Generic regularity of weak KAM solutions and Mañé conjecture

Ludovic Rifford

Université de Nice - Sophia Antipolis

- Let M be a smooth manifold of dimension n.
- Let $H : T^*M \to \mathbb{R}$ be an Hamiltonian of class at least C^2 .
- Let $c \in \mathbb{R}$ be fixed.
- Let $u: M \to \mathbb{R}$ be a viscosity solution of the HJ equation

(HJ)
$$H(x, d_x u) = c \quad \forall x \in M.$$

Problem : Regularity properties of u ?

Additional assumptions on the Hamiltonian: (H1) For every $K \ge 0$, there is $C^*(K) < \infty$ such that

$$\forall (x,p) \in T^*M, \quad H(x,p) \geq K \|p\| - C^*(K).$$

(H2) For every $(x, p) \in T^*M$, $\frac{\partial^2 H}{\partial p^2}(x, p)$ is positive definite.

Theorem (LR 2009)

Let $u : M \to \mathbb{R}$ be a viscosity solution of (HJ). Then u is locally semiconcave on M, its singular set $\Sigma(u)$ is nowhere dense in M, and u is $C_{loc}^{1,1}$ on the open dense set $M \setminus \overline{\Sigma(u)}$.

Here, $\Sigma(u) := \{x \in M \mid u \text{ is not differentiable at } x\}.$

Sard-type results I

Let $u: M \to \mathbb{R}$ be a locally Lipschitz function. We call *critical point* of u any $x \in M$ such that

$$0 \in \operatorname{conv}\left\{\lim_{k} d_{x_{k}} u \,|\, x_{k} \in D_{u} \text{ and } x_{k} \to x\right\},\$$

where $D_u := M \setminus \Sigma(u)$. We denote by C(u) the set of critical points of u. Thanks to the Clarke Implicit Function Theorem, there holds

Proposition

For every $\lambda \in u(M) \setminus u(\mathcal{C}(u))$, the level set

 $\{u(x) = \lambda \,|\, x \in M\}$

is a locally Lipschitz hypersurface in M.

Theorem (Ferry 1976, Fu 1985, Bates 1993)

Assume that M has dimension 1 or 2. Then for every locally semiconcave function $u : M \to \mathbb{R}$, the set $u(\mathcal{C}(u))$ has Lebesgue measure zero.

Theorem (LR 2009)

Assume that $H : T^*M \to \mathbb{R}$ satisfies (H1)-(H2), that M has dimension 3, and that one of the following assumption holds:

- *M* and *H* are real-analytic.
- *H* is at least C^4 and H(x, 0) = c for any $x \in M$.
- *H* is at least C^4 and $\{H(x,0)=c\} \subset \left\{\frac{\partial H}{\partial p}(x,0)=0\right\}$.

If u is viscosity solution of (HJ), then the set $u(\mathcal{C}(u))$ has Lebesgue measure zero.

HJ equations with Dirichlet conditions I

Let $H : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be an Hamiltonian of class $C^{k,1}$ (with k > 2) which satisfies: (H1) For every K > 0, there is $C^*(K) < \infty$ such that $\forall (x,p) \in T^*M, \quad H(x,p) > K|p| - C^*(K).$ (H2) For every $(x, p) \in T^*M$, $\frac{\partial^2 H}{\partial p^2}(x, p)$ is positive definite. (H3) For every $x \in \mathbb{R}^n$, H(x, 0) < 0. Let Ω be an open set in \mathbb{R}^n with compact boundary and $u:\overline{\Omega}\to\mathbb{R}$ be the viscosity solution of

$$(\mathsf{HJ}) \qquad \left\{ \begin{array}{ll} H(x, \nabla_x u) = 0 \quad \forall x \in \Omega, \\ u_{\mid \partial \Omega} = 0. \end{array} \right.$$

HJ equations with Dirichlet conditions II

Observation:

Let $x \in \Omega$ and $p \in \{\lim_k \nabla_{x_k} u \mid x_k \in D_u \text{ and } x_k \to x\}$ be fixed. Then there is an extremal $(x(\cdot), p(\cdot)) : [-T, 0] \to \overline{\Omega} \times \mathbb{R}^n$ such that

$$\begin{cases} \dot{x}(t) = \nabla_{p}H(x(t), p(t)) \\ \dot{p}(t) = -\nabla_{x}H(x(t), p(t)) \end{cases} \quad \forall t \in [-T, 0]$$

with

$$x(0) = x$$
 and $p(0) = p$.

Moreover, u is differentiable for every $t \in [-T, 0)$ and

$$\nabla_{x(t)}u=p(t).$$

HJ equations with Dirichlet conditions III

Theorem (Li-Nirenberg 2005, Castelpietra-LR 2008)

Assume that H and $\partial\Omega$ are of class $C^{2,1}$. Then the cut locus of u defined as $Cut(u) := \overline{\Sigma(u)}$ has a finite (n-1)-dimensional Hausdorff measure.

Theorem (LR 2009)

Assume that H and $\partial\Omega$ are of class C^k with $k \ge 2n^2 + 4n + 1$. Then the set $u(\mathcal{C}(u))$ has Lebesgue measure zero. From now on, M is assumed to be compact without boundary and H is an Hamiltonian of class C^2 satisfying (H1)-(H2).

Theorem (Fathi 1997)

There is a unique value $c = c[H] \in \mathbb{R}$ such that the Hamilton-Jacobi equation

$$(HJ) H(x, d_x u) = c \forall x \in M,$$

admits at least one viscosity solution.

No boundary conditions !!

The Aubry set I

Denote by $\mathcal{S}(H)$ the set of viscosity solution $u: M \to \mathbb{R}$ of the critical Hamilton-Jacobi equation

(HJ)
$$H(x, d_x u) = c[H] \quad \forall x \in M.$$

Such solutions are called weak KAM solutions or critical viscosity solutions.

Theorem

The set $\tilde{A}(H) \subset T^*M$ defined as

$$ilde{A}(H):=\cap \{ ext{Graph}(ext{du}) \, | \, ext{u} \in \mathcal{S}(H) \}$$

is a nonempty compact set which is invariant under the Hamiltonian flow.

The Aubry set II

Let $u: M \to \mathbb{R}$ be a critical viscosity solution. Let $x \in M$ and $p \in \{\lim_k d_{x_k}u \mid x_k \in D_u \text{ and } x_k \to x\}$ be fixed. Then there is an extremal $(x(\cdot), p(\cdot)) : (-\infty, 0] \to T^*M$ such that

$$\begin{cases} \dot{x}(t) = \nabla_{p} H(x(t), p(t)) \\ \dot{p}(t) = -\nabla_{x} H(x(t), p(t)) \end{cases} \quad \forall t \in (-\infty, 0]$$

with
$$x(0) = x$$
, $p(0) = p$, and $d_{x(t)}u = p(t)$, for any $t \leq 0$.

Proposition

$$\lim_{t\to-\infty}d\Big(\big(x(t),p(t)\big),\tilde{\mathcal{A}}(H)\Big)=0.$$

The projected Aubry set $\mathcal{A}(H) := \pi(\tilde{A}(H)) \subset M$ plays the role of the "Dirichlet" boundary.

Theorem (Bernard 2007)

Let H be a C^k Hamiltonian satisfying (H1)-(H2) with $2 \le k \le \infty$. Assume that the Aubry set $\tilde{A}(H)$ is either an hyperbolic periodic orbit or an hyperbolic fixed point. Then any critical viscosity solution is C^k in a neighborhood of $\mathcal{A}(H)$.

Is this kind of regularity generic ?

Given a Tonelli Hamiltonian $H: T^*M \to \mathbb{R}$ of class C^k (with $k \ge 2$) and a potential $V: M \to \mathbb{R}$ of class C^k , we define the Hamiltonian $H_V: T^*M \to \mathbb{R}$ by

$$H_V(x,p) := H(x,p) + V(x) \qquad \forall (x,p) \in T^*M.$$

Denote by $C^{k}(M)$ the set of C^{k} potentials on M equipped with the C^{k} -topology.

Conjecture (Mañé 1996)

For every Tonelli Hamiltonian H of class C^k (with $k \ge 2$), there is a residual subset \mathcal{G} of $C^k(M)$ such that, for every $V \in \mathcal{G}$, the Aubry set of the Hamiltonian H_V is either an hyperbolic fixed point or an hyperbolic periodic orbit.

A first step toward the Mañé Conjecture in C^2 topology

Theorem (Figalli, Rifford 2010)

Let H be a Tonelli Hamiltonian H of class C^k with $k \ge 4$ and $\epsilon > 0$ be fixed. Assume that there is a critical viscosity subsolution which is at least C^{k+1} on a neighborhood of $\mathcal{A}(H)$. Then there is a potential $V : M \to \mathbb{R}$ of class C^{k-1} with $\|V\|_{C^2} < \epsilon$ such that $c[H_V] = c[H]$ and the Aubry set of H_V is either an hyperbolic equilibrium or an hyperbolic periodic orbit.

Thank you for your attention !