On Riemannian manifolds satisfying the Transport Continuity Property

Ludovic Rifford

Université de Nice - Sophia Antipolis
(Joint work with A. Figalli and C. Villani)

Statement of the problem

Optimal transport on Riemannian manifolds

Let (M, g) be a smooth compact connected Riemannian manifold of dimension $n \geq 2$.

Optimal transport on Riemannian manifolds

Let (M, g) be a smooth compact connected Riemannian manifold of dimension $n \geq 2$.
Denote by d_{g} the geodesic distance on M and define the quadratic cost $c: M \times M \rightarrow[0, \infty)$ by

$$
c(x, y):=\frac{1}{2} d_{g}(x, y)^{2} \quad \forall x, y \in M .
$$

Optimal transport on Riemannian manifolds

Let (M, g) be a smooth compact connected Riemannian manifold of dimension $n \geq 2$.
Denote by d_{g} the geodesic distance on M and define the quadratic cost $c: M \times M \rightarrow[0, \infty)$ by

$$
c(x, y):=\frac{1}{2} d_{g}(x, y)^{2} \quad \forall x, y \in M .
$$

Given two Borelian probability measures μ_{0}, μ_{1} on M, find a mesurable map $T: M \rightarrow M$ satisfying

$$
T_{\sharp} \mu_{0}=\mu_{1} \quad\left(\text { i.e. } \mu_{1}(B)=\mu_{0}\left(T^{-1}(B)\right), \forall B \text { borelian } \subset M\right),
$$

and minimizing

$$
\int_{M} c(x, T(x)) d \mu_{0}(x) .
$$

The Brenier-McCann Theorem

Theorem (McCann '01)

Let μ_{0}, μ_{1} be two probability measures on M. If μ_{0} is absolutely continuous w.r.t. the Lebesgue measure, then there is a unique optimal transport map $T: M \rightarrow M$ satisfying $T_{\sharp} \mu_{0}=\mu_{1}$ and minimizing

$$
\int_{M} c(x, T(x)) d \mu_{0}(x)
$$

It is characterized by the existence of a semiconvex function $\psi: M \rightarrow \mathbb{R}$ such that

$$
T(x)=\exp _{x}(\nabla \psi(x)) \quad \text { for } \mu_{0} \text { a.e. } x \in \mathbb{R}^{n}
$$

The Transport Continuity Property

We say that (M, g) satisfies the Transport Continuity Property (TCP) if the following property is satisfied:
For any pair of probability measures μ_{0}, μ_{1} associated locally with continuous positive densities ρ_{0}, ρ_{1}, that is

$$
\mu_{0}=\rho_{0} \mathcal{L}^{n}, \quad \mu_{1}=\rho_{1} \mathcal{L}^{n},
$$

the optimal transport map between μ_{0} and μ_{1} is continuous.

References

- Cordero-Erausquin (1999)
- Ma, Trudinger, Wang (2005)
- Loeper
- Kim, McCann
- Delanoe-Ge
- Villani
- Figalli, Rifford
- Figalli, Rifford, Villani
- Figalli, Kim, McCann

Necessary conditions for TCP

Necessary conditions

Theorem (Loeper '08, Villani '09, Figalli-R-Villani)

Assume that (M, g) satisfies (TCP) then the following properties hold:

- all the injectivity domains are convex,
- the cost c is regular.

Injectivity domains

Let $x \in M$ be fixed. We call exponential mapping from x, the mapping defined as

$$
\begin{aligned}
\exp _{x}: T_{x} M & \longrightarrow M \\
v & \longmapsto \exp _{x}(v):=\gamma_{v}(1),
\end{aligned}
$$

where $\gamma_{v}:[0,1] \rightarrow M$ is the unique geodesic starting at x with speed $\dot{\gamma}_{v}(0)=v$.

Injectivity domains

Let $x \in M$ be fixed. We call exponential mapping from x, the mapping defined as

$$
\begin{aligned}
\exp _{x}: T_{x} M & \longrightarrow M \\
v & \longmapsto \exp _{x}(v):=\gamma_{v}(1),
\end{aligned}
$$

where $\gamma_{v}:[0,1] \rightarrow M$ is the unique geodesic starting at x with speed $\dot{\gamma}_{v}(0)=v$. We call injectivity domain of x the set
$\mathcal{I}(x):=\left\{\begin{array}{l|l}v \in T_{x} M \left\lvert\, \begin{array}{c}\exists t>1 \text { s.t. } \gamma_{t v} \text { is the unique minimizing } \\ \text { geodesic between } x \text { and } \exp _{x}(t v)\end{array}\right.\end{array}\right\}$.

Injectivity domains

Let $x \in M$ be fixed. We call exponential mapping from x, the mapping defined as

$$
\begin{aligned}
\exp _{x}: T_{x} M & \longrightarrow M \\
v & \longmapsto \exp _{x}(v):=\gamma_{v}(1)
\end{aligned}
$$

where $\gamma_{v}:[0,1] \rightarrow M$ is the unique geodesic starting at x with speed $\dot{\gamma}_{v}(0)=v$. We call injectivity domain of x the set
$\mathcal{I}(x):=\left\{v \in T_{x} M \left\lvert\, \begin{array}{c}\exists t>1 \text { s.t. } \gamma_{t v} \text { is the unique minimizing } \\ \text { geodesic between } x \text { and } \exp _{x}(t v)\end{array}\right.\right\}$.
It is a star-shaped (w.r.t. $0 \in T_{x} M$) domain with Lipschitz boundary.

Regular costs

The cost $c=d^{2} / 2: M \times M \rightarrow \mathbb{R}$ is called regular, if for every $x \in M$ and every $v_{0}, v_{1} \in \mathcal{I}(x)$, there holds

$$
v_{t}:=(1-t) v_{0}+t v_{1} \in \mathcal{I}(x) \quad \forall t \in[0,1]
$$

and

$$
\begin{aligned}
c\left(x, y_{t}\right)- & c\left(x^{\prime}, y_{t}\right) \leq \\
& \max \left(c\left(x, y_{0}\right)-c\left(x^{\prime}, y_{0}\right), c\left(x, y_{1}\right)-c\left(x^{\prime}, y_{1}\right)\right)
\end{aligned}
$$

for any $x^{\prime} \in M$, where $y_{t}:=\exp _{x} v_{t}$.

An obvious remark

Remark

Assume that all the injectivity domains of (M, g) are convex. Then the cost c is regular if and only if for every $x, x^{\prime} \in M$, the mapping

$$
F_{x, x^{\prime}}: v \in \mathcal{I}(x) \longmapsto c\left(x, \exp _{x}(v)\right)-c\left(x^{\prime}, \exp _{x}(v)\right)
$$

is quasiconvex (its sublevels sets are always convex).

An easy lemma

Lemma

Let $U \subset \mathbb{R}^{n}$ be an open convex set and $F: U \rightarrow \mathbb{R}$ be a function of class C^{2}. Assume that for every $v \in U$ and every $w \in \mathbb{R}^{n} \backslash\{0\}$, the following property holds

$$
\left\langle\nabla_{v} F, w\right\rangle=0 \Longrightarrow\left\langle\nabla_{v}^{2} F w, w\right\rangle>0
$$

Then F is quasiconvex.

Proof of the easy lemma

Proof.

Let $v_{0}, v_{1} \in U$ be fixed.

Proof of the easy lemma

Proof.

Let $v_{0}, v_{1} \in U$ be fixed. Set $v_{t}:=(1-t) v_{0}+t v_{1}$, for every $t \in[0,1]$,

Proof of the easy lemma

Proof.

Let $v_{0}, v_{1} \in U$ be fixed. Set $v_{t}:=(1-t) v_{0}+t v_{1}$, for every $t \in[0,1]$, and define $h:[0,1] \rightarrow \mathbb{R}$ by

$$
h(t):=F\left(v_{t}\right) \quad \forall t \in[0,1] .
$$

Proof of the easy lemma

Proof.

Let $v_{0}, v_{1} \in U$ be fixed. Set $v_{t}:=(1-t) v_{0}+t v_{1}$, for every $t \in[0,1]$, and define $h:[0,1] \rightarrow \mathbb{R}$ by

$$
h(t):=F\left(v_{t}\right) \quad \forall t \in[0,1] .
$$

If $h \not \leq \max \{h(0), h(1)\}$, there is $\tau \in(0,1)$ such that

$$
h(\tau)=\max _{t \in[0,1]} h(t)>\max \{h(0), h(1)\} .
$$

Proof of the easy lemma

Proof.

Let $v_{0}, v_{1} \in U$ be fixed. Set $v_{t}:=(1-t) v_{0}+t v_{1}$, for every $t \in[0,1]$, and define $h:[0,1] \rightarrow \mathbb{R}$ by

$$
h(t):=F\left(v_{t}\right) \quad \forall t \in[0,1] .
$$

If $h \not \leq \max \{h(0), h(1)\}$, there is $\tau \in(0,1)$ such that

$$
h(\tau)=\max _{t \in[0,1]} h(t)>\max \{h(0), h(1)\} .
$$

There holds

$$
\dot{h}(\tau)=\left\langle\nabla_{v_{\tau}} F, \dot{v}_{\tau}\right\rangle \quad \text { and } \quad \ddot{h}(\tau)=\left\langle\nabla_{v_{\tau}}^{2} F \dot{v}_{\tau}, \dot{v}_{\tau}\right\rangle .
$$

Proof of the easy lemma

Proof.

Let $v_{0}, v_{1} \in U$ be fixed. Set $v_{t}:=(1-t) v_{0}+t v_{1}$, for every $t \in[0,1]$, and define $h:[0,1] \rightarrow \mathbb{R}$ by

$$
h(t):=F\left(v_{t}\right) \quad \forall t \in[0,1] .
$$

If $h \not \leq \max \{h(0), h(1)\}$, there is $\tau \in(0,1)$ such that

$$
h(\tau)=\max _{t \in[0,1]} h(t)>\max \{h(0), h(1)\} .
$$

There holds

$$
\dot{h}(\tau)=\left\langle\nabla_{v_{\tau}} F, \dot{v}_{\tau}\right\rangle \quad \text { and } \quad \ddot{h}(\tau)=\left\langle\nabla_{v_{\tau}}^{2} F \dot{v}_{\tau}, \dot{v}_{\tau}\right\rangle .
$$

Since τ is a local maximum, we get a contradiction.

Exercice 1

The following lemma is false !!

FALSE Lemma

Let $U \subset \mathbb{R}^{n}$ be an open convex set and $F: U \rightarrow \mathbb{R}$ be a function of class C^{2}. Assume that for every $v \in U$ and every $w \in \mathbb{R}^{n}$, the following property holds

$$
\left\langle\nabla_{v} F, w\right\rangle=0 \Longrightarrow\left\langle\nabla_{v}^{2} F w, w\right\rangle \geq 0
$$

Then F is quasiconvex.

Exercice 2

However, the following result holds true.

Lemma

Let $U \subset \mathbb{R}^{n}$ be an open convex set and $F: U \rightarrow \mathbb{R}$ be a function of class C^{2}. Assume that there is a constant $C>0$ such that

$$
\left\langle\nabla_{v}^{2} F w, w\right\rangle \geq-C\left|\left\langle\nabla_{v} F, w\right\rangle\right||w| \quad \forall v \in U, \forall w \in \mathbb{R}^{n} .
$$

Then F is quasiconvex.

The Ma-Trudinger-Wang tensor

The MTW tensor \mathfrak{S} is defined as
$\mathfrak{S}_{(x, v)}(\xi, \eta)=-\left.\left.\frac{3}{2} \frac{d^{2}}{d s^{2}}\right|_{s=0} \frac{d^{2}}{d t^{2}}\right|_{t=0} c\left(\exp _{x}(t \xi), \exp _{x}(v+s \eta)\right)$, for every $x \in M, v \in \mathcal{I}(x)$, and $\xi, \eta \in T_{x} M$.

The Ma-Trudinger-Wang tensor

The MTW tensor \mathfrak{S} is defined as
$\mathfrak{S}_{(x, v)}(\xi, \eta)=-\left.\left.\frac{3}{2} \frac{d^{2}}{d s^{2}}\right|_{s=0} \frac{d^{2}}{d t^{2}}\right|_{t=0} c\left(\exp _{x}(t \xi), \exp _{x}(v+s \eta)\right)$, for every $x \in M, v \in \mathcal{I}(x)$, and $\xi, \eta \in T_{x} M$.

Proposition (Villani '09, Figalli-R-Villani)

Assume that all the injectivity domains are convex. Then, the two following properties are equivalent:

- the cost c is regular,
- the MTW tensor \mathfrak{S} is $\succeq 0$, that is, for every $x \in M, v \in \mathcal{I}(x)$, and $\xi, \eta \in T_{x} M$,

$$
\langle\xi, \eta\rangle_{x}=0 \Longrightarrow \mathfrak{S}_{(x, v)}(\xi, \eta) \geq 0
$$

Necessary conditions

Theorem (Villani '09, Figalli-R-Villani)

Assume that (M, g) satisfies (TCP) then the following properties hold:

- all the injectivity domains are convex,
- the cost c is regular,
- the MTW tensor \mathfrak{S} is $\succeq 0$.

Necessary conditions

Theorem (Villani '09, Figalli-R-Villani)

Assume that (M, g) satisfies (TCP) then the following properties hold:

- all the injectivity domains are convex,
- the cost c is regular,
- the MTW tensor \mathfrak{S} is $\succeq 0$.

Loeper noticed that for every $x \in M$ and for any pair of unit orthogonal tangent vectors $\xi, \eta \in T_{x} M$, there holds

$$
\mathfrak{S}_{(x, 0)}(\xi, \eta)=\sigma_{x}(P)
$$

where P is the plane generated by ξ and η. Consequently, any (M, g) satisfying TCP must have nonnegative sectional curvatures.

Sufficient conditions for TCP

Sufficient conditions

Theorem (Figalli-R-Villani)

Assume that (M, g) satisfies the following properties:

- all the injectivity domains are strictly convex,
- the MTW tensor \mathfrak{S} is $\succ 0$, that is, for every $x \in M, v \in \mathcal{I}(x)$, and $\xi, \eta \in T_{x} M \backslash\{0\}$,

$$
\langle\xi, \eta\rangle_{x}=0 \Longrightarrow \mathfrak{S}_{(x, v)}(\xi, \eta)>0
$$

Then (M, g) satisfies TCP.

Examples

The flat torus

The MTW tensor of the flat torus $\left(\mathbb{T}^{n}, g^{0}\right)$ satisfies

$$
\mathfrak{S}_{(x, v)} \equiv 0 \quad \forall x \in \mathbb{T}^{n}, \forall v \in \mathcal{I}(x)
$$

Theorem (Cordero-Erausquin '99)

The flat torus $\left(\mathbb{T}^{n}, g^{0}\right)$ satisfies TCP.

Round spheres

Loeper checked that the MTW tensor of the round sphere $\left(\mathbb{S}^{n}, g^{0}\right)$ satisfies for any $x \in \mathbb{S}^{n}, v \in \mathcal{I}(x)$ and $\xi, \eta \in T_{x} \mathbb{S}^{n}$,

$$
\langle\xi, \eta\rangle_{x}=0 \Longrightarrow \mathfrak{S}_{(x, v)}(\xi, \eta) \geq\|\xi\|_{x}^{2}\|\eta\|_{x}^{2}
$$

Theorem (Loeper '06)

The round sphere $\left(\mathbb{S}^{n}, g^{0}\right)$ satisfies TCP.

Riemannian quotients

Let G be a discrete group of isometries of (M, g) acting freely and properly. Then there exists on the quotient manifold $N=M / G$ a unique Riemannian metric h such that the canonical projection $p: M \rightarrow N$ is a Riemannian covering map.

Theorem (Delanoe-Ge '08)

If (M, g) satisfies TCP, then $(N=M / G, h)$ satisfies TCP.
Examples: $\left(\mathbb{R P}^{n}, g^{0}\right)$, the flat Klein bottle.

Riemannian submersions

We call Riemannian submersion from (M, g) to (N, h) any smooth submersion $p: M \rightarrow N$ such that for every $x \in M$, the differential mapping $d_{x} p$ is an isometry between H_{x} and $T_{p(x)} N$, where $H_{x} \subset T_{x} M$ is the horizontal subspace defined as

$$
H_{x}:=\left\{\left(d_{x} p\right)^{-1}(0)\right\}^{\perp} .
$$

Theorem (Kim-McCann '08)
If (M, g) satisfies $\mathfrak{S} \succ 0$ (resp. $\succeq 0$), then (N, h) satisfies
$\mathfrak{S} \succ 0$ (resp. $\succeq 0$).
Examples: complex projective spaces $\left(\mathbb{C P}^{k}, g^{0}\right)(\operatorname{dim}=2 k)$, quaternionic projective spaces $\left(\mathbb{H P}^{k}, g^{0}\right)(\operatorname{dim}=4 k)$.

Small deformations of $\left(\mathbb{S}^{2}, g^{0}\right)$

On $\left(\mathbb{S}^{2}, g^{0}\right)$, the MTW tensor is given by

$$
\begin{aligned}
& \mathfrak{S}_{(x, v)}\left(\xi, \xi^{\perp}\right) \\
& =3\left[\frac{1}{r^{2}}-\frac{\cos (r)}{r \sin (r)}\right] \xi_{1}^{4}+3\left[\frac{1}{\sin ^{2}(r)}-\frac{r \cos (r)}{\sin ^{3}(r)}\right] \xi_{2}^{4} \\
& \quad+\frac{3}{2}\left[-\frac{6}{r^{2}}+\frac{\cos (r)}{r \sin (r)}+\frac{5}{\sin ^{2}(r)}\right] \xi_{1}^{2} \xi_{2}^{2},
\end{aligned}
$$

with $x \in \mathbb{S}^{2}, v \in \mathcal{I}(x), r:=\|v\|_{x}, \xi=\left(\xi_{1}, \xi_{2}\right), \xi^{\perp}=\left(-\xi_{2}, \xi_{1}\right)$.

Small deformations of $\left(\mathbb{S}^{2}, g^{0}\right)$

On $\left(\mathbb{S}^{2}, g^{0}\right)$, the MTW tensor is given by

$$
\begin{aligned}
& \mathfrak{S}_{(x, v)}\left(\xi, \xi^{\perp}\right) \\
& =3\left[\frac{1}{r^{2}}-\frac{\cos (r)}{r \sin (r)}\right] \xi_{1}^{4}+3\left[\frac{1}{\sin ^{2}(r)}-\frac{r \cos (r)}{\sin ^{3}(r)}\right] \xi_{2}^{4} \\
& \quad+\frac{3}{2}\left[-\frac{6}{r^{2}}+\frac{\cos (r)}{r \sin (r)}+\frac{5}{\sin ^{2}(r)}\right] \xi_{1}^{2} \xi_{2}^{2},
\end{aligned}
$$

with $x \in \mathbb{S}^{2}, v \in \mathcal{I}(x), r:=\|v\|_{x}, \xi=\left(\xi_{1}, \xi_{2}\right), \xi^{\perp}=\left(-\xi_{2}, \xi_{1}\right)$.

Theorem (Figalli-R '09)

Any small deformation of the round sphere $\left(\mathbb{S}^{2}, g^{0}\right)$ in C^{4} topology satisfies TCP.

Ellipsoids

The oblate ellipsoid of revolution $\left(E_{\epsilon}\right)$ given by the equation

$$
\frac{x^{2}}{\epsilon^{2}}+y^{2}+z^{2}=1, \quad \text { with } \epsilon=0.29
$$

does not satisfies MTW ≥ 0.

Ellipsoids

The oblate ellipsoid of revolution $\left(E_{\epsilon}\right)$ given by the equation

$$
\frac{x^{2}}{\epsilon^{2}}+y^{2}+z^{2}=1, \quad \text { with } \epsilon=0.29
$$

does not satisfies MTW ≥ 0.

In consequence, $\left(E_{\epsilon}\right)$ does not satisfy TCP.

Jump of curvature

The surface made with two half-balls joined by a cylinder has not a regular cost.

Then, it does not satisfy TCP.

Small deformations of $\left(\mathbb{S}^{n}, g^{0}\right)$

Theorem (Figalli-R-Villani'09)

Any small deformation of the round sphere $\left(\mathbb{S}^{n}, g^{0}\right)$ in C^{4} topology satisfies TCP.

Small deformations of $\left(\mathbb{S}^{n}, g^{0}\right)$

Theorem (Figalli-R-Villani'09)

Any small deformation of the round sphere $\left(\mathbb{S}^{n}, g^{0}\right)$ in C^{4} topology satisfies TCP.

As a by-product, we obtain that the injectivity domains on small C^{4} deformations of $\left(\mathbb{S}^{n}, g^{0}\right)$ are convex.

Perspectives

Mind the gap!

Theorem (Necessary conditions)

Assume that (M, g) satisfies (TCP) then the following properties hold:

- all the injectivity domains are convex,
- $\mathfrak{S} \succeq 0$.

Mind the gap!

Theorem (Necessary conditions)

Assume that (M, g) satisfies (TCP) then the following properties hold:

- all the injectivity domains are convex,
- $\mathfrak{S} \succeq 0$.

Theorem (Sufficient conditions)

Assume that (M, g) satisfies the following properties:

- all the injectivity domains are strictly convex,
- $\mathfrak{S} \succ 0$.

Then (M, g) satisfies TCP.

Mind the gap!

Theorem (Necessary conditions)

Assume that (M, g) satisfies (TCP) then the following properties hold:

- all the injectivity domains are convex,
- $\mathfrak{S} \succeq 0$.

Theorem (Sufficient conditions)

Assume that (M, g) satisfies the following properties:

- all the injectivity domains are strictly convex,
- $\mathfrak{S} \succ 0$.

Then (M, g) satisfies TCP.
There is a gap!

More examples ?

List of (M, g) satisfying $\mathfrak{S} \succeq 0$ or $\mathfrak{S} \succ 0$:

- Flat tori ($\mathfrak{S} \succeq 0)$.
- Round spheres $(\mathfrak{S} \succ 0)$.
- Complex projective spaces $(\mathfrak{S} \succ 0)$.
- Quaternionic projective spaces $(\mathfrak{S} \succ 0)$.
- C^{4} small deformations of round spheres $(\mathfrak{S} \succ 0)$.
- Riemannian products some of the above spaces $(\mathfrak{S} \succeq 0)$.
- (Riemannian quotients of the above spaces.)
- ?

vs.

Let us say that (M, g) satisfies $\mathfrak{S} \geq 0$ if

$$
\mathfrak{S}_{(x, v)}(\xi, \eta) \geq 0 \quad \forall x \in M, \forall v \in \mathcal{I}(x), \forall \xi, \eta \in T_{x} M .
$$

vs.

Let us say that (M, g) satisfies $\mathfrak{S} \geq 0$ if

$$
\mathfrak{S}_{(x, v)}(\xi, \eta) \geq 0 \quad \forall x \in M, \forall v \in \mathcal{I}(x), \forall \xi, \eta \in T_{x} M
$$

All the following examples

- flat tori,
- round spheres,
- complex projective spaces,
- quaternionic projective spaces,
- C^{4} small deformations of $\left(\mathbb{S}^{2}, g^{0}\right)$,
- Riemannian products some of the above spaces, satisfy $\mathfrak{S} \geq 0$!!!

Thank you for your attention!

