)=const
v(U)=const

Figure 1: Riemann invariants in the (ρ, ρv) plane.

For an arbitrary fixed i we discuss the shape of the Riemann invariants in
the (ρ, ρv) plane and characterize important points.

The Riemann invariant {vi(U) = c} is a straight line with slope c passing
through the origin. Consider the curve {w(U) := wi(U) = c}, where c ∈ R

denotes a constant. By assumption (1.2) on p := pi this curve is strictly
concave and passes through the origin. Furthermore, if c > 0, then the curve
{w(U) = c} lies in the first quadrant of the (ρ, ρv) plane for ρ between 0 and
a maximal value ρ̄ ∈]0, 1]. The maximal value ρ̄ depends on c and p(·). Due
to the strict concavity there exists a unique point (i.e. the ”sonic point”)
σ(w, c) with 0 < σ(w, c) ≤ 1, depending on c and the function p(·). The
point σ(w, c) maximizes the flux ρv on {w(U) = c}.

The total flux has to be conserved through an intersection. Therefore, we
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introduce the functions r(ρ; w, c) and u(ρ; w, c) below. Assume c > 0. Then
for all ρ ∈ [0, ρ̄] there exists a unique v such that w((ρ, ρv)) = c. Moreover,
there exists a unique pair (r, u) such that

w(r, r u) = w(ρ, ρ v), (2.4a)

r u = ρ v, (2.4b)

r 6= ρ except for ρ = σ(w, c). (2.4c)

In other words (ρ, v) and (r, u) correspond to the same flux and the same
level curve of w, see Figure 2 for an example. Hence, for each curve {w(U) =
c} with c > 0 there exists two unique functions ρ → r(ρ; w, c) and ρ →
u(ρ; w, c) satisfying (2.4) for all ρ ∈ [0, ρ̄].

Next, we describe the construction of the demand and supply functions for a
given curve {w(U) = c}, c ≥ 0. As in the case of first-order models, e.g. [23],
in the (ρ, ρv) plane the demand function d(ρ; w, c) is an extension of the
non–decreasing part of the curve {w(U) = c} for ρ ≥ 0, whereas the
supply function s(ρ; w, c) is an extension of the non-increasing part of the
curve {w(U) = c} and ρ ≥ 0, see Figures 2 and 3 for examples.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

ρ

ρ 
v

X

X

X

σ(w,c)

(ρ, ρ v) (r, r u )

w(U)=c
d(ρ; w, c)

Figure 2: Demand function for given w(U) = v+p(ρ) = const. Additionally,
σ(w, c) and the position of a sample point (ρ, ρ v) is and the corresponding
(r, r u) are shown.
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Figure 3: Supply function for a given w(U) = v + p(ρ) = const

Now, we consider the Riemann problem (1.8) for a given incoming road
i ∈ δ−. Hence, only the initial datum U− = Ui,0 is given. We want to
determine all “admissible” states U+ : A state U+ is called ”admissible”
if and only if either the waves of the solution to (1.8) with initial data
(U−, U+) have negative speed or the solution is constant U+ = U−. As
in [17] we neglect waves of zero speed (stationary waves). Later on U+ will
be an intermediate state in the solution Ui(·, ·) on the incoming road i for
the full Riemann problem at the junction, i.e., Ui(x0−, t) = U+.

Proposition 2.1. Let U− = (ρ−, ρ−v−) 6= (0, 0) be the initial value on an
incoming road i. Let the 1-curve through U− be wi(U) = v + pi(ρ) = w−

with w− := wi(U
−). Then the “admissible” states U+ = (ρ+, ρ+v+) for

the Riemann problem must belong to that curve, i.e., wi(U
+) = w− and

ρ+v+ ≥ 0. Depending on U− we distinguish two cases:

1. ρ− < σ(wi, w
−) : U+ is admissible if and only if ρ+ > r(ρ−; wi, w

−)
or if U+ ≡ U−.

2. ρ− ≥ σ(wi, w
−) : U+ is admissible if and only if σ(wi, w

−) ≤ ρ+ ≤ 1.

If U− = (0, 0) then the admissible state is U+ ≡ U−.

8



In all cases the maximal possible flux associated with any admissible state
U+ is d(ρ−; w, w−), with w = wi.

Proof. For U− 6= (0, 0) the 2–contact discontinuities are waves with speed
v− > 0. Hence, we only have to discuss 1–shock or 1–rarefaction waves.
Following [2] a left state U− can be connected to a right state U+ by a
1-shock, if and only if ρ+ > ρ−. The shock speed is then given by the slope
of the chord U−U+. A left state U− can be connected to a right state U+

by a 1–rarefaction wave if and only if ρ+ < ρ−. Note that in the (ρ, ρv)-
plane the slope of the tangent to the curve {wi(U) = c} at a point U is the
characteristic speed λ1(U).

By the discussion in the previous section there exists a state U∗ with
ρ∗ = r(ρ−; wi, w

−) and v∗ = u(ρ−; wi, w
−), such that wi(U

∗) = w−. Fur-
thermore, the chord U−U∗ has a zero slope. Hence, we have a 1-rarefaction
wave for all states U+ with σ(wi, w

−) ≤ ρ+ ≤ ρ− and a 1-shock for ρ+ ≥ ρ−.

In both cases the associated flux is not greater than the demand
d(ρ−; w, w−).

Finally, if ρ+ > 0, then U− = (0, 0) can be connected to U+ by a 2-contact
discontinuity, which has either positive speed or zero speed, c.f. Case 5
in [2]. Hence, only U+ ≡ (0, 0) is admissible. �

Next, we consider the Riemann problem (1.8) for a given outgoing road
i ∈ δ+, a function w(U) := v + pi(ρ) and a non–negative constant c. Later
on, c will of course depend on the initial states on the incoming roads (!),
see Section 3 to 7. We look for “admissible” states U−, i.e., all the states
such that the waves of the solution have a positive speed or such that the
solution is a constant. Again, we exclude the case of stationary waves. As
in the previous case, U− will be an intermediate state in the solution on
the outgoing road i for the full Riemann problem at the junction. Now
Ui(x0+, t) = U− will hold.

Proposition 2.2. Consider a state U+ 6= (0, 0) and the level curve of the
first Riemann invariant {w(U) = c} with an arbitrary non–negative constant
c.

Let U † = (ρ†, ρ†v†)be the point of intersection, if it exists, of the two Rie-
mann invariants {v(U) = v+} and {w(U) = c} with ρ > 0 and v > 0.

Then the “admissible” states U− for the Riemann problem satisfying
w(U−) = c and ρ−v− ≥ 0 are given by the two cases:
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1. ρ† ≤ σ(w, c) : U− is admissible if and only if 0 ≤ ρ− ≤ σ(w, c).

2. ρ† > σ(w, c) : U− is admissible if and only if 0 ≤ ρ− < r(ρ†; w, c) or
if U− ≡ U †.

Note that the set of admissible states U− depends on the existence of the
point U †. Now assume that either U+ = (0, 0) or there is no such point U †

with ρ†, v† > 0. Then we set U † = (0, 0) and as in Case 1, U− is admissible,
if and only if 0 ≤ ρ− ≤ σ(w, c).

In all cases the maximal possible flux associated with any “admissible” state
U− is s(ρ†; w, c).

Proof. Due to the range of the eigenvalues we can connect a left state U−

to an intermediate state U † by a 1-shock or a 1-rarefaction wave of positive
speed. Then U † can be connected to U+ by a 2-contact discontinuity.

If U † exists, it is well-defined, since the curves {w(U) = c} and {v(U) = v+}
have a unique intersection point such that ρ > 0, ρv > 0. If there is no point
U † with ρ, v > 0, then the curves have an unique intersection point at (0, 0).

Using the same kind of arguments as in Proposition 2.1, we see that either
the 1–shock or 1–rarefaction waves connecting U− and U † have a positive
speed or the solution is constant.

Next, if ρ+ = 0 we set U † = U+ and can connect to U− by waves of the
first family only, c.f. Case 4 in [2]. �

Combining these two results, we obtain

Proposition 2.3. Consider an incoming (resp. outgoing) road i, an initial
datum U− := Ui,0 (resp. U † := Ui,0) and an arbitrary flux q0 ≥ 0. Let
w(U) := v + pi(ρ) and c := w(Ui,0). Assume

q0 ≤ d(ρi,0; w, c) , (resp.q0 ≤ s(ρi,0; w, c)).

By Propositions 2.1 and 2.2, there exists a unique state U+ (resp. U−),
such that the corresponding Riemann problem (1.8) admits a solution such
that w(U+) = c and ρ+v+ = q0 (resp. w(U−) = c and ρ−v− = q0) and
either all the waves have negative (resp. positive) speed, or the solution is a
constant on the corresponding road.

The reader is advised to pay attention to the notation. In the full solution
to the Riemann problem at a junction we will have

for i ∈ δ− : U+
i = Ui(x0−, t) and for i ∈ δ+ : U−

i = Ui(x0+, t). (2.5)
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Unfortunately, it seems hard to avoid this possibly misleading notation.

To summarize, Proposition 2.3 describes the set of “admissible” states for
the Riemann data on incoming and outgoing roads. These states, including
U †, defined as in Proposition 2.2, will be intermediate states in the solution
of the full problem, satisfying (1.6a) and (1.6b). We now turn to the study
of the first case.

3 One incoming and one outgoing road

The simplest possible network contains two roads connected by a junction,
i.e., one road with two different road conditions.

Proposition 3.1. Consider two roads i = 1, 2 with a1 = −∞, b1 = a2 and
b2 = ∞ and initial data Ui,0 = (ρi,0, ρi,0vi,0), i = 1, 2 constant.

Then there exists a unique solution Ui(x, t) of the Riemann problem at the
junction (1.8) and (1.9) with the properties (1) and (2). We refer to equa-
tion (3.2) and to the end of the proof for a description of the structure of
this solution.

1. Ui(x, t) is a weak solution of the network problem (1.5a-1.5b), where

p†i ≡ pi, i = 1, 2 given in (1.1). Furthermore (1.6a-1.6b) are satisfied,
and ρi(x, t)vi(x, t) ≥ 0, i = 1, 2.

2. The flux (ρ1v1)(b
−
1 , t) is maximal at the interface, subject to the above

conditions

Proof. Let U−
1 := U1,0, U

+
2 := U2,0 and wi(U) = v + pi(ρ) for i = 1, 2. As

described in Section 2 we construct the demand function for the incoming
road

d(ρ) := d(ρ; w1, w1(U
−
1 )),

and the supply function for the outgoing road

s(ρ) := s(ρ; w2, w1(U
−
1 )). (3.1)

Note that the supply function is an extension of the non-increasing part of
the curve {w2(U) = w1(U

−
1 )}. The expression (3.1) of the supply function

s(·) involves the function w2 and the value w1(U
−
1 ), since the cars which
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are initially on road 1 and which have moved on road 2, have kept their
Lagrangian ”color” w1(U

−
1 ).

By Proposition 2.2 we obtain U †
2 either as the intersection of the curves

{v2(U) = v+
2 } and {w2(U) = w1(U

−
1 )} or by U †

2 = (0, 0). Then we solve the
maximization problem

max q1 subject to

0 ≤ q1 ≤ d(ρ−1 ),

0 ≤ q1 ≤ s(ρ†2).

Denote by q̃ the point where the maximum is attained. Of course the above
is equivalent to q̃ = min{d(ρ−1 ), s(ρ†2)}, but we will need the general form
later.

Now, as in Proposition 2.3 there exists U+
1 and U−

2 , such that ρ+
1 v+

1 =
ρ−2 v−2 = q̃.

Knowing the states U+
1 and U−

2 , we solve the two Riemann problems:

i = 1, 2 : ∂t

[

ρi

vi

]

+ ∂x

[

ρivi

ρiviwi

]

= 0, (3.2a)

i = 1 : U1(x, 0) =

[

U−
1 ≡ U1,0 x < b1

U+
1 x ≥ b1

]

, (3.2b)

i = 2 : U2(x, 0) =

[

U−
2 x ≤ a2

U+
2 ≡ U2,0 x > a2

]

, (3.2c)

to obtain weak entropy solutions U1(x, t) and U2(x, t). Each solution consists
of at most two waves: a 1–rarefaction or a 1-shock wave associated with the
first eigenvalue, followed by a 2–contact discontinuity associated with the
second eigenvalue.

The conditions (1.6a-1.6b) are satisfied since

q̃ = ρ+
1 v+

1 = ρ−2 v−2 ,

and

w1(U
+
1 ) = w1(U

−
1 ) = w2(U

−
2 ) = w2(U

†
2).

�

An example of a solution in the (x, t) plane is depicted in Figure 4.
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x

t

U−
1

U+
1

U−
2

Ux
2

U+
2

1−s/1−r 

1−s/1−r 

2−cd 

Figure 4: Possible solution to the Riemann problems of road 1 (left part)
and road 2 (right part). 1− s/1− r stands for 1-shock or 1-rarefaction wave
connecting the left and right states. Similarly, 2-cd denotes the 2-contact
discontinuity.

4 One incoming and two outgoing roads

We now consider the case of one incoming and two outgoing roads. We
cannot expect to obtain a unique solution without imposing additional as-
sumptions on the distribution of the flux among the outgoing roads. One
could impose an optimization criterion, such as maximizing the total flux at
the interface [17, 5].

Here, we impose the proportions (α and (1− α)) of cars which go from road
1 to roads 2 and 3. This condition was introduced first in [5] for the first
order LWR model and in [12] for the AR model. In the case of first order
models, the car distribution at junctions has also been studied in [23, 9] and
many others.

Proposition 4.1. Consider three roads i = 1, 2, 3 with a1 = −∞, b1 = a2 =
a3 and b2 = b3 = ∞ and constant initial data Ui,0 = (ρi,0, ρi,0vi,0), i = 1, 2, 3.
Let 0 ≤ α ≤ 1 be given.
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Then there exists a unique solution Ui(x, t), i = 1, 2, 3 of the Riemann prob-
lem at the junction (1.8) and (1.9) with the following properties (1) and (2).
A description of its structure can be found at the end of the proof.

1. Ui(x, t) is a weak solution of the network problem (1.5a-1.5b) wherein

p†i ≡ pi for all i = 1, 2, 3.

Furthermore (1.6a-1.6b) are satisfied, and ρi(x, t)vi(x, t) ≥ 0, , i =
1, 2, 3.

2. For all t > 0 the flux is distributed in proportions α and 1− α between
roads 2 and 3:

α(ρ1v1)(b
−
1 , t) = (ρ2v2)(a

+
2 , t), (4.1a)

(1 − α)(ρ1v1)(b
−
1 , t) = (ρ3v3)(a

+
3 , t), (4.1b)

3. The flux (ρ1v1)(b
−
1 , t) is maximal at the interface, subject to the above

conditions.

Proof. Let U−
1 = U1,0, U+

i = Ui,0, i = 2, 3 and for i = 1, 2, 3 let wi(U) :=
v + pi(ρ). As in Section 2 we construct the demand function

d(ρ) := d(ρ; w1, w1(U
−
1 ))

and the two supply functions

s2(ρ) := s(ρ; w2, w1(U
−
1 )), s3(ρ) := s(ρ; w3, w1(U

−
1 ))

For i = 2, 3 we obtain the points U †
i as intersection of {v(U) = v+

i } with

{wi(U) = w1(U
−
1 )} or as U †

i = (0, 0), c.f. Proposition 2.2. We solve the
maximization problem

max q1 subject to (4.2a)

0 ≤ q1 ≤ d(ρ−1 ), (4.2b)

0 ≤ αq1 ≤ s2(ρ
†
2), (4.2c)

0 ≤ (1 − α)q1 ≤ s3(ρ
†
3).. (4.2d)

Denote by q̃ the point where the maximum is attained. Of course the above
is equivalent to q̃ = min{d(ρ−1 ), s2(ρ

†
2)/α, s3(ρ

†
3)/(1−α)}. By Proposition 2.3
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we conclude

∃U+
1 such that ρ+

1 v+
1 = q̃, w1(U

+
1 ) = w1(U

−
1 ), (4.3a)

∃U−
2 such that ρ−2 v−2 = αq̃, w2(U

−
2 ) = w1(U

−
1 ), (4.3b)

and ∃U−
3 such that ρ−3 v−3 = (1 − α)q̃, w3(U

−
3 ) = w1(U

−
1 ). (4.3c)

Clearly, the conditions (1.6a-1.6b) and (4.1a-4.1b) are satisfied by (4.3).
Again, each solution Ui(x, t) consist of a juxtaposition of rarefaction or shock
waves associated with the first eigenvalue and a contact discontinuity asso-
ciated with the second eigenvalue of (1.1). The construction is similar to
equation (3.2) in Proposition (3.1). In the limit cases α = 0 or α = 1 we are
exactly in the setting of Proposition 3.1. �

Before studying the more surprising case of two incoming and one outgoing
roads in Section 6, we must recall a few basic facts on the Lagrangian version
of the model and the corresponding homogenized system.

The reader is advised to take a look at the first part of Section 5 and then
to move to Section 6. The second part of Section 5 deals with details on the
homogenization and can be read after Section 6.

5 The Lagrangian model and its homogenized ver-

sion

The Lagrangian formulation is introduced in [1]. A formal derivation is
given in [28] and a mathematical study in [13]. The homogenization of this
system is studied in [3]. Proofs of statements below can be found in the
above references.

Consider a single road with pi := p. Then it turns out that the weak entropy
solutions of

ρt + (ρv)x = 0, (ρw)t + (ρvw)x = 0, w = v + p(ρ),

correspond to the weak entropy solutions of the equivalent system in (mass)
Lagrangian coordinates (X, t):

τt − vX = 0, wt = 0, w = v + P (τ), (5.1)

with τ := 1/ρ, P (τ) := p(ρ). Here, X is the Lagrangian (mass) coordinate,
defined by ∂xX = ρ and ∂tX = −ρ v. The existence of X(·, ·) follows
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from the mass conservation equation. For some unspecified t0, X(x, t0) :=
∫ x
0

ρ(y, t0) dy, where we implicitly defined ρ as the dimensionless density,
i.e., the fraction of space occupied by the cars, see [1]. Therefore X is the
position of each car if all cars were parked ”nose to tail”.

As in [1] consider two different approximations of the system (5.1):

(i) The fully discrete solution of (5.1) constructed with the Godunov scheme,
with space and time steps ∆X and ∆t.
(ii) The semi-discrete approximation, namely the (infinite) system of ODEs

∂t

[

τj

wj

]

−

[vj+1−vj

∆X
0

]

= 0,

where ∆X is the length of a car (fixed for simplicity). It is easy to see that
this system can be rewritten in the form

ẋj = vj , ẇj = 0 with τj = (xj+1 − xj)/∆X, wj = vj + P (τj). (5.2)

In other words, the semi-discretisation of (5.1) is exactly the “Follow-the-
Leader model” [15].

The rigorous results of convergence in [1, 13] are as follows :

(a) When ∆X and ∆t tend to zero with a fixed ratio, and satisfy the CFL
stability condition, a subsequence of the fully discrete (Godunov) solution
converges to an entropy weak solution of (5.1). This limit is viewed as a
coarse graining limit, i.e., a ”zooming” with the same ratio in X and t
(”hyperbolic scaling”).

(b) Next, when ∆t tends to zero, with ∆X fixed, the Godunov solution
converges to the unique solution of the microscopic Follow-the-Leader (FLM)
system.

(c) Finally, when ∆X tends to zero, this microscopic (FLM) solution con-
verges to an entropy weak solution to (5.1).

These results were essentially based on uniform a priori BV-estimates (es-
timates on the total variation) for the Godunov solution. Indeed, this La-
grangian scheme preserves the total variation of the two Riemann invariants
if the initial data are BV-functions.

The case of initial data with large oscillations in w, i.e., oscillations in the
characteristics of car-driver pairs, is studied in [3]. Oscillations in w generate
also oscillations in τ. Note that oscillations in v would be unrealistic (and
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dangerous!), and would be immediately cancelled by the genuinely non-linear
eigenvalue λ1.

In the above-mentioned (hyperbolic) ”zooming”, the oscillations in w are
wilder and wilder as the zoom parameter goes to 0. Therefore, the corre-
sponding sequence of functions converges only weakly to some limit. The
above results can be extended and uniqueness can be proved in this more
general setting. The modification involves a homogenized relation between
v, w and τ , which uses the language of Young measures, see [27, 4, 11].

Let us briefly recall a few basic facts on Young measures, adapted to our
context. The reader is advised to take a look at the practical example given
in Section 6.

We introduce a (Lagrangian) grid (Xj) and define Uj = (τj , wj) and
U∆X(X, t) :=

∑

j Uj(t)χj(X), where χj is the characteristic function on

Ij := (Xj−1/2, Xj+1/2). For any ∆X > 0, let U0
j = (τ0

j , w0
j ) be uniformly

bounded for all j, and U0
∆X(X) :=

∑

j U0
j χj(X) be be the corresponding

sequence of piecewise-constant initial data. Of course, this sequence is uni-
formly bounded in L∞ when ∆X → 0.
Therefore [27, 4], there exists a subsequence, still denoted by U0

∆X(·), and
a family of probability measures νX,t in the (v, w) plane, depending on X,
such that the weak-∗ limit of any continuous function F (v0

∆X , w0
∆X) is equal

a.e. to

< νX,t, F (v, w) >:=

∫

F (v, w) dνX,t(v, w). (5.3)

Since the sequence (v∆X) does not oscillate, the same subsequence converges
pointwise to some strong limit v∗(X, t). Hence, equation (5.3) can be rewrit-
ten

< νX,t, F (v, w) >= < µX , F (v∗(X, t), w) >:=

∫

F (v∗(X, t), w) dµX(w),

where the probability measures µX describe the weak limit of all functions
in the single variable w. Therefore µ depends on X, but not on t.

The main result in [3] can be stated as follows.

Proposition 5.1. (i) Under the above assumptions, the (sub)sequence of
entropy weak solutions corresponding to the above (sub)sequence converges
in L∞ weak-∗ to the unique ”entropy” weak solution U∗ = (τ∗, w∗), of the
homogenized problem

∂tτ
∗ − ∂Xv∗ = 0, ∂tw

∗ = 0 . (5.4)
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(ii) Furthermore, (v∆X) converges almost everywhere and the limit state can
be characterised as

τ∗(X, t) =

∫

P−1(w − v∗(X, t))dµX(w), (5.5a)

w∗(X, t) = w∗(X, 0) =

∫

wdµX(w) , (5.5b)

where µX is the Young measure associated with the sequence (w∆X).

Moreover, there is a similar result of homogenisation for a multi-class Follow-
the-Leader Model, similar to (5.2), with oscillating data wj . We again refer
to the above reference for more details. Proposition 6.1 in the next section
deals with a practical example of the above result.

6 Two incoming and one outgoing road

As in Section 4, we need an additional assumption to obtain a unique solu-
tion at the junction. We introduce a ”mixture–rule”, which describes, how
cars of the incoming road mix when they enter the outgoing road. One of
the most natural assumptions is an equal priority rule:

The cars of both incoming roads enter the outgoing road alternately.

Note that other assumptions on the mixture of cars are also possible. The
discussion below remains valid with obvious changes according to a different
mixture rules.

Proposition 6.1. Consider three roads i = 1, 2, 3 with a1 = a2 = −∞, b1 =
b2 = a3 and b3 = ∞ and constant initial data Ui,0 = (ρi,0ρi,0vi,0), i = 1, 2, 3.

Then there exists a unique solution Ui(x, t), i = 1, 2, 3 of the Riemann prob-
lem at the junction (1.8) and (1.9) with the following properties.

1. Ui(x, t) is a weak solution of the network problem (1.5a-1.5b), where

p†i ≡ pi for the incoming roads i = 1, 2.

For the outgoing road i = 3, we obtain two different expressions for
p†3, depending on the position (x, t):

In the triangle {(x, t) : a3 ≤ x ≤ a3 + v3,0t} of the x − t plane, we

consider the homogenised solution described below. Therefore, p†i (·) :=
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p∗i (·) is given by equations (6.3) to (6.6) . This solution depends on
the applied mixture principle, the initial data on U1,0, U2,0 and the
road conditions p3. The triangle is bounded at any fixed time t > 0 by
x = a3 and x = a3 + tv3,0.

In the remaining part of the outgoing road we have p†3 ≡ p3.

2. The equations (1.6a-1.6b) are satisfied, with ρi(x, t)vi(x, t) ≥ 0 , 1 ≤
i ≤ 3. In particular U3(a

+
3 , t) satisfies

w†
3(U3(a

+
3 , t)) := w∗

3(U3(a
+
3 , t)) := v3(a

+
3 , t) + p∗3(ρ3(a

+
3 , t)) = w̄,

where w̄ is the homogenized value:

w̄ :=
1

2
(w1(U1,0) + w2(U2,0), ) . (6.1)

3. The two incoming fluxes are equal (equal priority rule), and the total
flux 2(ρ1v1)(b

−
1 , t) = 2(ρ2v2)(b

−
2 , t) = (ρ3v3)(a

+
3 , t) is maximal subject

to the other conditions.

Before giving the proof of this result, let us motivate the definition of (6.1)
and the necessity of dealing with a function p∗3. Consider the discrete Follow-
the-Leader Model (5.2), with oscillating wj = vj + P (τj):

∂t

[

τj

wj

]

−

[vj+1−vj

∆X
0

]

= 0.

More precisely, consider a microscopic situation on the outgoing road 3. As
in the introduction of this section, assume that the cars coming from each
incoming road pass the junction in an alternating way.

Although w was constant on each of the roads 1 and 2, the outgoing flow is
obviously oscillating. In fact, in Lagrangian coordinates,

w0
j =

[

w1 j even
w2 j odd

]

,

where the constants w1 and w2 are given by the two incoming flows. The
corresponding function P on the outgoing road, is the function P3(τ) :=
p3(1/τ). Then the piecewise-constant approximation w∆X alternately takes
the two values w1 and w2. Consequently, for any continuous function F ,

F (w∆X) ⇀∗ (F (w))∗ :=
1

2
(F (w1) + F (w2)) =

∫

F (w)dµX(w),

where µX :=
1

2
(δw1

+ δw2
) . (6.2)

19



The value of w has to be given by (6.1), since one car out of two comes from
each road 1 or 2 (think of black and white cars producing a grey homogenized
flow), and since any Lagrangian interval of length ∆X contains one car.
Recall that we assumed that all cars have the same length. This assumption
could be relaxed, and the formulas would be modified in an obvious way.

Therefore, in the limit ∆X → 0, the cars passing through the junction
have the average property associated with the Young measure µX in (6.2).
By Section 5, the corresponding homogenized solution is the unique weak
entropy solution of (5.4), where τ∗ is given by (5.5a), i.e. here by

τ∗(X, t) =
1

2
(P−1

3 (w1 − v∗(X, t)) + P−1
3 (w2 − v∗(X, t))), (6.3)

which (by monotonicity of P3) defines a one-to-one relation between v :=
v∗(X, t) and τ := τ∗(X, t):

We choose to rewrite (6.3) in the form

v = w − P ∗
3 (τ), w := w̄, (6.4)

where w̄ is given by (6.1). In other words, we define P ∗
3 so that, for

each τ = τ∗, the value v = v∗ defined by (6.4) is the unique solution of
equation (6.3) to the unknown v. This (convenient) notation could be
misleading for an arbitrary value w. Indeed, the homogenized relation
between v and τ depends on µX , see (5.5a). Therefore, it depends on
the local proportions of cars coming from each incoming road. In other
words, (6.4) would be wrong for any value w 6= w̄. However, see below,
on the relevant portion of road 3, the homogenized w only takes the value w̄.

Now, three questions arise:

(i) How do we express this in Eulerian coordinates?
(ii) In Eulerian coordinates, what is the portion of road 3 concerned with
this homogenized flow?
(iii) Does this solution respect the Rankine-Hugoniot relations (1.6a),
(1.6b) at the interface x = b1 = b2 = a3, and how is it connected with the
downstream flow on road 3?

(i) First, see [1], we can rewrite (5.4), (6.3) in Eulerian coordinates, to get
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the equivalent system (even for weak entropy solutions):

∂tρ + ∂x(ρv) = 0 (6.5a)

∂t(ρw) + ∂x(ρvw) = 0, (6.5b)

w(U) ≡ w∗(U) = v + p∗3(ρ), (6.5c)

with w(U) ≡ w̄ and
p∗3(ρ) := P ∗

3 (ρ−1) (6.6)

defined by (6.4). Again, for arbitrary values of w, we would not recover the
correct homogenized solution.

(ii) In the (x, t) plane, at time t > 0, the portion of road 3 concerned with this
self-similar, homogenised flow is a triangle bounded by x = b1 = b2 = a3

and by x = a3 + t v3,0. Here, v3,0 is the initial datum on road 3.

(iii) On the above portion of road 3, our solution satisfies (6.5), (6.6) and
the value of w is a constant and is equal to the corresponding average value
given by (6.1).

The boundary data specified below preserve the conservation of mass at the
intersection and satisfy the equal priority rule on the mixture of the cars:

ρ3 v3 = ρ1 v1 + ρ2 v2 = 2 ρ1 v1

Therefore, combining with (6.1), we see that ρ3 v3 w3 = ρ1 v1 w1 + ρ2 v2 w2,
i.e., we recover (1.6b): our solution also satisfies the conservation of y = ρ w
at the junction. Roughly speaking, e.g. the total number of white cars is
also preserved at the intersections!

Now we can give the proof of Proposition 6.1.

Proof. Let U−
i = Ui,0 for i = 1, 2 and U+

3 = U3,0. Denote by wi(U) =
v + pi(ρ). Let the demand functions d1 and d2 be defined by

d1(ρ) := d(ρ; w1, w1(U
−
1 )), d2(ρ) := d(ρ; w2, w2(U

−
2 )).

With all the previous remarks in mind and again w†
3(U) = v + p†3(U) and

p†3(·) := p∗3(·), we consider the following supply function

s3(ρ) := s†3(ρ) := s(ρ; w†
3, w̄), w̄ =

1

2

(

w1(U
−
1 ) + w2(U

−
2 )

)

As in Proposition 2.2 we obtain the intermediate state U †
3 = (ρ†3, ρ

†
3v

†
3) as

the intersection of {v3(U) = v+
3 } and {w†

3(U) = w̄}, or as U †
3 = (0, 0). Then
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we solve for q1, q2

max q1 + q2 subject to

0 ≤ qi ≤ di(ρ
−
i ), i = 1, 2,

0 ≤ q1 + q2 ≤ s3(ρ
†
3),

q1 = q2.

Clearly, q̃ = q1 = q2 = min{s3(ρ
†
3)/2, d1(ρ

−
1 ), d2(ρ

−
2 )} is the unique solution.

As in the Proposition (2.3) we conclude

∃U+
i such that ρ+

i v+
i = q̃, wi(U

+
i ) = wi(U

−
i ) i = 1, 2,

∃U−
3 such that ρ−3 v−3 = 2q̃, w†

3(U
−
3 ) = w̄.

We recall that Ui(bi−, t) = U+
i for i = 1, 2 and U3(a3+, t) = U−

3 .

Then the conditions (1.6a-1.6b) are satisfied. Using the considerations

above, the function p†3 is defined in the triangle {(x, t) : a3 ≤ x ≤ a3 + tv3,0}
of the x − t plane.

Each solution Ui(x, t) is a juxtaposition of either a rarefaction or a shock
wave and a contact discontinuity.

In particular, on the outgoing road i = 3, the states U−
3 and U †

3 are connected
by a rarefaction or a shock wave associated with the first eigenvalue of
system (1.1), with pi = p†3 = p∗3. Then U †

3 is connected to U+
3 = U3,0

by a contact discontinuity associated with the second eigenvalue λ2 = v3,0,
which is independent of pi. Hence, out of the above mentioned triangle,
U3(x, t) ≡ U3,0. �

An example of a solution is depicted in Figure 5 and 6.
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Figure 5: An example of intermediate states on road 1 (top part) and road
3 (bottom part) in case where q̃ = d2(ρ2,0; w2, w2(U2,0)), i.e., q̃ < d1(·) and

q̃ < s†3(·) respectively. In this case the solution U2 on road 2 is a constant
U2(x, t) = U2,0 ≡ U−

2 and therefore omitted from the plots. In the drawings

U∗
3 , s∗3, w

∗
3 and w∗

1 stand for U †
3 , s†3, w

†
3 and w†

1, respectively.
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Figure 6: Plot of the solution U1 and U3 in the x− t−plane with data as in
Figure 5. Left to the interface, U−

1 ≡ U1,0 is connected by a 1-rarefaction

to U+
1 . Right to the interface U−

3 is connected by 2–shock to U∗
3 ≡ U †

3 and
this state in turn is connected to U+

3 ≡ U3,0 by a 2–contact discontinuity.
We omit the solution U2 since it is constant.
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7 Arbitrary number of incoming and outgoing

roads

We combine the results of Section 4 to 6 to treat the general case. We
consider a fixed junction with m incoming roads δ− = {1, . . . , m} and n
outgoing roads δ+ = {m + 1, . . . , m + n}. We assume constant initial data
Ui,0 for all i and we look for solutions to the Riemann problem (1.8) and
(1.9).

In Section 4 to 6 we imposed additional conditions to obtain a unique solu-
tion. Here, as in Section 6 we introduce a mixture principle for the outgoing
traffic which is an extension of the equal priority rule, c.f. assumption (H4)
below. However, the stated results can be adapted to other mixture rules.

For a set of functions Ui(x, t) = (ρi(x, t), ρi(x, t)vi(x, t)) , i ∈ δ− ∪ δ+ we
introduce the following abbreviations:

qi := ρi(b
−
i , t)vi(b

−
i , t), ∀i ∈ δ−, (7.1a)

qj := ρj(a
+
j , t)vj(a

+
j , t), ∀j ∈ δ+. (7.1b)

Next, we introduce real numbers qji ∈ R for j ∈ δ+ and i ∈ δ− corresponding
to the (a priori unknown) actual fluxes of cars coming from road i and going
to road j. Since the number of cars entering and leaving the junction is the
same,

qi =
∑

j∈δ+

qji, qj =
∑

i∈δ−

qji. (7.2)

We look for a solution Uk(x, t) which satisfies the following assumptions and
constraints.

(H1) Preferred choice of the drivers:

As in [12] we are given a matrix A,

A = (αji)j∈δ+,i∈δ− ∈ R
n×m, (7.3)

such that 0 ≤ αji ≤ 1 and
∑

j∈δ+ αji = 1, ∀i ∈ δ−.

We introduce aj :=
∑

i∈δ−
αji for notational convenience. We impose

the constraint:

qji = αjiqi ∀j ∈ δ+, i ∈ δ−. (7.4)
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(H2) Relation for w†
j (on the outgoing roads)

∀j ∈ δ+ : w†
j(Uj(a

+
j , t)) =

∑

i∈δ−

qji

qj
wi(Ui(b

−
i , t)). (7.5)

As in the previous Sections wi(Ui(bi−, t)) = wi(Ui,0),∀i ∈ δ− and for
all j ∈ δ+ :

w†
j(Uj(a

+
j , t)) := vj(a

+
j , t) + p†j(ρj(a

+
j , t)) = w̄j .

The functions p†j and the homogenized values w̄j have to specified
later.

(H3) Bounds on the actual fluxes:

0 ≤ qi ≤ di(ρi,0) ∀i ∈ δ− (7.6a)

0 ≤ qj ≤ sj(ρ
†
j) ∀j ∈ δ+ (7.6b)

Here di denotes the demand function on road i, i.e., di :=
di(ρ; wi, wi(Ui,0)) where wi(U) = v + pi(ρ), and sj := sj(ρ; w†

j , w̄j)

is the supply function on road j. The functions w†
j and the homoge-

nized values w̄j are specified later and depend on the applied mixture

rule. Finally, (ρ†j , ρ
†
jv

†
j) is the intermediate state on road j, i.e., the

unique intersection of the curves {vj(U) = vj,0} and {w†
j(U) = w̄j}.

In order to define a unique solution, we have to impose a further constraint,
e.g., a maximization criterion as in [17, 12]. Here, as in Section 6, we choose
to impose the following rule.

(H4) The mixture rule:

The actual incoming fluxes (qi)i∈δ− are proportional to a given non-
negative vector (q̃i)i∈δ− . The equal priority rule introduced in Sec-
tion 6 is a particular subcase, with (q̃i)i∈δ− = (1, . . . , 1). So we impose
in general

qi = q̃ q̃i ≥ 0 (7.7)

where q̃ > 0 is a priori unknown, but (q̃i)i∈δ− is given.
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Theorem 7.1. Consider a junction with m incoming and n outgoing roads,
with constant initial data Ui,0 = (ρi,0, ρi,0vi,0) for all i ∈ δ− ∪ δ+ under the
assumptions (H1) to (H4).

Then there exists a unique solution {Ui(x, t)}i∈δ−∪δ+ to the Riemann prob-
lems (1.8),(1.9), which is described below, and which satisfies the following
properties.

1. {Ui(x, t)}i∈δ−∪δ+ is a weak entropy solution of the network problem

(1.5a-1.5b) and for i ∈ δ− : p†i ≡ pi.

For the outgoing roads j ∈ δ+ we obtain two different expressions for
p†j, depending on the region. In the x − t-plane in a triangle near the

junction, we consider the homogenized solution and hence p†j(·) = p∗j (·)
defined below in (7.14). This triangle is defined by {(x, t) : aj ≤
x ≤ tvj,0} for any fixed time t > 0. Beyond this triangle we have

p†j(·) ≡ pj(·).

2. The constraints (7.4) to (7.6) are satisfied and the homogenized values
w̄j are given by:

w̄j :=
∑

i∈δ−

qji

qj
wi(Ui,0) ∀j ∈ δ+. (7.8)

The ratios qji/qj are defined below in equation (7.15).

3. Moreover, the incoming fluxes satisfy (7.7) and they are maximal sub-
ject to the other conditions.

For simplicity we restrict ourselves the case of the equal priority rule. Ob-
viously the proof can be extended to the general case (7.7). Note that the
matrix A plays the same role as in [12], but we do not need the same
restrictions on A.

Proof. With the discussion in Section 6 in mind we consider the following
supply functions for j ∈ δ+ :

sj(ρ) := s(ρ; w†
j ; w̄j), (7.9)

w̄j :=
∑

i∈δ−

qji

qj
wi(Ui,0), (7.10)
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where wi(U) = v + pi(U) ∀i ∈ δ− and where w†
j(U) = v + p†j(U) and

p†j(·) := p∗j (·) for all j ∈ δ+. For each j ∈ δ+ p∗j (·) is defined as in Section 6.
Namely, we first define the function

Pj(τ) := pj(1/τ). (7.11)

Then we set
v → τ :=

∑

i∈δ−

qji

qj
P−1

j (wi(Ui,0) − v). (7.12)

Next, we choose to define a new invertible function P ∗
j by rewriting the

relation (7.12) under the form

τ :=
(

P ∗
j

)−1
(w̄j − v) , (7.13)

which we only use with the particular value w̄j defined in (7.8). Finally,
we set

p†j(ρ) := p∗j (ρ) := P ∗
j (1/ρ). (7.14)

Of course this construction assumes that the proportions qji/qj are known.
Here, thanks to the crucial assumption (H4), we can determine them:

qji

qj
=

αjiqi
∑

i∈δ− qji
=

αjiq̃i
∑

i∈δ− αjiq̃i
∀i ∈ δ−,∀j ∈ δ+. (7.15)

In particular in the case of the equal priority rule q̃i = 1,∀i ∈ δ− holds true.
Therefore, qi = q̃, qj = aj q̃ and qji/qj = αji/aj for i ∈ δ−, j ∈ δ+ and for
some unknown q̃ ∈ R.

Before we turn to the determination of q̃ we define U †
j . As in Proposition 2.2

we obtain for each j the intermediate state U †
j as intersection of {vj(U) =

vj,0} and {w†
j(U) = w̄j}.

Now, we obtain q̃ as unique solution to the following maximization problem

max
q∈R

q subject to (7.16a)

0 ≤ qi = q ≤ di(ρi,0; wi; wi(Ui,0)), ∀i ∈ δ−, (7.16b)

0 ≤ qj = ajq ≤ sj(ρ
†
j ; w

†
j ; w̄j), ∀j ∈ δ+, (7.16c)

where the functions sj(·), w
†
j(·) and the values w̄j are well–defined since the

proportions qji/qj are known.
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We conclude as before

∃U+
i such that ρ+

i v+
i = q̃, wi(U

+
i ) = wi(Ui,0) ∀i ∈ δ+,

∃U−
j such that ρ−j v−j = aj q̃, w†

j(U
−
j ) = w̄j ∀j ∈ δ+.

The conditions (1.6a-1.6b) are satisfied. Also (7.5) and (7.6) are fulfilled.

Again, each Ui(x, t) consists of a juxtaposition of rarefaction or shock waves
associated with the first eigenvalue and, for i ∈ δ+, an additional contact
discontinuity associated with the second eigenvalue. Furthermore, the so-
lution satisfies on the incoming roads i ∈ δ− : U+

i = Ui(bi−, t) and on the
outgoing roads j ∈ δ+ : U−

j = Ui(aj+, t).

For general q̃i, equations (7.16b) and (7.16c),respectively, become

0 ≤ qi = q̃i q ≤ di(ρi,0; wi, wi(Ui,0)) ∀i ∈ δ−,

and 0 ≤ qj =





∑

i∈δ−

αjiq̃i



 q ≤ s†j(ρj,0; w
†
j , w̄j) ∀j ∈ δ+.

�

8 Conclusion

In this paper, we have introduced coupling conditions for the AR traffic
flow model. Contrary to [12] the total ”momentum” (e.g. the total number
of white cars!) is conserved at each junction. We have presented the full
solution to Riemann problems for different cases and have given a micro-
scopic motivation and validation of the approach. Last, we have discussed
the general case of arbitrary numbers of incoming and outgoing roads. The
most striking fact is the role of the homogenized flow on part of the outgo-
ing roads. It is worth to note that, even with Riemann data, and with the
same function pj ≡ p on all the roads, after some time, due to the mixture
of cars at each junction, the flow is associated with a new homogenized

pseudo-pressure p†j , which depends on the proportions of the mixture.

As we already said in Section 2, the model presented is too sophisticated
for real life applications. But it contains as particular case the classical
first-order models.
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