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Lecture 1

The Chow-Rashevsky Theorem
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Control of an inverted pendulum
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Control systems

A general control system has the form

ẋ = f (x , u)

where
x is the state in M
u is the control in U

Proposition

Under classical assumptions on the datas, for every x ∈ M and
every measurable control u : [0,T ]→ U the Cauchy problem{

ẋ(t) = f
(
x(t), u(t)

)
a.e. t ∈ [0,T ],

x(0) = x

admits a unique solution

x(·) = x(·; x , u) : [0,T ] −→ M .
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Controllability issues

Given two points x1, x2 in the state space M and T > 0, can
we find a control u such that the solution of{

ẋ(t) = f
(
x(t), u(t)

)
a.e. t ∈ [0,T ]

x(0) = x1

satisfies
x(T ) = x2 ?

b
x1

b
x2
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The Chow-Rashevsky Theorem

Theorem (Chow 1939, Rashevsky 1938)

Let M be a smooth manifold and X 1, · · · ,Xm be m smooth
vector fields on M. Assume that

Lie
{

X 1, . . . ,Xm
}

(x) = TxM ∀x ∈ M .

Then the control system

ẋ =
m∑
i=1

ui X i(x)

is locally controllable in any time at every point of M.
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Comment I

The local controllability in any time at every point means that
for every x0 ∈ M , every T > 0 and every neighborhood U of
x0, there is a neighborhood V ⊂ U of x0 such that for any
x1, x2 ∈ V , there is a control u ∈ L1([0,T ];Rm) such that the
trajectory x(·; x1, u) : [0,T ]→ M remains in U and steers x1

to x2, i.e. x(T ; x1, u) = x2.

b

x0

V

b

x1

b

x2

U

Local controllability in time T > 0

⇒ Local controllability in time T ′ > 0, ∀T ′ > 0
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Comment II

If M is connected then

Local controllability⇒ Global controllability

Let x ∈ M be fixed. Denote by A(x) the accessible set from
x , that is

A(x) :=
{

x
(
T ; x , u

)
|T ≥ 0, u ∈ L1

}
=

{
x
(
1; x , u

)
| u ∈ L1

}
.

By local controllability, A(x) is open.
Let y be in the closure of A(x). The set A(y) contains a
small ball centered at y and there are points of A(x) in
that ball. Then A(x) is closed.

By connectedness of M , we infer that A(x) = M for every
x ∈ M , and in turn that the control system is globally
controllable in any time.
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The Chow-Rashevsky Theorem

Theorem (Chow 1939, Rashevsky 1938)

Let M be a smooth manifold and X 1, · · · ,Xm be m smooth
vector fields on M. Assume that

Lie
{

X 1, . . . ,Xm
}

(x) = TxM ∀x ∈ M .

Then the control system ẋ =
∑m

i=1 ui X i(x) is locally
controllable in any time at every point of M.

The condition in red is called Hörmander’s condition or
bracket generating condition. Families of vector fields
satisfying that condition are called nonholonomic, completely
nonholonomic, or totally nonholonomic.
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Comment III

Definition

Given two smooth vector fields X ,Y on Rn, the Lie bracket
[X ,Y ] at x ∈ Rn is defined by

[X ,Y ](x) = DY (x)X (x)− DX (x)Y (x).

The Lie brackets of two smooth vector fields on M can be
defined in charts with the above formula.

Given a family F of smooth vector fields on M , we denote by
Lie{F} the Lie algebra generated by F . It is the smallest
vector subspace S of smooth vector fields containing F that
also satisfies

[X ,Y ] ∈ S ∀X ∈ F ,∀Y ∈ S .
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Comment III

b
x

b
etX(x)
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Comment III

b
x

b
etX(x)

b e
tY ◦ etX(x)
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Comment III

b
x

b
etX(x)

b e
tY ◦ etX(x)

b
e−tX ◦ etY ◦ etX(x)
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Comment III

b
x

b
etX(x)

b e
tY ◦ etX(x)

b
e−tX ◦ etY ◦ etX(x)

b
e−tY ◦ e−tX ◦ etY ◦ etX(x)
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Comment III

b
x

b
etX(x)

b e
tY ◦ etX(x)

b
e−tX ◦ etY ◦ etX(x)

b
e−tY ◦ e−tX ◦ etY ◦ etX(x)
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Comment III

Exercise

We have

[X ,Y ](x) = lim
t↓0

(
e−tY ◦ e−tX ◦ etY ◦ etX

)
(x)− x

t2
.

b
x

b

b

b

b
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Comment III

Given a family F of smooth vector fields on M , we set
Lie1(F) := Span(F), and define recursively Liek(F)
(k = 2, 3, . . .) by

Liek+1(F) := Span
(

Liek(F)∪
{

[X ,Y ] |X ∈ F ,Y ∈ Liek(F)
})
.

We have
Lie{F} =

⋃
k≥1

Liek(F).

For example, the Lie algebra Lie
{

X 1, . . . ,Xm
}

is the vector
subspace of smooth vector fields which is spanned by all the
brackets (made from X 1, . . . ,Xm) of length 1, 2, 3, . . ..
Since M has finite dimension, for every x ∈ M , there is
r = r(x) ≥ 1 (called degree of nonholonomy at x) such that

TxM ⊃ Lie
{

X 1, . . . ,Xm
}

(x) = Lier
{

X 1, . . . ,Xm
}

(x).
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Comment IV

We can prove the Chow-Rashevsky Theorem in the contact
case in R3 as follows:

Exercise

Let X 1,X 2 be two smooth vector fields in R3 such that

Span
{

X 1(0),X 2(0), [X 1,X 2](0)
}

= R3.

Then the mapping ϕλ : R3 → R3 defined by

ϕλ(t1, t2, t3) = eλX
1 ◦ et3X 2 ◦ e−λX

1 ◦ et2X 2 ◦ et1X 1

(0)

is a local diffeomorphism at the origin for λ > 0 small.

 F. Jean’s monograph ”Control of Nonholonomic Systems:
from Sub-Riemannian Geometry to Motion Planning”
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The End-Point mapping

Given a control system of the form

ẋ =
m∑
i=1

ui X i(x) (x ∈ M , u ∈ Rm),

we define the End-Point mapping from x in time T > 0 as

E x ,T : L2
(
[0,T ];Rm

)
−→ M

u 7−→ x
(
T ; x , u

)
Proposition

The mapping E x ,T is of class C 1 (on its domain) and its
differential is given by

DuE x ,T (v) =

DxΦu(T , x) ·
∫ T

0

(DxΦu(t, x))−1 ·
m∑
i=1

vi(t)X i (E x ,t(u)) dt.
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Linearized control system

Writing the trajectory xu+εv : [0,T ]→ Rn as

xu+εv = xu + εδx + o(ε),

we have for every t ∈ [0,T ],

xu+εv (t) = x +

∫ t

0

m∑
i=1

(
ui(s) + εvi(s)

)
X i
(
xu+εv (s)

)
ds

= x +

∫ t

0

m∑
i=1

ui(s)X i
(
xu(s)

)
ds

+ε

∫ t

0

(
m∑
i=1

ui(s)Dxu(s)X
i

)
· δx(s) +

m∑
i=1

vi(s)X i(xu(s)) ds

+ o(ε).
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Linearized control system

So we have DuE x ,T (v) = ξ(T ), where ξ : [0,T ]→ Rn is a
trajectory of the linearized system

ξ̇ =

(
m∑
i=1

uiDxuX i

)
· ξ +

m∑
i=1

vi X i(xu), ξ(0) = 0.

Consequently, setting for every t ∈ [0,T ],

Au(t) :=
m∑
i=1

ui(t)Dxu(t)X
i ,

Bu(t) :=
(
X 1(xu(t)), . . . ,Xm(xu(t))

)
.

we have

DuE x ,T (v) = Su(T )

∫ T

0

Su(t)−1Bu(t)v(t) dt

with Su solution of Ṡu = AuSu a.e. t ∈ [0,T ], Su(0) = In.
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About the End-Point mapping

Proposition

For every u ∈ L2([0,T ];Rm) and any i = 1, . . . ,m, we have

X i
(

E x ,T (u)
)
∈ DuE x ,T

(
L2
(
[0,T ];Rm

))
.

Proof.

Any linear form p̄ ⊥ Im
(
DuE x ,T

)
satisfies

p̄ · Su(T )

∫ T

0

Su(t)−1Bu(t)v(t) dt = 0,

for any v ∈ L2
(
[0,T ];Rm

)
. Taking

v(t) := (p̄ · Su(T )Su(t)−1Bu(t))
∗

we get p̄ ⊥ X i(y) for all i .
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Regular controls vs. Singular controls

Definition

A control u ∈ L2
(
[0,T ];Rm) is called regular with respect to

E x ,T if E x ,T is a submersion at u. If not, u is called singular.

Exercise

The concatenations u1 ∗ u2 and u2 ∗ u1 of a regular control u1

with another control u2 are regular.

b

b

bu1 u2
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Rank of a control

Definition

The rank of a control u ∈ L2
(
[0,T ];Rm) (with respect to

E x ,T ) is defined as the dimension of the image of the linear
mapping DuE x ,T . We denote it by rankx ,T (u).

Exercise

The following properties hold:

rankx ,T1+T2(u1 ∗ u2) ≥ max{rankx ,T1(u1), ranky ,T2(u2)}.
ranky ,T1(ǔ1) = rankx ,T1(u1).

y
x
b

b

bu1 u2
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Openness: Statement

The Chow-Rashevsky will follow from the following result:

Proposition

Let M be a smooth manifold and X 1, · · · ,Xm be m smooth
vector fields on M. Assume that

Lie
{

X 1, . . . ,Xm
}

(x) = TxM ∀x ∈ M .

Then, for every x ∈ M and every T > 0, the End-Point
mapping

E x ,T : L2
(
[0,T ];Rm

)
−→ M

u 7−→ x
(
T ; x , u

)
is open (on its domain).

Ludovic Rifford Sub-Riemannian CIRM School



Openness: Sketch of proof

Let x ∈ M and T > 0 be fixed. Set for every ε > 0,

d(ε) = max
{

rankx ,ε(u) | ‖u‖L2 < ε
}
.

Claim: d(ε) = n ∀ε > 0.

If not, we have d(ε) = d0 ∈ {1, . . . , n − 1} for some ε > 0.
Given uε s.t. rankx ,ε(uε) = d0, there are d0 controls
v 1, . . . , vd0 such that the mapping

E : λ = (λ1, . . . , λd0) ∈ Rd0 7→ E x ,ε

(
uε +

d0∑
j=1

λjv j

)
is an immersion near 0. Thus, its local image N is a d0

dimensional submanifold of M of class C 1 such that

X i
(
E(λ)

)
∈ Im

(
DλE

)
= TyN . Contradiction!!!
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Openness: Sketch of proof (the return method)

To conclude, we pick (for any ε > 0 small) a regular control uε

in L2([0, ε];Rm) and define ũ ∈ L2([0,T + 2ε];Rm) by

ũ := uε ∗ ǔε ∗ u.

b

x

xu

xǔ

xv

b Ex,T (ṽ)

Up to reparametrizing u into a control v on [0,T − 2ε], the
new control ṽ = uε ∗ ǔε ∗ v is regular, close to u in L2 provided
ε > 0 is small, and steers x to E x ,T (u).
The openness follows from the Inverse Function Theorem.
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Remarks

Proposition

Let M be a smooth manifold and X 1, · · · ,Xm be m smooth
vector fields on M. Assume that

Lie
{

X 1, . . . ,Xm
}

(x) = TxM ∀x ∈ M .

Then, for every x ∈ M and every T > 0, the set of controls
which are regular w.r.t. E x ,T is open and dense in L2.

The above result hods indeed in the smooth topology.

Proposition (Sontag)

Under the same assumptions, the set of controls which are
regular w.r.t. E x ,T is open and dense in C∞.
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Thank you for your attention !!
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Lecture 2

Sub-Riemannian geodesics
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Sub-Riemannian structures

Let M be a smooth connnected manifold of dimension n ≥ 2.

Definition

A sub-Riemannian structure on M is a pair (∆, g) where:

∆ is a totally nonholonomic distribution of rank
m ∈ [2, n], that is it is defined locally as

∆(x) = Span
{

X 1(x), . . . ,Xm(x)
}
⊂ TxM ,

where X 1, . . . ,Xm are m linearly independent vector fields
satisfying the Hörmander condition.

gx is a scalar product on ∆(x).
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Sub-Riemannian structures
Remark

In general ∆ does not admit a global frame. However we
can always construct k = m · (n + 1) smooth vector fields
Y 1, . . . ,Y k such that

∆(x) = Span
{

Y 1(x), . . . ,Y k(x)
}

∀x ∈ M .

If (M , g) is a Riemannian manifold, then any totally
nonholomic distribution ∆ gives rise to a SR structure
(∆, g) on M.

Example (Heisenberg)

Take in R3, ∆ = Span{X 1,X 2} with

X 1 = ∂x −
y

2
∂z , X 2 = ∂y +

x

2
∂z and g = dx2 + dy 2.
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The Chow-Rashevsky Theorem

Definition

We call horizontal path any path γ ∈ W 1,2([0, 1]; M)
satisfying

γ̇(t) ∈ ∆(γ(t)) a.e. t ∈ [0, 1].

We observe that if ∆ = Span{Y 1, . . . ,Y k}, for any x ∈ M
and any control u ∈ L2([0, 1];Rk), the solution to

γ̇ =
k∑

i=1

ui X i(γ), γ(0) = x

is an horizontal path joining x to γ(1).

Theorem (Chow-Rashevsky)

Let ∆ be a totally nonholonomic distribution on M then any
pair of points can be joined by an horizontal path.
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The sub-Riemannian distance

The length (w.r.t g) of an horizontal path γ is defined as

lengthg (γ) :=

∫ T

0

|γ̇(t)|gγ(t) dt

Definition

Given x , y ∈ M , the sub-Riemannian distance between x
and y is

dSR(x , y) := inf
{

lengthg (γ) | γ hor., γ(0) = x , γ(1) = y
}
.

Proposition

The manifold M equipped with the distance dSR is a metric
space whose topology coincides with the topology of M (as a
manifold).
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Minimizing horizontal paths and geodesics

Definition

Given x , y ∈ M , we call minimizing horizontal path
between x and y any horizontal path γ : [0,T ]→ M
connecting x to y such that

dSR(x , y) = lengthg (γ).

The sub-Riemannian energy between x and y is defined as

eSR(x , y) := inf

{
energyg (γ) :=

∫ 1

0

(
|γ̇(t)|gγ(t)

)2

dt | γ . . .
}
.

Definition

We call minimizing geodesic between x and y any horizontal
path γ : [0, 1]→ M connecting x to y such that

eSR(x , y) = energyg (γ).

We have eSR = d2
SR , moreover minimizing geodesics are those

minimizing horizontal path on [0, 1] with constant speed.
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A SR Hopf-Rinow Theorem

Theorem

Let (∆, g) be a sub-Riemannian structure on M. Assume that
(M , dSR) is a complete metric space. Then the following
properties hold:

The closed balls B̄SR(x , r) are compact (for any r ≥ 0).

For every x , y ∈ M, there exists at least one minimizing
geodesic joining x to y .

Remark

Given a complete Riemannian manifold (M , g), for any totally
nonholonomic distribution ∆ on M, the SR structure (∆, g) is
complete. As a matter of fact, since dg ≤ dSR any Cauchy
sequence w.r.t. dSR is Cauchy w.r.t. dg .
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The Hamiltonian geodesic equation

Let x , y ∈ M and a minimizing geodesic γ̄ joining x to y be
fixed. The SR structure admits an orthonormal frame along
γ̄, that is there is an open neighborhood V of γ̄([0, 1]) and an
orthonormal family of m vector fields X 1, . . . ,Xm such that

∆(z) = Span
{

X 1(z), . . . ,Xm(z)
}

∀z ∈ V .

b

x

b
y

γ̄ V
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The Hamiltonian geodesic equation

There is a control ū ∈ L2
(
[0, 1];Rm

)
such that

˙̄γ(t) =
m∑
i=1

ūi(t) X i
(
γ̄(t)

)
a.e. t ∈ [0, 1].

Moreover, on the one hand any control u ∈ U ⊂ L2
(
[0, 1];Rm

)
(u sufficiently close to ū) gives rise to a trajectory γu solution
of

γ̇u =
m∑
i=1

ui X i
(
γu
)

on [0,T ], γu(0) = x .

On the other hand, for any horizontal path γ : [0, 1]→ V
there is a (unique) control u ∈ L2

(
[0, 1];Rm

)
for which the

equation in red is satisfied.
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The Hamiltonian geodesic equation

So, considering as previously the End-Point mapping

E x ,1 : L2
(
[0, 1];Rm

)
−→ M

defined by
E x ,1(u) := γu(1),

and setting C (u) = ‖u‖2
L2 , we observe that ū is solution to the

following optimization problem with constraints:

ū minimizes C (u) among all u ∈ U s.t. E x ,1(u) = y .

(Since the family X 1, . . . ,Xm is orthonormal, we have

energyg (γu) = C (u) ∀u ∈ U .)
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The Hamiltonian geodesic equation

Proposition (Lagrange Multipliers)

There are p ∈ T ∗y M ' (Rn)∗ and λ0 ∈ {0, 1} with
(λ0, p) 6= (0, 0) such that

p · DūE x ,1 = λ0DūC .

Proof.

The mapping Φ : U → R×M defined by

Φ(u) :=
(
C (u),E x ,1(u)

)
cannot be a submersion at ū. As a matter of fact, if DūΦ is
surjective, then it is open at ū, so it must contain elements of
the form (C (ū)− δ, y) for δ > 0 small.

 two cases: λ0 = 0 or λ0 = 1.
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The Hamiltonian geodesic equation

First case: λ0 = 0

Then we have

p · DūE x ,1 = 0 with p 6= 0.

So ū is singular (w.r.t. x and T = 1).

Remark

If ∆ has rank n, that is ∆ = TM (Riemannian case), then
there are no singular control. So this case cannot occur.

If there are no nontrivial singular control, then this case
cannot occur.

If there are no nontrivial singular minimizing control, then
this case cannot occur.

 Next lecture
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The Hamiltonian geodesic equation

Second case: λ0 = 1

Define the Hamiltonian H : V × (Rn)∗ → R by

H(x , p) :=
1

2

m∑
i=1

(
p · X i(x)

)2
.

Proposition

There is a smooth arc p : [0, 1]→ (Rn)∗ with p(1) = p/2 such
that{

˙̄γ = ∂H
∂p

(γ̄, p) =
∑m

i=1

[
p · X i(γ̄)

]
X i(γ̄)

ṗ = −∂H
∂x

(γ̄, p) = −∑m
i=1

[
p · X i(γ̄)

]
p · Dγ̄X i

for a.e. t ∈ [0, 1] and ūi(t) = p · X i(γ̄(t)) for a.e. t ∈ [0, 1]
and any i . In particular, the path γ̄ is smooth on [0, 1].
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The Hamiltonian geodesic equation

Proof.

We have DūC (v) = 2〈ū, v〉L2 and we remember that

DūE x ,T (v) = S(1)

∫ 1

0

S(t)−1B(t)v(t) dt

with{
A(t) =

∑m
i=1 ui(t)Dγ̄(t)X

i ,
B(t) = (X 1(γ̄(t)), . . . ,Xm(γ̄(t)))

∀t ∈ [0, 1],

and S solution of

Ṡ(t) = A(t)S(t) for a.e. t ∈ [0, 1], S(0) = In.
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The Hamiltonian geodesic equation

Proof.

Then p · DūE x ,1 = λ0DūC yields∫ 1

0

[
p · S(1)S(t)−1B(t)− 2ū(t)∗

]
v(t) dt = 0 ∀v ∈ L2.

We infer that

ū(t) =
1

2

(
p · S(1)S(t)−1B(t)

)∗
a.e. t ∈ [0, 1],

and that the absolutely continuous arc p : [0, 1]→ (Rn)∗

defined by

p(t) :=
1

2
p · S(1)S(t)−1

satisfies the desired equations.
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The Hamiltonian geodesic equation

Define the Hamiltonian H : T ∗M → R by

H(x , p) =
1

2
max

{
p(v)2

gx(v , v)
| v ∈ ∆x \ {0}

}
.

We call normal extremal any curve ψ : [0,T ]→ T ∗M
satisfying

ψ̇(t) = ~H
(
ψ(t)

)
∀t ∈ [0,T ].

Theorem

Let γ : [0, 1]→ M be a minimizing geodesic. One of the two
following non-exclusive cases occur:

γ is singular.

γ admits a normal extremal lift.

Ludovic Rifford Sub-Riemannian CIRM School



It’s time to take a small break !!
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Examples

Example 1: The Riemannian case

Let ∆(x) = TxM for any x ∈ M so that ANY curve is
horizontal. There are no singular curve, so any minimizing
geodesic is the projection of a normal extremal.

Example 2: Heisenberg

Recall that in R3, ∆ = Span{X 1,X 2} with

X 1 = ∂x −
y

2
∂z , X 2 = ∂y +

x

2
∂z and g = dx2 + dy 2.
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Examples

Any horizontal path has the form γu = (x , y , z) : [0, 1→ R3

with 
ẋ(t) = u1(t)
ẏ(t) = u2(t)
ż(t) = 1

2
(u2(t)x(t)− u1(t)y(t)) ,

for some u ∈ L2. This means that

z(1)− z(0) =

∫
α

1

2
(xdy − ydx) ,

where α is the projection of γ to the plane z = 0. By Stokes’
Theorem, we get

z(1)− z(0) =

∫
D

dx ∧ dy +

∫
c

1

2
(xdy − ydx)

where D is the domain enclosed by α and the segment
c = [α(0), α(1)].  Projections of minimizing horizontal
paths must be circles.
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Examples

Let γu = (x , y , z) : [0, 1]→ R3 be a minimizing geodesic from
P1 := γu(0) to P2 := γu(1) 6= P1. Since u is necessarily regular
( next lecture), there is a smooth arc p : [0, 1]→ (R3)∗ s.t.


ẋ = px − y

2
pz

ẏ = py + x
2
pz

ż = 1
2

((
py + x

2
pz

)
x −

(
px − y

2
pz

)
y
)
,


ṗx = −

(
py + x

2
pz

)
pz
2

ṗy =
(
px − y

2
pz

)
pz
2

ṗz = 0.

Hence pz = p̄z for every t. Which implies that

ẍ = −p̄z ẏ and ÿ = p̄z ẋ .

If p̄z = 0, then the geodesic from P1 to P2 is a segment with
constant speed. If p̄z 6= 0, we have or

...
x = −p̄2

z ẋ and
...
y = −p̄2

z ẏ .

Which means that the curve t 7→ (x(t), y(t)) is a circle.
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Examples

Example 3: The Martinet distribution

In R3, let ∆ = Span{X 1,X 2} with X 1,X 2 fo the form

X 1 = ∂x1 and X 2 =
(
1 + x1φ(x)

)
∂x2 + x2

1∂x3 ,

where φ is a smooth function and g be a smooth metric on ∆.

Theorem

There is ε̄ > 0 such that for every ε ∈ (0, ε̄), the (singular)
horizontal path given by

γ(t) = (0, t, 0) ∀t ∈ [0, ε],

minimizes the length (w.r.t. g) among all horizontal paths
joining 0 to (0, ε, 0). Moreover if {X 1,X 2} is orthonormal
w.r.t. g and φ(0) 6= 0, then γ can not be the projectionof a
normal extremal.
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The SR exponential mapping

Denote by ψx ,p : [0, 1]→ T ∗M the solution of

ψ̇(t) = ~H
(
ψ(t)

)
∀t ∈ [0, 1], ψ(0) = (x , p)

and let

Ex :=
{

p ∈ T ∗x M |ψx ,p defined on [0, 1]
}
.

Definition

The sub-Riemannian exponential map from x ∈ M is
defined by

expx : Ex ⊂ T ∗x M −→ M
p 7−→ π

(
ψx ,p(1)

)
.

Proposition

Assume that (M , dSR) is complete. Then for every x ∈ M,
Ex = T ∗x M.
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Thank you for your attention !!
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Lecture 3

A closer look at singular curves

Ludovic Rifford Sub-Riemannian CIRM School



Setting

We are given a complete sub-Riemannian structure (∆, g)
of rank m ∈ [2, n − 1] in M = Rn which admits a global
frame, i.e.

∆(x) = Span
{

X 1(x), . . . ,Xm(x)
}

∀x ∈ Rn,

with {X 1, . . . ,Xm} a family of m linearly independent smooth
vector fields satisfying the Hörmander condition.
Given x ∈ M , there is a one-to-one correspondence between
horizontal curves in W 1,2([0, 1];Rm) starting at x and controls
u ∈ L2([0, 1];Rm). An horizontal path γu : [0, 1]→ M is
singular (w.r.t. x = γu(0),T = 1) iff the control u is singular.

Exercise

Check that the definition ”singular curve” does not depend on
the family {X 1, . . . ,Xm}.
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Characterization of singular curves

Let h1, . . . , hm : T ∗M(= Rn × (Rn)∗)→ R be the
Hamiltonians defined by

hi(ψ) = p · X i(x) ∀ψ = (x , p) ∈ T ∗M , ∀i = 1, . . . ,m

and denote by ~h1, . . . ,~hm the corresponding Hamiltonian

vector fields which read ~hi(x , p) =
(
∂hi

∂p
(x , p),−∂hi

∂x
(x , p)

)
.

Proposition

The control u is singular iff there is an absolutely continuous
arc ψ = (x , p) : [0, 1]→ T ∗M with p(t) 6= 0 for all t ∈ [0, 1]
such that

ψ̇(t) =
m∑
i=1

ui(t)~hi(ψ(t)) a.e. t ∈ [0, 1]

hi(ψ(t)) = 0 ∀t ∈ [0, 1], ∀i = 1, . . . ,m.
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Characterization of singular curves (proof)

Proof.

If DuE x ,1 : L2([0, 1];Rm)→ Rn is not surjective, there is
p ∈ (Rn)∗ \ {0} such that

p · DuE x ,1(v) = 0 ∀v ∈ L2
(
[0, 1];Rm

)
.

Then we have∫ 1

0

p · S(1)S(t)−1B(t)v(t)dt = 0 ∀v ∈ L2([0,T ];Rm).

which implies that p · S(1)S(t)−1B(t) = 0 for any t ∈ [0, 1].
Let us now define, for each t ∈ [0, 1], p(t) := p · S(1)S(t)−1.
By construction, p : [0, 1]→ (Rn)∗ is an absolutely continuous
arc, it is solution of the desired equations, and it does not
vanish on [0, 1].
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Reminder on minimizing geodesics

We call normal extremal any curve ψ : [0,T ]→ T ∗M
satisfying

ψ̇(t) = ~H
(
ψ(t)

)
∀t ∈ [0,T ].

where the Hamiltonian H : T ∗M → R is defined by

H(x , p) =
1

2
max

{
p(v)2

gx(v , v)
| v ∈ ∆x \ {0}

}
.

Theorem

Let γ : [0, 1]→ M be a minimizing geodesic. One of the three
following exclusive cases occur:

γ is singular and not the projection of a normal extremal.

γ is singular and also the projection of a normal extremal.

γ is regular and so is the projection of a normal extremal.

 Study of examples
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Contact distribution in dimension three

Let ∆ be a rank two distribution in R3 given by

∆(x) =
{

X 1(x),X 2(x)
}

with
Span

{
X 1(x),X 2(x), [X 1,X 2](x)

}
= R3.

Proposition

Any nontrivial control is regular.

All (nontrivial) minimizing geodesics are regular and
projection of a normal extremal.

For every x, the SR exponential map expx : T ∗x M → M is
onto.
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Contact distribution in dimension three (proof)
Proof.

Argue by contradiction and let γu : [0, 1]→ M be a singular
horizontal path associated with u 6= 0 ∈ L2. Then there is
p : [0, 1]→ (R3)∗ \ {0} such that

ṗ(t) = −
2∑

i=1

ui(t)p(t) · Dγu(t)X
i a.e. t ∈ [0, 1]

and
p(t) · X i(γu(t)) = 0 ∀t ∈ [0, 1], ∀i = 1, 2.

Taking a derivative in the last two equalities yields (i = 1, 2)

u1(t)p(t) · [X 1,X 2](γu(t)) = u2(t)p(t) · [X 1,X 2](γu(t)) = 0,

so that for any t, p(t) ⊥ X 1,X 2, u1[X 1,X 2], u2[X 1,X 2].
 Contradiction !!
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Fat distributions

The distribution ∆ in M = Rn is called fat if for every x ∈ Rn

and every section X of ∆ with X (x) 6= 0, there holds

TxM = ∆(x) + [X ,∆] (x)

where

[X ,∆] (x) :=
{

[X ,Z ](x) |Z section of ∆
}
.

Proposition

Any nontrivial control is regular.

All minimizing geodesics are regular and projection of a
normal extremal.

For every x, the SR exponential map expx : T ∗x M → M is
onto.

 There are very few fat distributions, see Montgomery.
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Fat distributions (proof)
Proof.

Argue by contradiction and let γu : [0, 1]→ M be a singular
horizontal path associated with u 6= 0 ∈ L2. Then there is
p : [0, 1]→ (Rn)∗ \ {0} such that

ṗ(t) = −
m∑
i=1

ui(t)p(t) · Dγu(t)X
i a.e. t ∈ [0, 1],

p(t) · X i(γu(t)) = 0 ∀t ∈ [0, 1], ∀i = 1,m.

Taking a derivative in the last m equalities gives

p(t) ·
[

m∑
i=1

uj(t)X j ,X i

]
(γu(t)) = 0 ∀i = 1, . . . ,m.

 X =
∑m

j=1 uj(t)X j yields a contradiction !!
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The Martinet distribution

Let ∆ = Span{X 1,X 2} be a rank two distribution in R3 given
by

X 1 = ∂x1 and X 2 = ∂x2 +
x2

1

2
∂x3 .

We check that

[X 1,X 2] = x1 ∂x3 and
[
[X 1,X 2],X 1

]
= ∂x3 .

Proposition

The horizontal paths which are singular are those which are
tangent to the Martinet surface

Σ∆ :=
{

x ∈ R3 | x1 = 0
}
.
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The Martinet distribution (proof)

Proof.

The distribution is contact outside Σ∆, so the singular paths
are necessarily contained in Σ∆.
Conversely, an horizontal path γu : [0,T ]→ Σ∆ has the form

γu(t) = (0, x2(t), z) with z ∈ R.

Any arc p : [0,T ]→ (R3)∗ of the form p(t) = (0, 0, p3) with
p3 6= 0 satisfies

ṗ(t) = −
2∑

i=1

ui(t)p(t) · Dγu(t)X
i a.e. t ∈ [0, 1]

p(t) · X i(γu(t)) = 0 ∀t ∈ [0, 1], ∀i = 1, 2.

This shows that γu is singular.
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Martinet like distributions

Given a rank two totally nonholonomic distribution ∆ in R3,
we define the Martinet surface of ∆ as the set

Σ∆ :=
{

x ∈ R3 |∆(x) + [∆,∆](x) 6= R3
}
,

where

[∆,∆](x) =
{

[X ,Y ](x) |X ,Y sections of ∆
}
.

Proposition

The set Σ∆ is closed and countably 2-rectifiable. Moreover,
the horizontal paths which are singular are those which are
tangent to Σ∆.

 We can have singular or nonsingular minimizing controls.
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Generic rank two distributions in R4

Let ∆ be a rank two distribution in R4 such that for every
x ∈ R4 the two following properties hold:

∆(x) + [∆,∆](x) has dimension three.

∆(x) + [∆,∆](x) +
[
∆, [∆,∆]

]
(x) = R4,

where[
∆, [∆,∆]

]
(x) =

{[
X , [Y ,Z ]

]
(x) |X ,Y ,Z sections of ∆

}
.

Proposition

There is a rank one distribution (a smooth line field) L ⊂ ∆
such that the horizontal paths which are singular are those
which are tangent to L.

 Such singular paths can be minimizing (cf. Liu-Sussmann).
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It’s time to take a small break !!
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Medium Fat distributions

The distribution ∆ in M = Rn is called medium fat if for
every x ∈ Rn and every section X of ∆ with X (x) 6= 0, there
holds

∆(x) + [∆,∆](x) + [X , [∆,∆]] (x) = Rn

where

[X , [∆,∆]] (x) :=
{[

X , [Y ,Z ]
]
(x) |Y ,Z sections of ∆

}
.

Proposition

Any minimizing geodesic of a medium fat distribution is the
projection of a normal extremal. In particular, for every
x ∈ R4, the mapping expx is onto.

 For example, any two-generating distribution is medium fat.
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Medium Fat distributions (sketch of proof)

The result is a consequence of the two following results:

Theorem

Let γ : [0, 1]→ M be a minimizing geodesic which is singular
and not the projection of a normal extremal. Then there is an
abnormal lift ψ = (x , p) : [0, 1]→ T ∗M of γ such that

p(t) ·
[
X i ,X j

]
(γ(t)) = 0 ∀t ∈ [0, 1], ∀i , j = 1, . . . ,m.

A path satisfying the above property is called a Goh path.

Lemma

A medium fat distribution does not admit nontrivial Goh paths.

 The proof of the lemma is left as an exercise.

Ludovic Rifford Sub-Riemannian CIRM School



Medium Fat distributions (sketch of proof)

The theorem follows from of a study of the End-Point
mapping at second order. Let us give a flavor of the proof.

Theorem (Agrachev-Sarychev)

Let F : Rk → Rn be a mapping of class C 2 and ū be a critical
point of F of corank r ≥ 1. If

ind−
(
λ∗
(
D2

ūF
)
|Ker(DūF )

)
≥ r ∀λ ∈

(
Im
(
DūF

))⊥ \ {0},
then the mapping F is locally open at ū, that is the image of
any neighborhood of ū is a neighborhood of F (ū).

Maybe we should recall that the negative index of a
quadratic form Q : Rk → R is defined by

ind−(Q) = max
{

dim(L) |Q|L\{0} < 0
}
.
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Codimension one distributions

Given a rank (n − 1) totally nonholonomic distribution ∆ in
Rn, we define the singular set associated to ∆ as the set

Σ∆ :=
{

x ∈ Rn |∆(x) + [∆,∆](x) 6= Rn
}
.

Proposition

The set Σ∆ is closed and countably (n − 1)-rectifiable.
Moreover, any Goh path is contained Σ∆.

 As a consequence all minimizing geodesics joining x to y
with either x /∈ Σ∆ or y /∈ Σ∆ is the projection of a normal
extremal (it can be singular).
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Generic sub-Riemannian structures

Theorem (Agrachev-Gauthier,Chitour-Jean-Trélat)

Generic SR structures of rank ≥ 3 do not admit (nontrivial)
minimizing geodesics which are singular.

Proposition

For a generic SR structure of rank ≥ 3, the following holds:

All (nontrivial) minimizing geodesics are regular and
projection of a normal extremal.

For every x, the SR exponential map expx : T ∗x M → M is
onto.
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Mind the gap

Contact Distributions

⇓

Fat Distributions

⇓

Two-generating Distributions

⇓

Medium fat

⇓
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Thank you for your attention !!
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Lecture 4

Open questions
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Open questions

The Sard conjecture

Regularity of minimizing geodesics

Small sub-Riemannian balls
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The Sard Conjecture

Let M be a smooth connected manifold of dimension n and
F = {X 1, . . . ,X k} be a family of smooth vector fields on M
satisfying the Hörmander condition. Given x ∈ M and T > 0,
the End-Point mapping E x ,T is defined as

E x ,T : L2
(
[0,T ];Rm

)
−→ M

u 7−→ x
(
T ; x , u

)
where x(·) = x(·; x , u) : [0,T ] −→ M is solution to the
Cauchy problem

ẋ =
m∑
i=1

ui X i(x), x(0) = x .

Proposition

The map E x ,T is smooth on its domain.
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The Sard Conjecture

Theorem (Morse 1939, Sard 1942)

Let f : Rd → Rp be a function of class C k , then

k ≥ max{1, d − p + 1} =⇒ Lp
(
f
(
Crit(f )

))
= 0,

where Crit(f ) is the set of critical points of f , i.e. the points
where Dx f is not onto.

Let
Singx ,T

F :=
{

u ∈ L2
(
[0,T ];Rm

)
| u singular

}
.

Conjecture

The set E x ,T
(

Singx ,T
F

)
⊂ M has Lebesgue measure zero.
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The Sard Conjecture (very partial answers)

Assump: ∆ = Span{X 1, . . . ,X k} is a tot. nonholon. distrib.

Proposition

If ∆ is fat, then any nontrivial horizontal path is nonsingular.
As a consequence for every x ∈ M,

E x ,T
(
Singx ,T

)
= {x} and Ln

(
E x ,T

(
Singx ,T

))
= 0.

Proposition

If ∆ has rank two in dimension three, then for every
x ∈ M, we have

x /∈ Σ∆ =⇒ E x ,T
(
Singx ,T

)
= {x}

x ∈ Σ∆ =⇒ E x ,T
(
Singx ,T

)
⊂ Σ∆.

In any case E x ,T
(
Singx ,T

)
has Lebesgue measure zero.
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The Sard Conjecture (very partial answers)

Proposition

If ∆ is a rank two distributions in dimension four
satisfying for every x ∈ M,

∆(x) + [∆,∆](x) has dimension three

and
∆(x) + [∆,∆](x) +

[
∆, [∆,∆]

]
(x) = R4,

then there is a rank one distribution (a smooth line field)
L ⊂ ∆ such that the horizontal paths which are singular are
those which are tangent to L. As a consequence we have for
every x ∈ M,

E x ,T
(
Singx ,T

)
= OL

x{x},
the orbit of x w.r.t. L, which has measure zero.
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The Sard Conjecture (very partial answer)

The Sard conjecture for general totally nonholonomic
distributions is unsolved. We even don’t know if
E x ,T

(
Singx ,T

)
has in general nonempty interior in M !!

In fact, there are even stronger conjectures on the size of the
set E x ,T

(
Singx ,T

)
.

For example in the case of a rank two distributions in
dimension three, we can hope that the Hausdorff dimension
of E x ,T

(
Singx ,T

)
is ≤ 1.

Ludovic Rifford Sub-Riemannian CIRM School



The minimizing Sard Conjecture

Given a complete SR structure (∆, g) and x ∈ M , we define
the following sets:

Denoting by Singx
min the set of singular minimizing

geodesics starting at x , we set

Sx
min := E x ,1

(
Singx

min
)
.

Denoting by Singx
min, strict the set of singular

minimizing geodesics starting at x , we set

Sx
min,strict := E x ,1

(
Singx

min,strict

)
⊂ Sx

min.

Conjecture

The set Sx
min (resp. Sx

min,strict) has Lebesgue measure zero.
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The minimizing Sard Conjecture (partial answer)

Proposition (Agrachev-Trélat-LR)

The following properties hold:

The set Sx
min,strict has empty interior.

The set Sx
min has empty interior.

Lemma

Let y 6= x in M be such that there is a function φ : M → R
differentiable at y such that

φ(y) = d2
SR(x , y) and d2

SR(x , z) ≥ φ(z) ∀z ∈ M .

Then there is a unique minimizing geodesic γ : [0, 1]→ M
between x and y. It is the projection of a normal extremal
ψ : [0, 1]→ T ∗M satisfying ψ(1) = (y , 1

2
Dyφ). In particular

x = expy (−1
2
Dyφ).
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The minimizing Sard Conjecture (partial answer)
Proof.

Let y 6= x in M satisfying the assumption and
γ̄ = γū : [0, 1]→ M be a minimizing geodesic from x to y .
We have for every u ∈ U ⊂ L2([0, 1];Rm) (close to ū),

‖u‖2
L2 = C (u) ≥ eSR

(
x ,E x ,1(u)

)
≥ φ

(
E x ,1(u)

)
,

with equality if u = ū. So ū is solution to the following
optimization problem:

ū minimizes C (u)− φ
(
E x ,1(u)

)
among all u ∈ U .

We infer that there is p 6= 0 such that

p · DuE x ,1 = DuC with p = DE x,1(u)φ

and in turn get the result.
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It’s time to take a small break !!
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Regularity of minimizing geodesics

Let (∆, g) be complete SR structure on a smooth manifold M .

Open Question

Do the minimizing geodesics anjoy some regularity ? Are they
at least of class C 1 ?

 Results by Monti, Leonardi and later Monti
 An interesting result in the real analytic case by Sussmann
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Regularity of minimizing geodesics

Let (∆, g) be complete SR structure on a smooth manifold M .

Theorem (Leonardi-Monti, 2008)

Assume that ∆ satisfies the following assumptions:

there is r ≥ 2 such that the dimensions of the spaces

∆(x) = Lie1(∆)(x) ⊂ Lie2(∆)(x), . . . , Lier (∆)(x) = TxM

does not depend upon x ∈ M.

We have the following technical condition[
Liei(∆), Liej(∆)

]
(x) ⊂ Liei+j+1(∆)(x) ∀x ∈ M .

Then a curve with corner cannot be a minimizing geodesic.

(A Lipschitz curve has a corner at some point if the left and
right derivatives at that point exist and are lin. independent.)
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Regularity of singular horizontal paths

Let (∆, g) be complete real analytic SR structure on a real
analytic manifold M .

Theorem (Sussmann, recent)

Every singular minimizing geodesic is real analytic on an open
dense subset of its interval of definition.

The proof is based on stratification results in sub-analytic
geometry.
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Small SR spheres

Let (∆, g) be complete SR structure on a smooth manifold M .

Open Question

Are small SR spheres homeomorphic to Euclidean spheres ?

 Almost no result on this problem.

Baryshnikov claims the small SR-balls are momeomorphic to
Euclidean balls in the contact case.

In a paper of mine, I show that if there are no singular
minimizing geodesics, then almost all spheres are Lipschitz
hypersurfaces.
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