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Statement of the problem
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Optimal transport on Riemannian manifolds

Let (M , g) be a smooth compact connected Riemannian
manifold of dimension n ≥ 2.

Denote by dg the geodesic distance on M and define the
quadratic cost c : M ×M → [0,∞) by

c(x , y) :=
1

2
dg (x , y)2 ∀x , y ∈ M .

Given two Borelian probability measures µ0, µ1 on M , find a
mesurable map T : M → M satisfying

T]µ0 = µ1 (i.e. µ1(B) = µ0

(
T−1(B)

)
,∀B borelian ⊂ M),

and minimizing ∫
M

c(x ,T (x))dµ0(x).
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The Brenier-McCann Theorem

Theorem (McCann ’01)

Let µ0, µ1 be two probability measures on M. If µ0 is
absolutely continuous w.r.t. the Lebesgue measure, then there
is a unique optimal transport map T : M → M satisfying
T]µ0 = µ1 and minimizing∫

M

c(x ,T (x))dµ0(x).

It is characterized by the existence of a semiconvex function
ψ : M → R such that

T (x) = expx (∇ψ(x)) for µ0 a.e. x ∈ Rn.
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The Transport Continuity Property

We say that (M , g) satisfies the Transport Continuity
Property (TCP) if the following property is satisfied:
For any pair of probability measures µ0, µ1 associated locally
with continuous positive densities ρ0, ρ1, that is

µ0 = ρ0Ln, µ1 = ρ1Ln,

the optimal transport map between µ0 and µ1 is continuous.
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Necessary conditions for TCP
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Necessary conditions

Theorem (Loeper ’08, Villani ’09, Figalli-R-Villani)

Assume that (M , g) satisfies (TCP) then the following
properties hold:

all the injectivity domains are convex,

the cost c is regular.

Ludovic Rifford Optimal transportation and applications (Banff 2010)



Injectivity domains

Let x ∈ M be fixed. We call exponential mapping from x , the
mapping defined as

expx : TxM −→ M
v 7−→ expx(v) := γv (1),

where γv : [0, 1]→ M is the unique geodesic starting at x with
speed γ̇v (0) = v .

We call injectivity domain of x the set

I(x) :=

{
v ∈ TxM

∣∣∣ ∃t > 1 s.t. γtv is the unique minimizing
geodesic between x and expx(tv)

}
.

It is a star-shaped (w.r.t. 0 ∈ TxM) domain with Lipschitz
boundary.
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Regular costs

The cost c = d2/2 : M ×M → R is called regular, if for
every x ∈ M and every v0, v1 ∈ I(x), there holds

vt := (1− t)v0 + tv1 ∈ I(x) ∀t ∈ [0, 1],

and

c(x , yt)− c
(
x ′, yt

)
≤

max
(

c
(
x , y0

)
− c
(
x ′, y0

)
, c
(
x , y1

)
− c
(
x ′, y1

))
,

for any x ′ ∈ M , where yt := expx vt .
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An obvious remark

Remark

Assume that all the injectivity domains of (M , g) are convex.
Then the cost c is regular if and only if for every x , x ′ ∈ M,
the mapping

Fx ,x ′ : v ∈ I(x) 7−→ c
(
x , expx(v)

)
− c
(
x ′, expx(v)

)
is quasiconvex (its sublevels sets are always convex).
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An easy lemma

Lemma

Let U ⊂ Rn be an open convex set and F : U → R be a
function of class C 2. Assume that for every v ∈ U and every
w ∈ Rn \ {0}, the following property holds

〈∇vF ,w〉 = 0 =⇒ 〈∇2
vF w ,w〉 > 0.

Then F is quasiconvex.
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Proof of the easy lemma

Proof.

Let v0, v1 ∈ U be fixed.

Set vt := (1− t)v0 + tv1, for every
t ∈ [0, 1], and define h : [0, 1]→ R by

h(t) := F (vt) ∀t ∈ [0, 1].

If h � max{h(0), h(1)}, there is τ ∈ (0, 1) such that

h(τ) = max
t∈[0,1]

h(t) > max{h(0), h(1)}.

There holds

ḣ(τ) = 〈∇vτ F , v̇τ 〉 and ḧ(τ) = 〈∇2
vτ

F v̇τ , v̇τ 〉.

Since τ is a local maximum, we get a contradiction.
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Exercice 1

The following lemma is false !!

FALSE Lemma

Let U ⊂ Rn be an open convex set and F : U → R be a
function of class C 2. Assume that for every v ∈ U and every
w ∈ Rn, the following property holds

〈∇vF ,w〉 = 0 =⇒ 〈∇2
vF w ,w〉 ≥ 0.

Then F is quasiconvex.
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Exercice 2

However, the following result holds true.

Lemma

Let U ⊂ Rn be an open convex set and F : U → R be a
function of class C 2. Assume that there is a constant C > 0
such that

〈∇2
vF w ,w〉 ≥ −C |〈∇vF ,w〉| |w | ∀v ∈ U ,∀w ∈ Rn.

Then F is quasiconvex.
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The Ma-Trudinger-Wang tensor

The MTW tensor S is defined as

S(x ,v)(ξ, η) = −3

2

d2

ds2

∣∣∣∣
s=0

d2

dt2

∣∣∣∣
t=0

c (expx(tξ), expx(v + sη)) ,

for every x ∈ M , v ∈ I(x), and ξ, η ∈ TxM .

Proposition (Villani ’09, Figalli-R-Villani)

Assume that all the injectivity domains are convex. Then, the
two following properties are equivalent:

the cost c is regular,

the MTW tensor S is � 0, that is, for every
x ∈ M , v ∈ I(x), and ξ, η ∈ TxM,

〈ξ, η〉x = 0 =⇒ S(x ,v)(ξ, η) ≥ 0.
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Necessary conditions

Theorem (Villani ’09, Figalli-R-Villani)

Assume that (M , g) satisfies (TCP) then the following
properties hold:

all the injectivity domains are convex,

the cost c is regular,

the MTW tensor S is � 0.

Loeper noticed that for every x ∈ M and for any pair of unit
orthogonal tangent vectors ξ, η ∈ TxM , there holds

S(x ,0)(ξ, η) = σx(P),

where P is the plane generated by ξ and η. Consequently, any
(M , g) satisfying TCP must have nonnegative sectional
curvatures.
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Sufficient conditions for TCP
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Sufficient conditions

Theorem (Figalli-R-Villani)

Assume that (M , g) satisfies the following properties:

all the injectivity domains are strictly convex,

the MTW tensor S is � 0, that is, for every
x ∈ M , v ∈ I(x), and ξ, η ∈ TxM \ {0},

〈ξ, η〉x = 0 =⇒ S(x ,v)(ξ, η) > 0.

Then (M , g) satisfies TCP.
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Examples
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The flat torus

The MTW tensor of the flat torus
(
Tn, g 0

)
satisfies

S(x ,v) ≡ 0 ∀x ∈ Tn,∀v ∈ I(x)

Theorem (Cordero-Erausquin ’99)

The flat torus
(
Tn, g 0

)
satisfies TCP.
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Round spheres

Loeper checked that the MTW tensor of the round sphere(
Sn, g 0

)
satisfies for any x ∈ Sn, v ∈ I(x) and ξ, η ∈ TxSn,

〈ξ, η〉x = 0 =⇒ S(x ,v)(ξ, η) ≥ ‖ξ‖2
x‖η‖2

x .

Theorem (Loeper ’06)

The round sphere
(
Sn, g 0

)
satisfies TCP.
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Riemannian quotients

Let G be a discrete group of isometries of (M , g) acting freely
and properly. Then there exists on the quotient manifold
N = M/G a unique Riemannian metric h such that the
canonical projection p : M → N is a Riemannian covering map.

Theorem (Delanoe-Ge ’08)

If (M , g) satisfies TCP, then
(
N = M/G , h

)
satisfies TCP.

Examples:
(
RPn, g 0

)
, the flat Klein bottle.
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Riemannian submersions

We call Riemannian submersion from (M , g) to (N , h) any
smooth submersion p : M → N such that for every x ∈ M , the
differential mapping dxp is an isometry between Hx and
Tp(x)N , where Hx ⊂ TxM is the horizontal subspace defined
as

Hx :=
{(

dxp
)−1

(0)
}⊥

.

Theorem (Kim-McCann ’08)

If (M , g) satisfies S � 0 (resp. � 0), then (N , h) satisfies
S � 0 (resp. � 0).

Examples: complex projective spaces
(
CPk , g 0

)
(dim = 2k),

quaternionic projective spaces
(
HPk , g 0

)
(dim = 4k).
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Small deformations of
(
S2, g 0

)
On
(
S2, g 0

)
, the MTW tensor is given by

S(x ,v)

(
ξ, ξ⊥

)
= 3

[
1

r 2
− cos(r)

r sin(r)

]
ξ4

1 + 3

[
1

sin2(r)
− r cos(r)

sin3(r)

]
ξ4

2

+
3

2

[
− 6

r 2
+

cos(r)

r sin(r)
+

5

sin2(r)

]
ξ2

1ξ
2
2 ,

with x ∈ S2, v ∈ I(x), r := ‖v‖x , ξ = (ξ1, ξ2), ξ⊥ = (−ξ2, ξ1).

Theorem (Figalli-R ’09)

Any small deformation of the round sphere
(
S2, g 0

)
in C 4

topology satisfies TCP.
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Ellipsoids

The oblate ellipsoid of revolution (Eε) given by the equation

x2

ε2
+ y 2 + z2 = 1, with ε = 0.29,

does not satisfies MTW ≥ 0.

In consequence, (Eε) does not satisfy TCP.
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Jump of curvature

The surface made with two half-balls joined by a cylinder has
not a regular cost.

Then, it does not satisfy TCP.
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Small deformations of
(
Sn, g 0

)

Theorem (Figalli-R-Villani’09)

Any small deformation of the round sphere
(
Sn, g 0

)
in C 4

topology satisfies TCP.

As a by-product, we obtain that the injectivity domains on
small C 4 deformations of

(
Sn, g 0

)
are convex.
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Perspectives
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Mind the gap !

Theorem (Necessary conditions)

Assume that (M , g) satisfies (TCP) then the following
properties hold:

all the injectivity domains are convex,

S � 0.

Theorem (Sufficient conditions)

Assume that (M , g) satisfies the following properties:

all the injectivity domains are strictly convex,

S � 0.

Then (M , g) satisfies TCP.

There is a gap !
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More examples ?

List of (M , g) satisfying S � 0 or S � 0:

Flat tori ( S � 0).

Round spheres (S � 0).

Complex projective spaces (S � 0).

Quaternionic projective spaces (S � 0).

C 4 small deformations of round spheres (S � 0).

Riemannian products some of the above spaces (S � 0).

(Riemannian quotients of the above spaces.)

?
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� vs. ≥

Let us say that (M , g) satisfies S ≥ 0 if

S(x ,v)(ξ, η) ≥ 0 ∀x ∈ M , ∀v ∈ I(x),∀ξ, η ∈ TxM .

All the following examples

flat tori,

round spheres,

complex projective spaces,

quaternionic projective spaces,

C 4 small deformations of
(
S2, g 0

)
,

Riemannian products some of the above spaces,

satisfy S ≥ 0 !!!
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Thank you for your attention !
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