On Riemannian manifolds satisfying the Transport Continuity Property

Ludovic Rifford

Université de Nice - Sophia Antipolis

(Joint work with A. Figalli and C. Villani)

Ludovic Rifford Optimal transportation and applications (Banff 2010)

Statement of the problem

Optimal transport on Riemannian manifolds

Let (M, g) be a smooth compact connected Riemannian manifold of dimension $n \ge 2$.

Optimal transport on Riemannian manifolds

Let (M, g) be a smooth compact connected Riemannian manifold of dimension $n \ge 2$.

Denote by d_g the geodesic distance on M and define the quadratic cost $c: M \times M \to [0, \infty)$ by

$$c(x,y) := rac{1}{2} d_g(x,y)^2 \qquad orall x, y \in M.$$

Optimal transport on Riemannian manifolds

Let (M, g) be a smooth compact connected Riemannian manifold of dimension $n \ge 2$.

Denote by d_g the geodesic distance on M and define the quadratic cost $c: M \times M \to [0, \infty)$ by

$$c(x,y) := \frac{1}{2} d_g(x,y)^2 \qquad \forall x,y \in M.$$

Given two Borelian probability measures μ_0, μ_1 on M, find a mesurable map $T: M \to M$ satisfying

$$\mathcal{T}_{\sharp}\mu_0=\mu_1$$
 (i.e. $\mu_1(B)=\mu_0ig(\mathcal{T}^{-1}(B)ig), orall B$ borelian $\subset Mig),$

and minimizing

$$\int_M c(x, T(x)) d\mu_0(x).$$

Theorem (McCann '01)

Let μ_0, μ_1 be two probability measures on M. If μ_0 is absolutely continuous w.r.t. the Lebesgue measure, then there is a unique optimal transport map $T : M \to M$ satisfying $T_{\sharp}\mu_0 = \mu_1$ and minimizing

$$\int_M c(x,T(x))d\mu_0(x).$$

It is characterized by the existence of a semiconvex function $\psi: M \to \mathbb{R}$ such that

$$T(x) = \exp_x (\nabla \psi(x))$$
 for μ_0 a.e. $x \in \mathbb{R}^n$.

We say that (M, g) satisfies the **Transport Continuity Property (TCP)** if the following property is satisfied: For any pair of probability measures μ_0, μ_1 associated locally with **continuous positive densities** ρ_0, ρ_1 , that is

$$\mu_0 = \rho_0 \mathcal{L}^n, \quad \mu_1 = \rho_1 \mathcal{L}^n,$$

the optimal transport map between μ_0 and μ_1 is **continuous**.

- Cordero-Erausquin (1999)
- Ma, Trudinger, Wang (2005)
- Loeper
- Kim, McCann
- Delanoe-Ge
- Villani
- Figalli, Rifford
- Figalli, Rifford, Villani
- Figalli, Kim, McCann

Necessary conditions for **TCP**

Theorem (Loeper '08, Villani '09, Figalli-R-Villani)

Assume that (M, g) satisfies **(TCP)** then the following properties hold:

- all the injectivity domains are convex,
- the cost c is regular.

Let $x \in M$ be fixed. We call exponential mapping from x, the mapping defined as

$$\begin{array}{rccc} \exp_{x} & : & T_{x}M & \longrightarrow & M \\ & v & \longmapsto & \exp_{x}(v) := \gamma_{v}(1), \end{array}$$

where $\gamma_{\mathbf{v}} : [0, 1] \to M$ is the unique geodesic starting at x with speed $\dot{\gamma}_{\mathbf{v}}(0) = \mathbf{v}$.

Let $x \in M$ be fixed. We call exponential mapping from x, the mapping defined as

$$\begin{array}{rccc} \exp_{x} : \ T_{x}M & \longrightarrow & M \\ v & \longmapsto & \exp_{x}(v) := \gamma_{v}(1), \end{array}$$

where $\gamma_{\mathbf{v}} : [0, 1] \to M$ is the unique geodesic starting at x with speed $\dot{\gamma}_{\mathbf{v}}(0) = \mathbf{v}$. We call **injectivity domain** of x the set

$$\mathcal{I}(x) := \left\{ v \in T_x M \left| \begin{array}{c} \exists t > 1 \text{ s.t. } \gamma_{tv} \text{ is the unique minimizing} \\ \text{geodesic between } x \text{ and } \exp_x(tv) \end{array} \right. \right.$$

Let $x \in M$ be fixed. We call exponential mapping from x, the mapping defined as

$$\begin{array}{rccc} \exp_{x} & : & T_{x}M & \longrightarrow & M \\ & v & \longmapsto & \exp_{x}(v) := \gamma_{v}(1), \end{array}$$

where $\gamma_{\nu} : [0, 1] \to M$ is the unique geodesic starting at x with speed $\dot{\gamma}_{\nu}(0) = \nu$. We call **injectivity domain** of x the set

$$\mathcal{I}(x) := \left\{ v \in T_x M \left| \begin{array}{c} \exists t > 1 \text{ s.t. } \gamma_{tv} \text{ is the unique minimizing} \\ \text{geodesic between } x \text{ and } \exp_x(tv) \end{array} \right. \right.$$

It is a star-shaped (w.r.t. $0 \in T_x M$) domain with Lipschitz boundary.

The cost $c = d^2/2 : M \times M \to \mathbb{R}$ is called **regular**, if for every $x \in M$ and every $v_0, v_1 \in \mathcal{I}(x)$, there holds

$$\mathbf{v}_t := (1-t)\mathbf{v}_0 + t\mathbf{v}_1 \in \mathcal{I}(x) \qquad \forall t \in [0,1],$$

and

$$c(x, y_t) - c(x', y_t) \le \max \Big(c(x, y_0) - c(x', y_0), c(x, y_1) - c(x', y_1) \Big),$$

for any $x' \in M$, where $y_t := \exp_x v_t$.

Remark

Assume that all the injectivity domains of (M, g) are convex. Then the cost c is regular if and only if for every $x, x' \in M$, the mapping

$$\mathcal{F}_{x,x'}$$
 : $\mathbf{v} \in \mathcal{I}(x) \longmapsto c(x, \exp_x(\mathbf{v})) - c(x', \exp_x(\mathbf{v}))$

is quasiconvex (its sublevels sets are always convex).

Lemma

Let $U \subset \mathbb{R}^n$ be an open convex set and $F : U \to \mathbb{R}$ be a function of class C^2 . Assume that for every $v \in U$ and every $w \in \mathbb{R}^n \setminus \{0\}$, the following property holds

$$\langle \nabla_{\mathbf{v}} F, \mathbf{w} \rangle = 0 \implies \langle \nabla_{\mathbf{v}}^2 F \mathbf{w}, \mathbf{w} \rangle > 0.$$

Then F is quasiconvex.

Proof.

Let $v_0, v_1 \in U$ be fixed.

Ludovic Rifford Optimal transportation and applications (Banff 2010)

Proof.

Let $v_0, v_1 \in U$ be fixed. Set $v_t := (1-t)v_0 + tv_1$, for every $t \in [0,1]$,

Proof.

Let $v_0, v_1 \in U$ be fixed. Set $v_t := (1 - t)v_0 + tv_1$, for every $t \in [0, 1]$, and define $h : [0, 1] \to \mathbb{R}$ by

$$h(t) := F(v_t) \qquad \forall t \in [0,1].$$

Proof.

Let $v_0, v_1 \in U$ be fixed. Set $v_t := (1 - t)v_0 + tv_1$, for every $t \in [0, 1]$, and define $h : [0, 1] \to \mathbb{R}$ by

$$h(t) := F(v_t) \qquad \forall t \in [0,1].$$

If $h \nleq \max\{h(0), h(1)\}$, there is $\tau \in (0, 1)$ such that

$$h(\tau) = \max_{t \in [0,1]} h(t) > \max\{h(0), h(1)\}.$$

Proof.

Let $v_0, v_1 \in U$ be fixed. Set $v_t := (1 - t)v_0 + tv_1$, for every $t \in [0, 1]$, and define $h : [0, 1] \to \mathbb{R}$ by

$$h(t) := F(v_t) \qquad \forall t \in [0,1].$$

If $h \not\leq \max\{h(0), h(1)\}$, there is $\tau \in (0, 1)$ such that

$$h(\tau) = \max_{t \in [0,1]} h(t) > \max\{h(0), h(1)\}.$$

There holds

$$\dot{h}(au) = \langle
abla_{m{v}_ au} F, \dot{m{v}}_ au
angle \quad ext{ and } \quad \ddot{h}(au) = \langle
abla^2_{m{v}_ au} F\, \dot{m{v}}_ au, \dot{m{v}}_ au
angle.$$

Proof.

Let $v_0, v_1 \in U$ be fixed. Set $v_t := (1 - t)v_0 + tv_1$, for every $t \in [0, 1]$, and define $h : [0, 1] \to \mathbb{R}$ by

$$h(t) := F(v_t) \qquad \forall t \in [0,1].$$

If $h \not\leq \max\{h(0), h(1)\}$, there is $\tau \in (0, 1)$ such that

$$h(\tau) = \max_{t \in [0,1]} h(t) > \max\{h(0), h(1)\}.$$

There holds

$$\dot{h}(au) = \langle
abla_{
u_ au} F, \dot{
u}_ au
angle$$
 and $\ddot{h}(au) = \langle
abla^2_{
u_ au} F \, \dot{
u}_ au, \dot{
u}_ au
angle.$

Since τ is a local maximum, we get a contradiction.

The following lemma is false !!

FALSE Lemma

Let $U \subset \mathbb{R}^n$ be an open convex set and $F : U \to \mathbb{R}$ be a function of class C^2 . Assume that for every $v \in U$ and every $w \in \mathbb{R}^n$, the following property holds

$$\langle \nabla_v F, w \rangle = 0 \implies \langle \nabla_v^2 F w, w \rangle \ge 0.$$

Then F is quasiconvex.

However, the following result holds true.

Lemma

Let $U \subset \mathbb{R}^n$ be an open convex set and $F : U \to \mathbb{R}$ be a function of class C^2 . Assume that there is a constant C > 0 such that

 $\langle \nabla_{v}^{2}F w, w \rangle \geq -C |\langle \nabla_{v}F, w \rangle| |w| \qquad \forall v \in U, \forall w \in \mathbb{R}^{n}.$

Then F is quasiconvex.

The Ma-Trudinger-Wang tensor

The MTW tensor \mathfrak{S} is defined as

$$\mathfrak{S}_{(x,v)}(\xi,\eta) = -\frac{3}{2} \left. \frac{d^2}{ds^2} \right|_{s=0} \left. \frac{d^2}{dt^2} \right|_{t=0} c\left(\exp_x(t\xi), \exp_x(v+s\eta) \right),$$

for every $x \in M$, $v \in \mathcal{I}(x)$, and $\xi, \eta \in T_x M$.

The Ma-Trudinger-Wang tensor

The MTW tensor \mathfrak{S} is defined as

$$\mathfrak{S}_{(x,\nu)}(\xi,\eta) = -\frac{3}{2} \left. \frac{d^2}{ds^2} \right|_{s=0} \left. \frac{d^2}{dt^2} \right|_{t=0} c\left(\exp_x(t\xi), \exp_x(\nu + s\eta) \right),$$

for every $x \in M$, $v \in \mathcal{I}(x)$, and $\xi, \eta \in T_x M$.

Proposition (Villani '09, Figalli-R-Villani)

Assume that all the injectivity domains are convex. Then, the two following properties are equivalent:

- the cost c is regular,
- the **MTW** tensor \mathfrak{S} is $\succeq 0$, that is, for every $x \in M, v \in \mathcal{I}(x)$, and $\xi, \eta \in T_x M$,

$$\langle \xi, \eta \rangle_x = 0 \implies \mathfrak{S}_{(x,v)}(\xi, \eta) \ge 0.$$

Necessary conditions

Theorem (Villani '09, Figalli-R-Villani)

Assume that (M, g) satisfies **(TCP)** then the following properties hold:

- all the injectivity domains are convex,
- the cost c is regular,
- the **MTW** tensor \mathfrak{S} is $\succeq 0$.

Theorem (Villani '09, Figalli-R-Villani)

Assume that (M, g) satisfies **(TCP)** then the following properties hold:

- all the injectivity domains are convex,
- the cost c is regular,
- the **MTW** tensor \mathfrak{S} is $\succeq 0$.

Loeper noticed that for every $x \in M$ and for any pair of unit orthogonal tangent vectors $\xi, \eta \in T_x M$, there holds

$$\mathfrak{S}_{(x,0)}(\xi,\eta)=\sigma_x(P),$$

where *P* is the plane generated by ξ and η . Consequently, any (M, g) satisfying **TCP** must have nonnegative sectional curvatures.

Sufficient conditions for $\ensuremath{\mathsf{TCP}}$

Theorem (Figalli-R-Villani)

Assume that (M, g) satisfies the following properties:

- all the injectivity domains are strictly convex,
- the **MTW** tensor \mathfrak{S} is $\succ 0$, that is, for every $x \in M, v \in \mathcal{I}(x)$, and $\xi, \eta \in T_x M \setminus \{0\}$,

$$\langle \xi, \eta \rangle_x = 0 \implies \mathfrak{S}_{(x,v)}(\xi, \eta) > 0.$$

Then (M, g) satisfies **TCP**.

Examples

æ

The flat torus

The **MTW** tensor of the flat torus (\mathbb{T}^n, g^0) satisfies

$$\mathfrak{S}_{(x,v)} \equiv 0 \qquad \forall x \in \mathbb{T}^n, \forall v \in \mathcal{I}(x)$$

Theorem (Cordero-Erausquin '99)

The flat torus (\mathbb{T}^n, g^0) satisfies **TCP**.

Round spheres

Loeper checked that the **MTW** tensor of the round sphere (\mathbb{S}^n, g^0) satisfies for any $x \in \mathbb{S}^n, v \in \mathcal{I}(x)$ and $\xi, \eta \in T_x \mathbb{S}^n$, $\langle \xi, \eta \rangle_x = 0 \implies \mathfrak{S}_{(x,v)}(\xi, \eta) \ge \|\xi\|_x^2 \|\eta\|_x^2$.

Theorem (Loeper '06)

The round sphere (\mathbb{S}^n, g^0) satisfies **TCP**.

Let G be a discrete group of isometries of (M, g) acting freely and properly. Then there exists on the quotient manifold N = M/G a unique Riemannian metric h such that the canonical projection $p: M \to N$ is a Riemannian covering map.

Theorem (Delanoe-Ge '08)

If (M,g) satisfies **TCP**, then (N = M/G, h) satisfies **TCP**.

Examples: (\mathbb{RP}^n, g^0) , the flat Klein bottle.

We call **Riemannian submersion** from (M, g) to (N, h) any smooth submersion $p: M \to N$ such that for every $x \in M$, the differential mapping $d_x p$ is an isometry between H_x and $T_{p(x)}N$, where $H_x \subset T_x M$ is the **horizontal subspace** defined as

$$H_{x}:=\left\{\left(d_{x}p
ight)^{-1}(0)
ight\}^{\perp}.$$

Theorem (Kim-McCann '08)

If (M, g) satisfies $\mathfrak{S} \succ 0$ (resp. $\succeq 0$), then (N, h) satisfies $\mathfrak{S} \succ 0$ (resp. $\succeq 0$).

Examples: complex projective spaces (\mathbb{CP}^k, g^0) (dim = 2k), quaternionic projective spaces (\mathbb{HP}^k, g^0) (dim = 4k).

Small deformations of (\mathbb{S}^2, g^0)

On (\mathbb{S}^2, g^0) , the **MTW** tensor is given by

$$\begin{split} \mathfrak{S}_{(x,v)}(\xi,\xi^{\perp}) \\ &= 3\left[\frac{1}{r^2} - \frac{\cos(r)}{r\sin(r)}\right]\xi_1^4 + 3\left[\frac{1}{\sin^2(r)} - \frac{r\cos(r)}{\sin^3(r)}\right]\xi_2^4 \\ &\quad + \frac{3}{2}\left[-\frac{6}{r^2} + \frac{\cos(r)}{r\sin(r)} + \frac{5}{\sin^2(r)}\right]\xi_1^2\xi_2^2, \end{split}$$
with $x \in \mathbb{S}^2, v \in \mathcal{I}(x), r := \|v\|_x, \xi = (\xi_1, \xi_2), \xi^{\perp} = (-\xi_2, \xi_1). \end{split}$

「同 ト イ ヨ ト イ ヨ ト ― ヨ

Small deformations of (\mathbb{S}^2, g^0)

On (\mathbb{S}^2, g^0) , the **MTW** tensor is given by

$$\begin{split} \mathfrak{S}_{(x,v)}(\xi,\xi^{\perp}) \\ &= 3 \left[\frac{1}{r^2} - \frac{\cos(r)}{r\sin(r)} \right] \xi_1^4 + 3 \left[\frac{1}{\sin^2(r)} - \frac{r\cos(r)}{\sin^3(r)} \right] \xi_2^4 \\ &+ \frac{3}{2} \left[-\frac{6}{r^2} + \frac{\cos(r)}{r\sin(r)} + \frac{5}{\sin^2(r)} \right] \xi_1^2 \xi_2^2, \end{split}$$

with $x \in \mathbb{S}^2, v \in \mathcal{I}(x), r := \|v\|_x, \xi = (\xi_1, \xi_2), \xi^{\perp} = (-\xi_2, \xi_1).$

Theorem (Figalli-R '09)

Any small deformation of the round sphere (\mathbb{S}^2, g^0) in C^4 topology satisfies **TCP**.

Ellipsoids

The oblate ellipsoid of revolution (E_{ϵ}) given by the equation

$$\frac{x^2}{\epsilon^2} + y^2 + z^2 = 1, \quad \text{ with } \epsilon = 0.29,$$

does not satisfies $MTW \ge 0$.

Ellipsoids

The oblate ellipsoid of revolution (E_{ϵ}) given by the equation

$$\frac{x^2}{\epsilon^2} + y^2 + z^2 = 1, \quad \text{ with } \epsilon = 0.29,$$

does not satisfies $MTW \ge 0$.

In consequence, (E_{ϵ}) does not satisfy **TCP**

Ludovic Rifford Optimal transportation and applications (Banff 2010)

Jump of curvature

The surface made with two half-balls joined by a cylinder has not a regular cost.

Then, it does not satisfy **TCP**.

Small deformations of (\mathbb{S}^n, g^0)

Theorem (Figalli-R-Villani'09)

Any small deformation of the round sphere (\mathbb{S}^n, g^0) in C^4 topology satisfies **TCP**.

Theorem (Figalli-R-Villani'09)

Any small deformation of the round sphere (\mathbb{S}^n, g^0) in C^4 topology satisfies **TCP**.

As a by-product, we obtain that the injectivity domains on small C^4 deformations of (\mathbb{S}^n, g^0) are convex.

Perspectives

э

Mind the gap !

Theorem (Necessary conditions)

Assume that (M, g) satisfies **(TCP)** then the following properties hold:

- all the injectivity domains are convex,
- $\mathfrak{S} \succeq 0$.

Mind the gap !

Theorem (Necessary conditions)

Assume that (M, g) satisfies **(TCP)** then the following properties hold:

• all the injectivity domains are convex,

• $\mathfrak{S} \succeq 0$.

Theorem (Sufficient conditions)

Assume that (M, g) satisfies the following properties:

- all the injectivity domains are strictly convex,
- $\mathfrak{S} \succ 0$.

Then (M, g) satisfies **TCP**.

Mind the gap !

Theorem (Necessary conditions)

Assume that (M, g) satisfies **(TCP)** then the following properties hold:

• all the injectivity domains are convex,

• $\mathfrak{S} \succeq 0$.

Theorem (Sufficient conditions)

Assume that (M, g) satisfies the following properties:

- all the injectivity domains are strictly convex,
- $\mathfrak{S} \succ 0$.

Then (M, g) satisfies **TCP**.

There is a gap !

More examples ?

List of (M,g) satisfying $\mathfrak{S} \succeq 0$ or $\mathfrak{S} \succ 0$:

- Flat tori ($\mathfrak{S} \succeq 0$).
- Round spheres ($\mathfrak{S} \succ 0$).
- Complex projective spaces ($\mathfrak{S} \succ 0$).
- Quaternionic projective spaces ($\mathfrak{S} \succ 0$).
- C^4 small deformations of round spheres ($\mathfrak{S} \succ 0$).
- Riemannian products some of the above spaces ($\mathfrak{S} \succeq 0$).
- (Riemannian quotients of the above spaces.)
- •?

Let us say that (M,g) satisfies $\mathfrak{S} \geq 0$ if

 $\mathfrak{S}_{(x,v)}(\xi,\eta) \geq 0 \qquad \forall x \in M, \forall v \in \mathcal{I}(x), \forall \xi, \eta \in T_x M.$

3

∃ >

Let us say that (M,g) satisfies $\mathfrak{S} \geq 0$ if

 $\mathfrak{S}_{(x,v)}(\xi,\eta) \geq 0 \qquad \forall x \in M, \forall v \in \mathcal{I}(x), \forall \xi, \eta \in T_x M.$

- All the following examples
 - flat tori,
 - round spheres,
 - complex projective spaces,
 - quaternionic projective spaces,
 - C^4 small deformations of (\mathbb{S}^2, g^0) ,
 - Riemannian products some of the above spaces,

satisfy $\mathfrak{S} \geq 0$!!!

Thank you for your attention !