The cut locus in optimal transportation

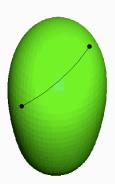
Ludovic Rifford

Université Nice - Sophia Antipolis &
Institut Universitaire de France

THE CUT LOCUS (Bangkok, August 2016)

The framework

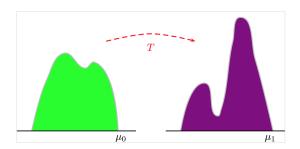
Let M be a smooth connected (compact) manifold of dimension n equipped with a smooth Riemannian metric g. For any $x, y \in M$, we define the **geodesic distance** between x and y, denoted by d(x, y), as the minimum of the lengths of the curves joining x to y.



Transport maps

Let μ_0 and μ_1 be **probability measures** on M. We call **transport map** from μ_0 to μ_1 any measurable map $T:M\to M$ such that $T_\sharp\mu_0=\mu_1$, that is

$$\mu_1(B) = \mu_0(T^{-1}(B)), \quad \forall B \text{ measurable } \subset M.$$



Quadratic Monge's Problem

Given two probabilities measures μ_0, μ_1 sur M, find a transport map $T: M \to M$ from μ_0 to μ_1 which **minimizes** the quadratic cost $(c = d^2/2)$

$$\int_{M} c(x, T(x)) d\mu_0(x).$$

Theorem (McCann '01)

If μ_0 is absolutely continuous w.r.t. Lebesgue, then there exists a unique optimal transport map T from μ_0 to μ_1 . In fact, there is a c-convex function $\varphi: M \to \mathbb{R}$ satisfying

$$T(x) = \exp_x (\nabla \varphi(x))$$
 μ_0 a.e. $x \in M$.

(Moreover, for a.e. $x \in M$, $\nabla \varphi(x)$ belongs to the injectivity domain at x.)

Purpose of the talk

- Regularity of optimal transport maps
- Link with Monge-Ampère like equations
- How the geometry enters the problem
- State of the art
- Open questions

Back to \mathbb{R}^n

Quadratic Monge's Problem in \mathbb{R}^n : Given two probability measures μ_0, μ_1 with compact supports in \mathbb{R}^n , we are concerned with transport maps $T: \mathbb{R}^n \to \mathbb{R}^n$ pushing forward μ_0 to μ_1 which **minimize** the transport cost

$$\int_{\mathbb{R}^n} |T(x)-x|^2 d\mu_0(x).$$

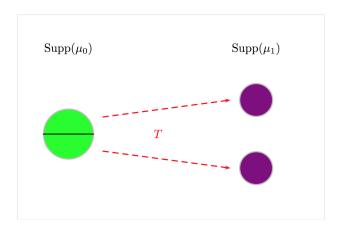
Theorem (Brenier '91)

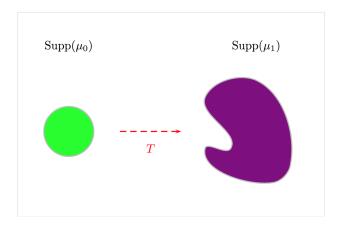
If μ_0 is absolutely continuous with respect to the Lebesgue measure, there exists a unique optimal transport map with respect to the quadratic cost. In fact, there is a **convex** function $\psi: M \to \mathbb{R}$ such that

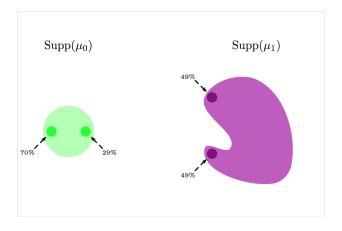
$$T(x) = \nabla \psi(x)$$
 μ_0 a.e. $x \in \mathbb{R}^n$.

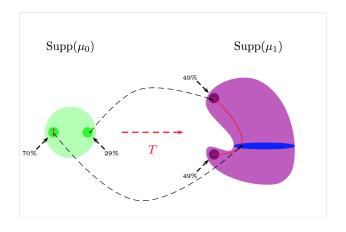
Necessary and sufficient conditions for regularity?

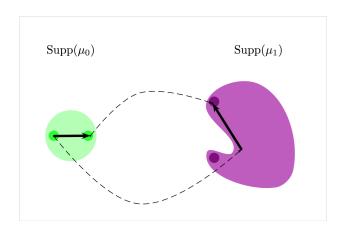
An obvious counterexample











T gradient of a convex function $\implies \langle y-x, T(y)-T(x)\rangle \ge 0!!!$

Caffarelli's Regularity Theory

If μ_0 and μ_1 are associated with densities $\mathit{f}_0,\mathit{f}_1$ w.r.t. Lebesgue, then

$$T_{\sharp}\mu_0 = \mu_1 \Longleftrightarrow \int_{\mathbb{R}^n} \zeta(T(x)) f_0(x) dx = \int_{R^n} \zeta(y) f_1(y) dy \quad \forall \zeta.$$

 $ightharpoonup \psi$ weak solution of the Monge-Ampère equation :

$$\det\left(\nabla^2\psi(x)\right) = \frac{f_0(x)}{f_1(\nabla\psi(x))}.$$

Theorem (Caffarelli '90s)

Let Ω_0 , Ω_1 be connected and bounded open sets in \mathbb{R}^n and f_0 , f_1 be probability densities resp. on Ω_0 and Ω_1 such that f_0 , f_1 , $1/f_0$, $1/f_1$ are **essentially bounded**. Assume that μ_0 and μ_1 have respectively densities f_0 and f_1 w.r.t. Lebesgue and that Ω_1 is **convex**. Then the quadratic optimal transport map from μ_0 to μ_1 is continuous.

Back to Riemannian manifolds

Given two probabilities measures μ_0, μ_1 sur M, find a transport map $T: M \to M$ from μ_0 to μ_1 which minimizes the quadratic cost $(c = d^2/2)$

$$\int_{M} c(x, T(x)) d\mu_0(x).$$

Definition

We say that the Riemannian manifold (M,g) satisfies the **Transport Continuity Property (TCP)** if for any pair of probability measures μ_0, μ_1 associated locally with **continuous positive densities** ρ_0, ρ_1 , that is

$$\mu_0 = \rho_0 \mathrm{vol}_g, \quad \mu_1 = \rho_1 \mathrm{vol}_g,$$

the optimal transport map from μ_0 to μ_1 is **continuous**.

Exponential mapping and injectivity domains

Let $x \in M$ be fixed.

• For every $v \in T_x M$, we define the **exponential** of v by

$$\exp_{\mathsf{x}}(\mathsf{v}) = \gamma_{\mathsf{x},\mathsf{v}}(1),$$

where $\gamma_{x,v}:[0,1]\to M$ is the unique geodesic starting at x with speed v.

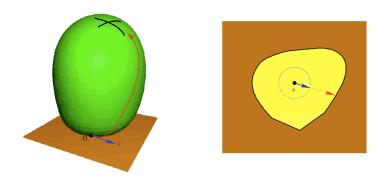
 We call injectivity domain at x, the subset of T_xM defined by

$$\mathcal{I}(x) := \left\{ v \in \mathcal{T}_x M \, \middle| \, egin{array}{c} \exists t > 1 \text{ s.t. } \gamma_{tv} \text{ is the unique} \\ \min & \text{minim. geod. between } x \text{ and } \exp_x(tv) \end{array}
ight\}$$

It is a star-shaped (w.r.t. $0 \in T_xM$) bounded open set with Lipschitz boundary.

The distance to the cut locus

Using the exponential mapping, we can associate to each unit tangent vector its **distance to the cut locus**.



In that way, we define the so-called **injectivity domain** $\mathcal{I}(x)$ whose boundary is the **tangent cut locus** TCL(x).

A necessary condition for **TCP**

Theorem (Figalli-R-Villani '10)

Let (M, g) be a smooth compact Riemannian manifold satisfying **TCP**. Then following properties hold:

- all the injectivity domains are convex,
- for any $x, x' \in M$, the function

$$F_{x,x'}: v \in \mathcal{I}(x) \longmapsto c(x, \exp_x(v)) - c(x', \exp_x(v))$$

is quasiconvex (its sublevel sets are always convex).

Almost characterization of quasiconvex functions

Lemma (Sufficient condition)

Let $U \subset \mathbb{R}^n$ be an open convex set and $F: U \to \mathbb{R}$ be a function of class C^2 . Assume that for every $v \in U$ and every $w \in \mathbb{R}^n \setminus \{0\}$ the following property holds :

$$\langle \nabla_{\mathbf{v}} F, \mathbf{w} \rangle = 0 \implies \langle \nabla_{\mathbf{v}}^2 F \mathbf{w}, \mathbf{w} \rangle > 0.$$

Then F is quasiconvex.

Lemma (Necessary condition)

Let $U \subset \mathbb{R}^n$ be an open convex set and $F: U \to \mathbb{R}$ be a function of class C^2 . Assume that F is quasiconvex. Then for every $v \in U$ and every $w \in \mathbb{R}^n \setminus \{0\}$ the following property holds:

$$\langle \nabla_{\mathbf{v}} F, \mathbf{w} \rangle = 0 \implies \langle \nabla_{\mathbf{v}}^2 F \mathbf{w}, \mathbf{w} \rangle \ge 0.$$

Proof of the easy lemma

Proof.

Let $v_0, v_1 \in U$ be fixed. Set $v_t := (1-t)v_0 + tv_1$, for every $t \in [0,1]$. Define $h: [0,1] \to \mathbb{R}$ by

$$h(t) := F(v_t) \qquad \forall t \in [0,1].$$

If $h \nleq \max\{h(0), h(1)\}$, there is $\tau \in (0, 1)$ such that

$$h(\tau) = \max_{t \in [0,1]} h(t) > \max\{h(0), h(1)\}.$$

There holds

$$\dot{h}(au) = \langle
abla_{
u_{ au}} F, \dot{
u}_{ au}
angle \quad \ddot{h}(au) = \langle
abla_{
u_{ au}}^2 F \, \dot{
u}_{ au}, \dot{
u}_{ au}
angle.$$

Since au is a local maximum, one has $\dot{h}(au)=0$.

Contradiction !!

Back to our problem

Assume that all the injectivity domains are convex and fix $x, x' \in M$. Recall that

$$F_{x,x'}(v) = F(v) = c(x, \exp_x(v)) - c(x', \exp_x(v)).$$

- F is not smooth.
- For generic segments, $t \mapsto F(v_t)$ is smooth outside a finite set of "convex" times.
- If it is smooth at v, then $\nabla_v^2 F$ has the form

$$abla_{v}^{2}F(h,h)=-\int_{0}^{1}(1-t)\frac{\partial^{4}c}{\partial^{2}x\partial^{2}y}(*)(*)dt$$

The Ma-Trudinger-Wang tensor

The **MTW** tensor \mathfrak{S} is defined as

$$\mathfrak{S}_{(x,v)}(\xi,\eta) = -\frac{3}{2} \left. \frac{d^2}{ds^2} \right|_{s=0} \left. \frac{d^2}{dt^2} \right|_{t=0} c \left(\exp_x(t\xi), \exp_x(v+s\eta) \right),$$

for every $x \in M$, $v \in \mathcal{I}(x)$, and $\xi, \eta \in T_x M$.

Proposition (Villani '09, Figalli-R-Villani '10)

Let (M, g) be such that all injectivity domains are convex. Then the following properties are equivalent:

- All the functions $F_{x,x'}$ are quasiconvex.
- The **MTW** tensor \mathfrak{S} is $\succeq 0$, that is for any $x \in M, v \in \mathcal{I}(x)$, and $\xi, \eta \in T_xM$,

$$\langle \xi, \eta \rangle_{x} = 0 \implies \mathfrak{S}_{(x,v)}(\xi, \eta) \geq 0.$$

When geometry enters the problem

Theorem (Loeper '06)

For every $x \in M$ and for any pair of unit orthogonal tangent vectors $\xi, \eta \in T_xM$, there holds

$$\mathfrak{S}_{(x,0)}(\xi,\eta) = \kappa_x(\xi,\eta),$$

where the latter denotes the **sectional curvature** of M at x along the plane spanned by $\{\xi, \eta\}$.

Corollary (Loeper '06)

TCP
$$\Longrightarrow$$
 $\mathfrak{S} \succ 0 \Longrightarrow \kappa > 0$.

Caution!!! $\kappa > 0 \Rightarrow \mathfrak{S} \succ 0$.

Sufficient conditions for TCP

Theorem (Figalli-R-Villani '10)

Let (M,g) be a compact smooth Riemannian surface. It satisfies **TCP** if and only if the two following properties holds:

- all the injectivity domains are convex,
- $\mathfrak{S} \succ 0$.

Theorem (Figalli-R-Villani '10)

Assume that (M,g) satisfies the two following properties:

- all its injectivity domains are strictly convex,
- the **MTW** tensor \mathfrak{S} is $\succ 0$, that is for any $x \in M, v \in \mathcal{I}(x)$, and $\xi, \eta \in T_x M$,

$$\langle \xi, \eta \rangle_{x} = 0 \implies \mathfrak{S}_{(x,\nu)}(\xi, \eta) > 0.$$

Then, it satisfies TCP.

Examples and counterexamples

Examples:

- Flat tori (Cordero-Erausquin '99)
- Round spheres (Loeper '06)
- Quotients of the above objects
- Oblate ellipsoids of revolution (Bonnard-Caillau-R '10)
- Perturbations of round spheres (Figalli-R-Villani '12)
- Product of spheres (Figalli-Kim-McCann '13)

Counterexamples:

Questions

- Does $\mathfrak{S} \succ 0 \Longrightarrow \mathbf{TCP}$ in dimension > 3?
- Smoother datas imply further regularity ?
- How is the set of metrics satisfying $\mathfrak{S} \succ 0$?
- Does $\mathfrak{S} \succeq 0$ imply convexity of injectivity domains ?
- Does $\mathfrak{S}\succeq 0$ imply more topological obstructions than $\kappa>0$?

Focalization is the major obstacle

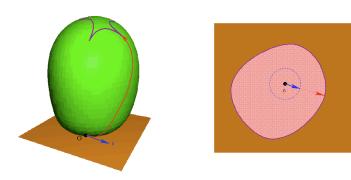
Focalization

Definition

Let $x \in M$ and v be a unit tangent vector in T_xM . The vector v is **not conjugate** at time $t \ge 0$ if for any $t' \in [0, t + \delta]$ ($\delta > 0$ small) the geodesic from x to $\gamma(t')$ is locally minimizing.

The distance to the conjugate locus

Again, using the exponential mapping, we can associate to each unit tangent vector its **distance to the conjugate locus**.

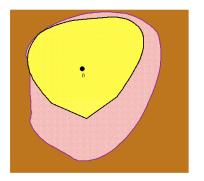


In that way, we define the so-called **nonfocal domain** $\mathcal{NF}(x)$ whose boundary is the **tangent conjugate locus** $\mathsf{TFL}(x)$.

Fundamental inclusion and remark

The following inclusion holds

injectivity domain ⊂ nonfocal domain.



Moreover, on a surface the nonfocal domain has smooth boundary !!!

The convex Earth theorem

Theorem (Figalli-R '09)

Any small deformation of \mathbb{S}^2 in C^5 topology satisfies $\mathfrak{S} \succeq 1/2$, has convex injectivity domains and satisfies **TCP**.

Spheres

Theorem (Loeper '06)

The **MTW** tensor on the round (unit) sphere \mathbb{S}^2 satisfies $\mathfrak{S} \succeq 1$, that is for any $x \in \mathbb{S}^2$, $v \in \mathcal{I}(x)$ and $\xi, \eta \in \mathcal{T}_x \mathbb{S}^2$,

$$\langle \xi, \eta \rangle_{x} = 0 \implies \mathfrak{S}_{(x,\nu)}(\xi,\eta) \ge |\xi|^{2} |\eta|^{2}.$$

In particular, the round sphere \mathbb{S}^2 satisfies **TCP**.

Two issues for stability

- Stability of the (uniform) convexity of injectivity domains.
- Stability of properties of the form $\mathfrak{S} \succeq K$ with K > 0.

Issues

As a matter of fact, on \mathbb{S}^2 , the **MTW** tensor is given by

$$\mathfrak{S}_{(x,v)}(\xi,\xi^{\perp}) = 3\left[\frac{1}{r^2} - \frac{\cos(r)}{r\sin(r)}\right] \xi_1^4 + 3\left[\frac{1}{\sin^2(r)} - \frac{r\cos(r)}{\sin^3(r)}\right] \xi_2^4 + \frac{3}{2}\left[-\frac{6}{r^2} + \frac{\cos(r)}{r\sin(r)} + \frac{5}{\sin^2(r)}\right] \xi_1^2 \xi_2^2,$$

with $x \in \mathbb{S}^2$, $v \in \mathcal{I}(x)$, $r := |v|, \xi = (\xi_1, \xi_2), \xi^{\perp} = (-\xi_2, \xi_1)$.

Sketch of proof

Sketch of proof

- We extend the Ma-Trudinger-Wang tensor beyond boundaries of injectivity domains.
- The uniform convexity of the nonfocal domains $\mathcal{NF}(x)$ is stable.
- ullet The positivity of the extended tensor $\overline{\mathfrak{S}}$ is stable.
- $\overline{\mathfrak{S}} \succ 0 + \text{(uniform)}$ convexity of the $\mathcal{NF}(x)$'s $\implies \mathfrak{S} \succ 0 + \text{(uniform)}$ convexity of the $\mathcal{I}(x)$'s.

Thank you for your attention !!