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Lecture 1

Geometric control methods
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Control of an inverted pendulum
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Control systems

A general control system has the form

ẋ = f (x , u)

where
x is the state in M
u is the control in U

Proposition

Under classical assumptions on the datas, for every x ∈ M and
every measurable control u : [0,T ]→ U the Cauchy problem{

ẋ(t) = f
(
x(t), u(t)

)
a.e. t ∈ [0,T ],

x(0) = x

admits a unique solution

x(·) = x(·; x , u) : [0,T ] 7−→ M .
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Controllability issues

Given two points x1, x2 in the state space M and T > 0, can
we find a control u such that the solution of{

ẋ(t) = f
(
x(t), u(t)

)
a.e. t ∈ [0,T ]

x(0) = x1

satisfies
x(T ) = x2 ?

b
x1

b
x2
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Controllability of linear control systems

A (nonautonomous) linear control system has the form

ξ̇ = A ξ + B u,

with ξ ∈ Rn, u ∈ Rm,A ∈ Mn(R),B ∈ Mn,m(R).

Theorem

The following assertions are equivalent:

(i) For any T > 0 and any ξ1, ξ2 ∈ Rn, there is
u ∈ L1([0,T ]; Rm) such that

ξ
(
T ; ξ1, u

)
= ξ2.

(ii) The Kalman rank condition is satisfied:

rk
(
B ,AB ,A2B , · · · ,An−1B

)
= n.
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Proof of the theorem

Duhamel’s formula

ξ
(
T ; ξ, u

)
= eTA ξ + eTA

∫ T

0

e−tA B u(t)dt.

Then the controllability property (i) is equivalent to the
surjectivity of the mappings

FT : u ∈ L1([0,T ]; Rm) 7−→
∫ T

0

e−tA B u(t)dt.
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Proof of (ii) ⇒ (i)

If FT is not onto (for some T > 0), there is p 6= 0n such that〈
p,

∫ T

0

e−tA B u(t)dt

〉
= 0 ∀u ∈ L1([0,T ]; Rm).

Using the linearity of 〈·, ·〉 and taking u(t) = B∗e−tA∗
p, we

infer that
p∗ e−tA B = 0 ∀t ∈ [0,T ].

Derivating n times at t = 0 yields

p∗ B = p∗ A B = p∗ A2 B = · · · = p∗ An−1 B = 0.

Which means that p is orthogonal to the image of the n ×mn
matrix (

B ,AB ,A2B , · · · ,An−1B
)
.

Contradiction !!!
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Proof of (i) ⇒ (ii)

If
rk
(
B ,AB ,A2B , · · · ,An−1B

)
< n,

there is a nonzero vector p such that

p∗ B = p∗ A B = p∗ A2 B = · · · = p∗ An−1 B = 0.

By the Cayley-Hamilton Theorem, we deduce that

p∗ Ak B = 0 ∀k ≥ 1,

and in turn
p∗e−tA B = 0 ∀t ≥ 0.

We infer that〈
p,

∫ T

0

e−tA B u(t)dt

〉
= 0 ∀u ∈ L1([0,T ]; Rm), ∀T > 0.

Contradiction !!!
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Application to local controllability

Let ẋ = f (x , u) be a nonlinear control system with
x ∈ Rn, u ∈ Rm and f : Rn × Rm → Rn of class C 1.

Theorem

Assume that f (x0, 0) = 0 and that the pair

A =
∂f

∂x
(x0, 0), B =

∂f

∂u
(x0, 0),

satisfies the Kalman rank condition. Then for there is δ > 0
such that for any x1, x2 with |x1 − x0|, |x2 − x0| < δ, there is
u : [0, 1]→ Rm smooth satisfying

x
(
1; x1, u

)
= x2.
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Proof of the Theorem

Define G : Rn × L1([0, 1]; Rm)→ Rn × Rn by

G
(
x , u
)

:=
(
x , x(1; x , u)

)
.

The mapping G is a C 1 submersion at (0, 0). Thus there are n
controls u1, · · · , un in L1([0, 1]; Rm) such that

G̃ : Rn × Rn −→ Rn × Rn

(x , λ) 7−→ G
(
x ,
∑n

i=k λkuk
)

is a C 1 diffeomorphism at (0, 0). Since the set of smooth
controls is dense in L1([0, 1]; Rm), we can take u1, . . . , un to
be smooth. We apply the Inverse Function Theorem.
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Local controllability around x0

b

x0b

x1

b

x2
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Back to the inverted pendulum

The equations of motion are given by

(M + m) ẍ + m` θ̈ cos θ −m` θ̇2 sin θ = u

m`2 θ̈ −mg` sin θ + m` ẍ cos θ = 0.
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Back to the inverted pendulum

The linearized control system at x = ẋ = θ = θ̇ = 0 is given by

(M + m) ẍ + m` θ̈ = u

m`2 θ̈ −mg` θ + m` ẍ = 0.

It can be written as a control system

ξ̇ = A ξ + B u,

with ξ = (x , ẋ , θ, θ̇),

A =


0 1 0 0
0 0 −mg

M
0

0 0 0 1

0 0 (M+m)g
M`

0

 and B =


0
1
M

0
− 1

M`

 .
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Back to the inverted pendulum

The Kalman matrix (B ,AB ,A2,A3B) equals
0 1

M
0 mg

M2`
1
M

0 mg
M2`

0

0 − 1
M`

0 − (M+m)g
M2`2

− 1
M`

0 − (M+m)g
M2`2 0

 .

Its determinant equals

− g 2

M4`4
< 0

In conclusion, the inverted pendulum is locally controllable
around (0, 0, 0, 0)∗.
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Movie
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Lie brackets

b
x

b
etX(x)
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Lie brackets

b
x

b
etX(x)

b e
tY ◦ etX(x)
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Lie brackets

Definition

Let M be a smooth manifold. Given two smooth vector fields
X ,Y on M , the Lie bracket [X ,Y ] is the smooth vector field
on M defined by

[X ,Y ](x) = lim
t↓0

(
e−tY ◦ e−tX ◦ etY ◦ etX

)
(x)− x

t2
,

for every x ∈ M .

Given a family F of smooth vector fields on M , we denote by
Lie{F} the Lie algebra generated by F . It is the smallest
vector subspace S of smooth vector fields containing F that
also satisfies

[X ,Y ] ∈ S ∀X ∈ F ,∀Y ∈ S .
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Lie brackets : Examples

In Rn :

Let X ,Y be two smooth vector fields, then

[X ,Y ](x) = DY (x)X (x)− DX (x)Y (x).

If X (x) = A x ,Y (x) = B x with A,B ∈ Mn(R), then

[X ,Y ](x) = [A,B] x = (BA− AB) x .

If X (x) = A x ,Y (x) = b with A ∈ Mn(R), b ∈ Rn, then

[X ,Y ](x) = −Ab, [X , [X ,Y ]](x) = A2b, · · ·

=⇒ Lie{X ,Y } = Span
{

Ax , b,Ab,A2b,A3b, . . .
}
.
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The Chow-Rashevsky Theorem

Theorem (Chow 1939, Rashevsky 1938)

Let M be a smooth connected manifold and X 1, · · · ,X m be m
smooth vector fields on M. Assume that

Lie
{

X 1, . . . ,X m
}

(x) = TxM ∀x ∈ M .

Then the control system

ẋ =
m∑

i=1

ui X i(x)

is globally controllable on M.
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Example: The baby stroller


ẋ = u1 cos θ
ẏ = u1 sin θ

θ̇ = u2

X =

 cos θ
sin θ

0

 , Y =

 0
0
1

 , [X ,Y ] =

 − sin θ
cos θ

0


Span

{
X (ξ),Y (ξ), [X ,Y ](ξ)

}
= R3 ∀ξ = (x , y , θ).
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Example: The baby stroller

b
x1

b
x2
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Example: The baby stroller

b
x1

b
x2
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The End-Point mapping

Given a control system of the form

ẋ =
m∑

i=1

ui X i(x) (x ∈ M , , u ∈ Rm),

we define the End-Point mapping from x in time T > 0 as

E x ,T : L1
(
[0,T ]; Rm

)
−→ M

u 7−→ x
(
T ; x , u

)
Under appropriate assumptions, it is a C 1 mapping.

Theorem

Assume that

Lie
{

X 1, . . . ,X m
}

(x) = TxM ∀x ∈ M .

Then for any x ∈ M ,T > 0, E x ,T is an open mapping.
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Proof of the Chow-Rashevsky Theorem

Let x ∈ M be fixed. Denote by A(x) the accessible set from
x , that is

A(x) :=
{

x
(
T ; x , u

)
|T ≥ 0, u ∈ L1

}
.

By openness of the E x ,T ’s, A(x) is open.

Let y be in the closure of A(x). The set A(y) contains a
small ball centered at y and there are points of A(x) in
that ball. Then A(x) is closed.

We conclude easily by connectedness of M .
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Regular controls vs. Singular controls

Definition

A control u ∈ L1
(
[0,T ]; Rm) is called regular with respect to

E x ,T if E x ,T is a submersion at u. If not, u is called singular.

Remark

The concatenations u1 ∗ u2 and u2 ∗ u1 of a regular control u1

with another control u2 are regular.

b

b

bu1 u2
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Openness: Sketch of proof

Lemma

Assume that

Lie
{

X 1, . . . ,X m
}

(x) = TxM ∀x ∈ M .

Then for every x ∈ M and every T > 0, the set of regular
controls (w.r.t. E x ,T ) is generic.

Then we apply the so-called Return Method: Given x ∈ M
and T > 0, we pick (for any α > 0 small) a regular control uα

in L1([0, α]; Rm). Then for every u ∈ L1([0,T ]; Rm), the
control ũ defined by

ũ := uα ∗ ǔα ∗ u

is regular and steers x to E x ,T (u) in time T + 2α.
Then, we can apply the Inverse Function Theorem...
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Thank you for your attention !!
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Lecture 2

Applications to Hamiltonian dynamics
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Setting

Let n ≥ 2 be fixed. Let H : Rn ×Rn → R be a Hamiltonian of
class C k , with k ≥ 2, satisfying the following properties:

(H1) Superlinear growth:
For every K ≥ 0, there is C ∗(K ) ∈ R such that

H(x , p) ≥ K |p|+ C ∗(K ) ∀x , p.

(H2) Uniform convexity:
For every x , p, ∂2H

∂p2 (x , p) is positive definite.

(H3) Uniform boundedness in the �bers:
For every R ≥ 0,

A∗(R) := sup {H(x , p) | |p| ≤ R} < +∞.

Under these assumptions, H generates a flow φH
t which is of

class C k−1 and complete.
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A connecting problem

Let be given two solutions(
xi , pi

)
: [0, τ ] −→ Rn × Rn i = 1, 2,

of the Hamiltonian system{
ẋ(t) = ∇pH

(
x(t), p(t)

)
ṗ(t) = −∇xH

(
x(t), p(t)

)
.

Question

Can I add a potential V to the Hamiltonian H in such a way
that the solution of the new Hamiltonian system{

ẋ(t) = ∇pH
(
x(t), p(t)

)
ṗ(t) = −∇xH

(
x(t), p(t)

)
−∇V (x(t)),

starting at
(
x1(0), p1(0)

)
satisfies(

x(τ), p(τ)
)

=
(
x2(τ), p2(τ)

)
?
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Picture

x2(·)

x1(·)
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Picture

x2(·)

x1(·)

Supp (V )
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Control approach

Study the mapping

E : L1([0, τ ]; Rn) −→ Rn × Rn

u 7−→
(
xu(τ), pu(τ)

)
where (

xu, pu

)
: [0, τ ] −→ Rn × Rn

is the solution of{
ẋ(t) = ∇pH

(
x(t), p(t)

)
ṗ(t) = −∇xH

(
x(t), p(t)

)
− u(t),

starting at
(
x1(0), p1(0)

)
.

b b
u = 0
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Exercise

u = 0
u = 0

b

x0

b

xτ

Exercise

Given x , u : [0, τ ]→ Rn as above, does there exists a function
V : Rn → R whose the support is included in the dashed blue
square above and such that

∇V (x(t)) = u(t) ∀t ∈ [0, τ ] ?
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Exercise (solution)

There is a necessary condition∫ τ

0

〈ẋ(t), u(t)〉dt = 0.

As a matter of fact,∫ τ

0

〈ẋ(t), u(t)〉dt =

∫ τ

0

〈ẋ(t),∇V (x(t))〉dt

= V (xτ )− V (x0) = 0.

Proposition

If the above necessary condition is satisfied, then there is
V : Rn → R satisfying the desired properties such that

‖V ‖C1 ≤ K

r
‖u‖∞.
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Exercise (solution)

If x(t) = (t, 0), that is

b

x0
b

xτ

r

then we set

V (t, y) := φ
(
|y |/r

) [∫ t

0

u1(s) ds +
n−1∑
i=1

∫ yi

0

ui+1(t + s) ds

]
,

for every (t, y), with φ : [0,∞)→ [0, 1] satisfying

φ(s) = 1 ∀s ∈ [0, 1/3] and φ(s) = 0 ∀s ≥ 2/3.
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Control approach

Study the mapping

E : L1([0, τ ]; Rn) −→ Rn × Rn × R
u 7−→

(
xu(τ), pu(τ), ξu(τ)

)
where

(
xu, pu, ξu

)
: [0, τ ] −→ Rn × Rn × R is the solution of

ẋ(t) = ∇pH
(
x(t), p(t)

)
ṗ(t) = −∇xH

(
x(t), p(t)

)
− u(t)

ξ̇(t) = 〈∇pH
(
x(t), p(t)

)
, u(t)〉,

starting at
(
x1(0), p1(0), 0

)
.

Objective: Showing that E is a submersion at u ≡ 0.
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Control approach

Assume that E : L1([0, τ ]; Rn) −→ Rn × Rn × R is a
submersion at u ≡ 0.

There are ` = 2n + 1 controls u1, · · · , u` in L1([0, τ ]; Rn)
such that

Ẽ : Rl −→ Rn × Rn × R
λ 7−→ E

(∑`
k=1 λkuk

)
is a C 1 diffeomorphism at 0.

The set of controls u ∈ L1([0, τ ]; Rn) such that

u is smooth and Supp(u) ⊂ (0, τ)

is dense.

We are done.
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E submersion ?

No !!

If u ∈ L1([0, τ ]; Rn) with
∫ τ

0
〈ẋ(t), u(t)〉dt = 0, then

H
(
xu(τ), pu(τ)

)
= H

(
xu(0), pu(0)

)
= 0.

The final state
(
xu(τ), pu(τ)

)
must belong to the same

level set of H as the initiale state
(
xu(0), pu(0)

)
. We

need to suppress one degree of freedom in the p variable.

It is not sufficient to get the local controllability.
We also need to allow free time.
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A local controllability result

Given N ,m ≥ 1, let us a consider a nonlinear control system in
RN of the form

ξ̇ = F0(ξ) +
m∑

i=1

ui Fi(ξ),

G : RN → Rk be a function of class C 1, and ξ̄ : [0,T ]→ RN

be a solution associated with ū ≡ 0.
Our aim is to give sufficient conditions on F0,F1, . . . ,Fm, and
G to have the following property:
For any neighborhood V of ū ≡ 0 in L1

(
[0, T̄ ]; Rm

)
, the set{

G
(
ξξ̄(0),u(T )

)
| u ∈ V

}
is a neighborhood of G

(
ξξ̄(0),ū(T )

)
.
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A local controllability result

Denote by E ξ̄(0),T the End-Point mapping

u ∈ L1([0,T ]; Rm) 7−→ ξξ̄(0),u(T ),

where ξξ̄(0),u is the trajectory of the control system associated

with u and starting at ξ̄(0).

Proposition

If G is a submersion at ξ̄(T ), and

Span
{

Fi

(
ξ̄(T̄ )

)
,
[
F0,Fi

](
ξ̄(T̄ )

)
| i = 1, . . . ,m

}
+ Ker

(
dG
(
ξ̄(T̄ )

))
= RN ,

then G ◦ E ξ̄(0),T is a submersion at ū ≡ 0.

Thanks to the uniform convexity of H in the p variable, the
above result applies to our control problem.
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An alternative method

Let (
xi , pi

)
: [0, τ ] −→ Rn × Rn i = 1, 2,

be two solutions of the Hamiltonian system{
ẋ(t) = ∇pH

(
x(t), p(t)

)
ṗ(t) = −∇xH

(
x(t), p(t)

)
.

Question

Given an arc x : [0, τ ]→ Rn such that

x(t) = x1(t)∀t ∈ [0, δ] and x(t) = x2(t)∀t ∈ [τ − δ, τ ],

does there exist p, u : [0, τ ]→ Rn such that{
ẋ(t) = ∇pH

(
x(t), p(t)

)
ṗ(t) = −∇xH

(
x(t), p(t)

)
− u(t)

∀t ∈ [0, t] ?
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An alternative method (flatness)

Yes !!

Remark

For every x, p 7→ ∂H
∂p

(x , p) is a diffeomorphism.

Then we can set{
p(t) :=

(
∂H
∂p

(x(t), ·)
)−1 (

x(t), ẋ(t)
)

u(t) := −∂H
∂x

(
x(t), p(t)

)
− ṗ(t)

∀t ∈ [0, τ ],

By construction there holds{
ẋ(t) = ∇pH

(
x(t), p(t)

)
ṗ(t) = −∇xH

(
x(t), p(t)

)
− u(t)

∀t ∈ [0, t]

and u(t) = 0 ∀t ∈ [0, δ] ∪ [τ − δ, τ ].

To get
∫ t

0
〈ẋ(s), u(s)ds = 0∀t, we reparametrize in time.
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A connecting problem fitting the action

Let be given two solutions(
xi , pi

)
: [0, τ ] −→ Rn × Rn i = 1, 2

of the Hamiltonian system{
ẋ(t) = ∇pH

(
x(t), p(t)

)
ṗ(t) = −∇xH

(
x(t), p(t)

)
.

Question

Can I add a potential V to the Hamiltonian H in such a way
that the solution

(
x , p
)

: [0, τ ] −→ Rn × Rn of the new
Hamiltonian system associated with HV := H + V starting at(
x1(0), p1(0)

)
satisfies

(
x(τ), p(τ)

)
=
(
x2(τ), p2(τ)

)
and

∫ τ

0

L
(
x(t), ẋ(t)

)
− V (x(t)) dt = data ?
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A connecting problem fitting the action

This can be done !!

Study the mapping

E : L1([0, τ ]; Rn) −→ Rn × Rn × R× R
u 7−→

(
xu(τ), pu(τ), ξu(τ), `u(τ)

)
where

(
xu, pu, ξu, `u

)
: [0, τ ] −→ Rn×Rn×R is the solution of

ẋ(t) = ∇pH
(
x(t), p(t)

)
ṗ(t) = −∇xH

(
x(t), p(t)

)
− u(t)

ξ̇(t) = 〈∇pH
(
x(t), p(t)

)
, u(t)〉

˙̀(t) = 〈p(t),∇pH
(
x(t), p(t)

)
〉,

starting at
(
x1(0), p1(0), 0, 0

)
.

Again, we need to relax time.
(It works provided some algebraic condition is satisfied.)
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Controlling the differential of an Hamiltonian flow

Let be given a solution(
x , p
)

: [0, τ ] −→ Rn × Rn

of the Hamiltonian system{
ẋ(t) = ∇pH

(
x(t), p(t)

)
ṗ(t) = −∇xH

(
x(t), p(t)

)
.

Question

Can I add a potential V to H in such a way that:

(x , p) is still solution of the new Hamiltonian system
associated with HV := H + V .

The differential of φH
τ at (x(0), p(0)) equals a data.
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Controlling the differential of an Hamiltonian flow

This can be done !!

Take a potential V satisfying

V (x(t)) = 0 and ∇V (x(t)) = 0 ∀t ∈ [0, τ ].

Then (x , p) is still solution of the new Hamiltonian system
associated with HV .

The Control is:
u(t) = Hessx(t)V

(indeed Hessx(t)V restricted to a space transverse to ẋ(t)).
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Controlling the differential of an Hamiltonian flow

Study the mapping

E : L1
(
[0, τ ]; Rn(n−1)/2

)
−→ Sp(n)

u 7−→ Du(τ)

where Du : [0, τ ] −→ Sp(n) is the resolvent of the linearized
system{

ḣ(t) = ∇pxH h(t) +∇ppH v(t)
v̇(t) = −∇xxH h(t)−∇xpH v(t)− u(t)

∀t ∈ [0, τ ],

starting at I2n.

Indeed we need to work in Sp(n − 1).
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Controlling the differential of an Hamiltonian flow

Our control system has the form

Ẋ (t) = A(t)X (t) +
k∑

i=1

ui(t)Bi(t)X (t),

where the state X belongs to Mn(R) and

A,B1, . . . ,Bk : [0, τ ] −→ Mn(R) are smooth.

Indeed we are interested in trajectories starting at I2m and
valued in the symplectic group

Sp(m) = {X |X ∗JX = J} .

Assumption: A(t),Bi(t) ∈ TI2mSp(m) for any t ∈ [0, τ ].
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Controlling the differential of an Hamiltonian flow

Define the k sequences of smooth mappings

{B j
1}, . . . , {B j

k} : [0, τ ]→ TI2mSp(m)

by {
B0

i (t) := Bi(t)

B j
i (t) := Ḃ j−1

i (t) + B j−1
i (t)A(t)− A(t)B j−1

i (t),

for every t ∈ [0, τ ] and every i ∈ {1, . . . , k}.
Theorem

Assume that there is some t ∈ [0, τ ] such that

Span
{

B j
i (t) | i ∈ {1, . . . , k}, j ∈ N

}
= TI2mSp(m).

Then the End-Point mapping E I2m,τ : L1
(
[0, τ ]; Rk

)
→ Sp(m)

is a submersion at u ≡ 0.
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Thank you for your attention !!

Ludovic Rifford Weak KAM Theory in Italy



Lecture 3

Weak KAM theory

(an introduction)
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Setting

Let M be a smooth compact manifold of dimension n ≥ 2 be
fixed. Let H : T ∗M → R be a Hamiltonian of class C k , with
k ≥ 2, satisfying the following properties:

(H1) Superlinear growth:
For every K ≥ 0, there is C ∗(K ) ∈ R such that

H(x , p) ≥ K |p|+ C ∗(K ) ∀(x , p) ∈ T ∗M .

(H2) Uniform convexity:
For every (x , p) ∈ T ∗M , ∂2H

∂p2 (x , p) is positive definite.

For sake of simplicity, we may assume that M = Tn, that is
that H : Rn ×Rn → R satisfies (H1)-(H2) and is periodic with
respect to the x variable.
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Critical value of H

Definition

We call critical value of H the constant c = c[H] defined as

c[H] := inf
u∈C1(M;R)

{
max
x∈M

{
H
(
x , du(x)

)}}
.

In other terms, c[H] is the infimum of numbers c ∈ R such
that there is a C 1 function u : M → R satisfying

H
(
x , du(x)

)
≤ c ∀x ∈ M .

Note that

min
x∈M
{H(x , 0)} ≤ c[H] ≤ max

x∈M
{H(x , 0)} .
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Critical subsolutions of H

Definition

We call critical subsolution any Lipschitz function
u : M → R such that

H
(
x , du(x)

)
≤ c[H] for a.e. x ∈ M .

Proposition

The set of critical subsolutions is nonempty.

Proof.

Any C 1 function u : M → R such that H(·, du(·)) ≤ c is
L(c)-Lipschitz with L(c) depending only on c .

Arzelà-Ascoli Theorem.

If uk → u then Graph(du) ⊂ lim infk→∞ Graph(duk).
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Characterization of critical subsolutions

Let L : TM → R be the Tonelli Lagrangian associated with H
by Legendre-Fenchel duality, that is

L(x , v) := max
p∈T∗

x M

{
p · v − H(x , p)

}
∀(x , v) ∈ TM .

Proposition

A Lipschitz function u : M → R is a critical subsolution if and
only if

u
(
γ(b)

)
− u
(
γ(a)

)
≤
∫ b

a

L
(
γ(t), γ̇(t)

)
ds + c (b − a),

for every Lipschitz curve γ : [a, b]→ M.

It is a consequence of the inequality

p · v ≤ L(x , v) + H(x , p) ∀x , v , p.
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Characterization of critical subsolutions
Proof.

If u is C 1, then

u
(
γ(b)

)
− u
(
γ(a)

)
=

∫ b

a

du
(
γ(t)

)
· γ̇(t) dt

≤
∫ b

a

L
(
γ(t), γ̇(t)

)
dt

+

∫ b

a

H
(
γ(t), du(γ(t))

)
dt

≤
∫ b

a

L
(
γ(t), γ̇(t)

)
ds + c (b − a).

If u is not C 1 then regularize it by (classical) convolution. The
function u ∗ ρε is subsolution of H ≤ c + αε. Apply the above
argument to u ∗ ρε and pass to the limit.
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Lax-Oleinik semigroups {Tt} and
{
Ťt

}
Definition

Given u : M → R and t ≥ 0, the Lipschitz functions Ttu, Ťtu
are defined by

Ttu(x) := min
y∈M
{u(y) + At(y , x)}

Ťtu(x) := max
y∈M
{u(y)− At(x , y)} ,

with At(z , z ′) := inf

{∫ t

0

L
(
γ(s), γ̇(s)

)
ds + c t

}
,

where the infimum is taken over the Lipschitz curves
γ : [0, t]→ M such that γ(0) = z and γ(t) = z ′.

The set of critical subsolutions is invariant with respect to
both {Tt} and

{
Ťt
}

.
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The weak KAM Theorem

Theorem (Fathi, 1997)

There is a critical subsolution u : M → R such that

Ttu = u ∀t ≥ 0.

It is called a critical or a weak KAM solution of H.

Given a critical solution u : M → R, for every x ∈ M , there is
a curve

γ : (−∞, 0]→ M with γ(0) = x

such that, for any a < b ≤ 0,

u
(
γ(b)

)
− u
(
γ(a)

)
=

∫ b

a

L
(
γ(s), γ̇(s)

)
ds + c(b − a).

Therefore, any restriction of γ minimizes the action between
its end-points. Then, it satisfies the Euler-Lagrange equations.
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The classical Dirichlet problem

Let Ω be an open set in Rn with compact boundary and
H : Rn → R of class C 2 satisfying (H1),(H2) and

(H3) For every x ∈ Ω̄,H(x , 0) < 0.

Proposition

The continuous function u : Ω̄→ R given by

u(x) := inf

{∫ t

0

L
(
γ(s), γ̇(s)

)
ds

}
,

where the infimum is taken among Lipschitz curves
γ : [0, t]→ Ω̄ with γ(0) ∈ ∂Ω, γ(t) = x is the unique viscosity
solution to the Dirichlet problem{

H
(
x , du(x)

)
= 0 ∀x ∈ Ω,

u(x) = 0 ∀x ∈ ∂Ω.
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The classical Dirichlet problem (picture)

Ω

b

minimizing

b
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Semiconcavity of critical solutions

b

b

b

γ x

x′

z = γ(−t)

γ′

u(x) = u(z) +

∫ 0

−t

L
(
γ(s), γ̇(s)

)
ds + ct

u(x ′) ≤ u(z) +

∫ 0

−t

L
(
γ′(s), γ̇′(s)

)
ds + ct

Thus

u(x ′) ≤ u(x) +

∫ 0

−t

L
(
γ′(s), γ̇′(s)

)
− L
(
γ(s), γ̇(s)

)
ds
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Semiconcavity of critical solutions

Any critical solution u : M → R is semiconcave, that is it
can be written locally (in charts) as

u = g + h,

the sum of a smooth function g and a concave function h.
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Regularity along minimizing curves

b

b

b

γ x

z′

z

γ′

u(x) = u(z) +

∫ 0

−t

L
(
γ(s), γ̇(s)

)
ds + ct.

u(x) ≤ u(z ′) +

∫ 0

−t

L
(
γ′(s), γ̇′(s)

)
ds + ct.

Thus

u(z ′) ≥ u(z) +

∫ 0

−t

L
(
γ(s), γ̇(s)

)
− L
(
γ′(s), γ̇′(s)

)
ds
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Regularity along minimizing curves
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Distribution of calibrated curves

Let u be a critical solution. For every x ∈ M , we define the
limiting di�erential of u at x by

d∗u(x) := {lim du(xk) | xk → x , u diff at xk} .

It is a nonempty compact subset satisfying

H
(
x , du∗(x)

)
= c ∀x ∈ M .

b

‘

x

Ludovic Rifford Weak KAM Theory in Italy



Remark

Let u : M → R be a critical solution, x ∈ M be fixed and
γ : (−∞, 0]→ R be a calibrated curve with γ(0) = x . Fix

x∞ ∈
⋂
t≤0

γ
(
(−∞, t]

)
.

We can check that

lim inf
t→+∞

{
At

(
x∞, x∞

)}
= 0.

Proposition

The critical value of H satisfies

c[H] = − inf

{
1

T

∫ T

0

L
(
γ(t), γ̇(t)

)
dt

}
,

where the infimum is taken over the Lipschitz curves
γ : [0,T ]→ M such that γ(0) = γ(T ).
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Projected Aubry set and Aubry set
Definition and Proposition

The projected Aubry set of H defined as

A(H) = {x ∈ M |At(x , x) = 0} .

is compact and nonempty.

Any critical subsolution u is C 1 at any point of A(H) and
satisfies H

(
x , du(x)

)
= c[H],∀x ∈ A(H).

For every x ∈ A(H), the differential of a critical
subsolution at x does not depend on u.

The Aubry set of H defined by

˜A(H) :=
{(

x , du(x)
)
| x ∈ A(H), u crit. subsol.

}
⊂ T ∗M

is compact, invariant by φH
t , and is a Lipschitz graph over

A(H).
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Examples (in Tn)

Let H : T (Tn)∗ → R be the Hamiltonian defined by

H(x , p) =
1

2
|p|2 + V (x) ∀(x , p) ∈ Tn × Rn.

L(x , v) = 1
2
|v |2 − V (x).

H(x , 0) ≤ maxM V =⇒ c[H] ≤ maxM V .

Let xmax ∈ Tn be such that V (xmax) = maxM V , then

1

T

∫ T

0

L
(
xmax, 0

)
dt = −max

M
V .

Thus c[H] ≥ maxM V .

In conclusion c[H] = maxM V and

Ã(H) =
{

(x , 0) |V (x) = max
M

V
}
.
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Examples (in T1 = S1)

Let H : T (S1)∗ → R be the Hamiltonian defined by

H(x , p) =
1

2
(p − f (x))2 ∀(x , p) ∈ S1 × R.

u : S1 → R defined by (set α :=
(∫ 1

0
f (r)dr

)
)

u(x) =

∫ x

0

f (r)dr − α x ∀x ∈ S1,

is a smooth solution of H(x , du(x)) = α2/2 for any x .
Then c[H] = α2/2.
Along characteristics, there holds (p(t) := du(x(t))){

ẋ(t) = ∂H
∂p

(x(t), p(t))) = p(t)− f (x(t))

ṗ(t) = −∂H
∂x

(x(t), p(t)) =
(
f (x(t))− p(t)

)
f ′(x(t)).

Then x ∈ A(H) =⇒ ẋ = (f (x)− α)− f (x) = α.
Either equilibria everywhere or one orbit.
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Examples (in S1 = R/[0, π])

Let H : T (S1)∗ → R be the Hamiltonian defined by

H(x , p) =
1

2
(p − ω)2 − V (x) ∀(x , p) ∈ S1 × R,

with V (x) = sin2(x) and ω = −
∫ π

0
2
√

V (r)dr = −4.

H(x , 0) ≤ 0 =⇒ c[H] ≤ 0.

L(x , v) = v 2/2 + ωv + V (x)⇒ L(0, 0) = 0⇒ c[H] ≥ 0.

Let u be a critical subsolution. Then there holds a.e.

(u′ − ω)2 ≤ 2V =⇒ u′ − ω ≤ 2
√

V =⇒ u′ ≤ ω + 2
√

V .

In conclusion, u(x) =
∫ x

0
2
√

V (r)dr + ωx for any x .

The Aubry set consists in one equilibria and one orbit.
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Examples (Mañé’s Lagrangians)

Let X be a smooth vector field on M and L : TM → R
defined by

LX (x , v) =
1

2
|v − X (x)|2 ∀(x , v) ∈ TM .

HX (x , p) = 1
2
|p|2 + p · X (x).

H(x , 0) = 0 for any x ∈ M . Then c[H] = 0.

Characteristics of u = 0 satisfy

ẋ(t) = X (x(t)), p(t) = 0.

The projected Aubry set always contains the set of
recurrent points.
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Two theorems by Bernard

Theorem (Bernard, 2006)

There exists a critical subsolution of class C 1,1.

Idea of the proof: Use a Lasry-Lions type convolution.
If u is a given critical solution, then

(
Ts ◦ Ťt

)
(u) is C 1,1

provided s, t > 0 are small enough.

Theorem (Bernard, 2007)

Assume that the Aubry set is exactly one hyperbolic periodic
orbit, then any critical solution is ”smooth” in a neighborhood
of A(H). As a consequence, there is a ”smooth” critical
subsolution.

Idea of the proof: The Aubry set is the boundary at infinity,
that is any calibrated curve γ : (−∞, 0]→ M tends to A(H)
as t tends to −∞. Indeed, for every p ∈ d∗u(x) there is such
a calibrated curve such that γ̇(0) = ∂H

∂p
(γ(0), p).

Ludovic Rifford Weak KAM Theory in Italy



Thank you for your attention !!
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Lecture 4

Closing Aubry sets
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Setting

Let M be a smooth compact manifold of dimension n ≥ 2 be
fixed. Let H : T ∗M → R be a Hamiltonian of class C k , with
k ≥ 2, satisfying the following properties:

(H1) Superlinear growth:
For every K ≥ 0, there is C ∗(K ) ∈ R such that

H(x , p) ≥ K |p|+ C ∗(K ) ∀(x , p) ∈ T ∗M .

(H2) Uniform convexity:
For every (x , p) ∈ T ∗M , ∂2H

∂p2 (x , p) is positive definite.

For sake of simplicity, we may assume that M = Tn, that is
that H : Rn ×Rn → R satisfies (H1)-(H2) and is periodic with
respect with the x variable.
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The Mañé Conjecture

Conjecture (Mañé, 96)

For every Tonelli Hamiltonian H : T ∗M → R of class C k (with
k ≥ 2), there is a residual subset (i.e., a countable intersection
of open and dense subsets) G of C k(M) such that, for every
V ∈ G, the Aubry set of the Hamiltonian HV := H + V is
either an equilibrium point or a periodic orbit.

Strategy of proof:

Density result.

Stability result.
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Mañé’s density Conjecture

Conjecture (Mañé’s density conjecture)

For every Tonelli Hamiltonian H : T ∗M → R of class C k (with
k ≥ 2) there exists a dense set D in C k(M) such that, for
every V ∈ D, the Aubry set of the Hamiltonian HV is either
an equilibrium point or a periodic orbit.

Proposition (Contreras-Iturriaga, 1999)

Let H : T ∗M → R be a Hamiltonian of class C k (with k ≥ 3)
whose Aubry set is an equilibrium point (resp. a periodic
orbit). Then, there is a smooth potential V : M → R, with
‖V ‖C k as small as desired, such that the Aubry set of HV is a
hyperbolic equilibrium (resp. a hyperbolic periodic orbit).
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Stability

Proposition (Contreras-Iturriaga, 1999)

Let H : T ∗M → R be a Hamiltonian of class C k (with k ≥ 3).
If V is a potential of class C 2 such that Ã(HV ) is a hyperbolic
equilibrium or a hyperbolic periodic orbit, then there exists
ε > 0 such that the same property holds for every W : M → R
with ‖W − V ‖C2 < ε.

Proof.

If Vk → V , then Ã(HVk
)→ Ã(HV ) for the Hausdorff

topology in T ∗M .

The existence of a hyperbolic periodic orbit is persistent
under small perturbations.
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Mañé’s density Conjecture

We are reduced to prove the

Conjecture (Mañé’s density conjecture)

For every Tonelli Hamiltonian H : T ∗M → R of class C k (with
k ≥ 2) there exists a dense set D in C k(M) such that, for
every V ∈ D, the Aubry set of the Hamiltonian HV is either
an equilibrium point or a periodic orbit.

Remark

If we show that generically the Aubry set contains an
equilibrium or a periodic orbit we are done.

From now on, we assume that a given Hamiltonian H of class
C k (k ≥ 2) satisfies c[H] = 0 and that Ã(H) contains no
equilibrium.
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Preliminaries

We need to find:

a potential V : M → R small,

a periodic orbit γ : [0,T ]→ M (γ(0) = γ(T )),

a Lipschitz function v : M → R,

in such a way that the following properties are satisfied:

HV

(
x , dv(x)

)
≤ 0 for a.e. x ∈ M , (⇒ c[HV ] ≤ 0)∫ T

0
LV

(
γ(t), γ̇(t)

)
dt = 0. (⇒ c[HV ] ≥ 0)
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The strategy (picture)
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x
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The strategy (picture)
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The strategy (picture)
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The strategy (picture)
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Picture

Given y1, y2 ∈ Rm, set

Cyl
(
y1; y2

)
:=

⋃
s∈[0,1]

Bm
(

(1− s)y1 + sy2,
∣∣y1 − y2

∣∣/3
)
.

Lemma

Let r > 0 and Y be a finite set in Rm such that Br/12 ∩ Y
contains at least two points. Then, there are y1 6= y2 ∈ Y
such that the cylinder Cyl

(
y1; y2

)
is included in Br and does

not intersect Y \
{

y1, y2

}
.
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Closing Aubry sets in C 1 topology

Theorem (Figalli-R, 2010)

Let H : T ∗M → R be a Tonelli Hamiltonian of class C k with
k ≥ 4, and fix ε > 0. Then there exists a potential
V : M → R of class C k−2, with ‖V ‖C1 < ε, such that
c[HV ] = c[H] and the Aubry set of HV is either an
(hyperbolic) equilibrium point or a (hyperbolic) periodic orbit.

The above result is not satisfactory. The property ”having an
Aubry set which is an hyperbolic closed orbit” is not stable
under C 1 perturbations.
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Closing lemmas

Let X be a smooth vector field on a compact manifold M and
x ∈ M be a recurrent point w.r.t to the flow of X .

Proposition

For every ε > 0, there is a smooth vector field Y having x as a
periodic point such that ‖Y − X‖C0 < ε.

Theorem (Pugh, 1967)

For every ε > 0, there is a smooth vector field Y having x as a
periodic point such that ‖Y − X‖C1 < ε.

Ref: M.-C. Arnaud. Le ”closing lemma” en topologie C 1.

No Lipschitz closing lemma !!!!
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Partial density results I

Theorem (Figalli-R, 2010)

Let H : T ∗M → R be a Tonelli Hamiltonian of class C k with
k ≥ 2, and fix ε > 0. Assume that there are a recurrent point
x̄ ∈ A(H), a critical viscosity subsolution u : M → R, and an
open neighborhood V of O+

(
x̄
)

such that the following
properties are satisfied:

(i) u is of class C 1,1 in V ;

(ii) H(x , du(x)) = c[H] for every x ∈ V ;

(iii) Hessgu(x̄) is a singleton.

Then there exists a potential V : M → R of class C k , with
‖V ‖C2 < ε, such that c[HV ] = c[H] and the Aubry set of HV

is either an equilibrium point or a periodic orbit.
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Application to Mañé’s Lagrangians

Recall that given X a C k-vector field on M with k ≥ 2, the
Mañé Lagrangian LX : TM → R associated to X is defined by

LX (x , v) :=
1

2

∥∥v − X (x)
∥∥2

x
∀ (x , v) ∈ TM ,

while the Mañé Hamiltonian HX : TM → R is given by

HX (x , p) =
1

2

∥∥p
∥∥2

x
+ 〈p,X (x)〉 ∀ (x , p) ∈ T ∗M .

Corollary (Figalli-R, 2010)

Let X be a vector field on M of class C k with k ≥ 2. Then for
every ε > 0 there is a potential V : M → R of class C k , with
‖V ‖C2 < ε, such that the Aubry set of HX + V is either an
equilibrium point or a periodic orbit.
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Partial density results II

Theorem (Figalli-R, 2010)

Assume that dim M ≥ 3. Let H : T ∗M → R be a Tonelli
Hamiltonian of class C k with k ≥ 4, and fix ε > 0. Assume
that there are a recurrent point x̄ ∈ A(H), a critical viscosity
subsolution u : M → R, and an open neighborhood V of
O+
(
x̄
)

such that

u is at least C k+1 on V .

Then there exists a potential V : M → R of class C k−1, with
‖V ‖C2 < ε, such that c[HV ] = c[H] and the Aubry set of HV

is either an (hyperbolic) equilibrium point or a (hyperbolic)
periodic orbit.
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Discussion

Thanks to the Bernard Theorem about the regularity of weak
KAM solutions in a neighborhood of the projected Aubry set
whenever the Aubry set is an hyperbolic periodic orbit, we
infer that the Mañé density conjecture is equivalent to the:

Conjecture (Regularity Conjecture for critical subsolutions)

For every Tonelli Hamiltonian H : T ∗M → R of class C∞

there is a set D ⊂ C∞(M) which is dense in C 2(M) (with
respect to the C 2 topology) such that the following holds: For
every V ∈ D, there are a recurrent point x̄ ∈ A(H), a critical
viscosity subsolution u : M → R, and an open neighborhood V
of O+

(
x̄
)

such that u is of class C∞ on V .
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Thank you for your attention !!
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