Introduction to Sub-Riemannian Geometry

Ludovic Rifford

Université Nice Sophia Antipolis

Center for Mathematical Modeling - July, 2015

Outline

- Lecture 1 :

A controllability result: The Chow-Rashevsky Theorem

Outline

- Lecture 1 :

A controllability result: The Chow-Rashevsky Theorem

- Lecture 2 :

An optimal control study: Sub-Riemannian geodesics

Lecture 1

A controllability result:
 The Chow-Rashevsky Theorem

Control of an inverted pendulum

Control systems

A general control system has the form

$$
\dot{x}=f(x, u)
$$

where

- x is the state in M
- u is the control in U

Control systems

A general control system has the form

$$
\dot{x}=f(x, u)
$$

where

- x is the state in M
- u is the control in U

Proposition

Under classical assumptions on the datas, for every $x \in M$ and every measurable control $u:[0, T] \rightarrow U$ the Cauchy problem

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(x(t), u(t)) \quad \text { a.e. } t \in[0, T] \\
x(0)=x
\end{array}\right.
$$

admits a unique solution

$$
x(\cdot)=x(\cdot ; x, u):[0, T] \longrightarrow M
$$

Controllability issues

Given two points x_{1}, x_{2} in the state space M and $T>0$, can we find a control u such that the solution of

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(x(t), u(t)) \quad \text { a.e. } t \in[0, T] \\
x(0)=x_{1}
\end{array}\right.
$$

satisfies

$$
x(T)=x_{2} \quad ?
$$

Controllability issues

Given two points x_{1}, x_{2} in the state space M and $T>0$, can we find a control u such that the solution of

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(x(t), u(t)) \quad \text { a.e. } t \in[0, T] \\
x(0)=x_{1}
\end{array}\right.
$$

satisfies

$$
x(T)=x_{2} \quad ?
$$

Controllability of linear control systems in \mathbb{R}^{n}

An autonomous linear control system in \mathbb{R}^{n} has the form

$$
\dot{\xi}=A \xi+B u,
$$

with $\xi \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}, A \in M_{n}(\mathbb{R}), B \in M_{n, m}(\mathbb{R})$.

Controllability of linear control systems in \mathbb{R}^{n}

An autonomous linear control system in \mathbb{R}^{n} has the form

$$
\dot{\xi}=A \xi+B u,
$$

with $\xi \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}, A \in M_{n}(\mathbb{R}), B \in M_{n, m}(\mathbb{R})$.

Theorem

The following assertions are equivalent:
(i) For any $T>0$ and any $\xi_{1}, \xi_{2} \in \mathbb{R}^{n}$, there is $u \in L^{1}\left([0, T] ; \mathbb{R}^{m}\right)$ such that

$$
\xi\left(T ; \xi_{1}, u\right)=\xi_{2} .
$$

(ii) The Kalman rank condition is satisfied:

$$
r k\left(B, A B, A^{2} B, \cdots, A^{n-1} B\right)=n .
$$

Proof of the theorem

Duhamel's formula

$$
\xi(T ; \xi, u)=e^{T A} \xi+e^{T A} \int_{0}^{T} e^{-t A} B u(t) d t
$$

Proof of the theorem

Duhamel's formula

$$
\xi(T ; \xi, u)=e^{T A} \xi+e^{T A} \int_{0}^{T} e^{-t A} B u(t) d t
$$

Then the controllability property (i) is equivalent to the surjectivity of the mappings

$$
\mathcal{F}^{T}: u \in L^{1}\left([0, T] ; \mathbb{R}^{m}\right) \longmapsto \int_{0}^{T} e^{-t A} B u(t) d t
$$

Proof of (ii) \Rightarrow (i)

If \mathcal{F}^{T} is not onto (for some $T>0$), there is $p \neq 0_{n}$ such that

$$
\left\langle p, \int_{0}^{T} e^{-t A} B u(t) d t\right\rangle=0 \quad \forall u \in L^{1}\left([0, T] ; \mathbb{R}^{m}\right) .
$$

Proof of (ii) \Rightarrow (i)

If \mathcal{F}^{T} is not onto (for some $T>0$), there is $p \neq 0_{n}$ such that

$$
\left\langle p, \int_{0}^{T} e^{-t A} B u(t) d t\right\rangle=0 \quad \forall u \in L^{1}\left([0, T] ; \mathbb{R}^{m}\right)
$$

Using the linearity of $\langle\cdot, \cdot\rangle$ and taking $u(t)=B^{*} e^{-t A^{*}} p$, we infer that

$$
p^{*} e^{-t A} B=0 \quad \forall t \in[0, T] .
$$

Proof of (ii) \Rightarrow (i)

If \mathcal{F}^{T} is not onto (for some $T>0$), there is $p \neq 0_{n}$ such that

$$
\left\langle p, \int_{0}^{T} e^{-t A} B u(t) d t\right\rangle=0 \quad \forall u \in L^{1}\left([0, T] ; \mathbb{R}^{m}\right)
$$

Using the linearity of $\langle\cdot, \cdot\rangle$ and taking $u(t)=B^{*} e^{-t A^{*}} p$, we infer that

$$
p^{*} e^{-t A} B=0 \quad \forall t \in[0, T]
$$

Derivating n times at $t=0$ yields

$$
p^{*} B=p^{*} A B=p^{*} A^{2} B=\cdots=p^{*} A^{n-1} B=0
$$

Proof of $(\mathrm{ii}) \Rightarrow(\mathrm{i})$

If \mathcal{F}^{T} is not onto (for some $T>0$), there is $p \neq 0_{n}$ such that

$$
\left\langle p, \int_{0}^{T} e^{-t A} B u(t) d t\right\rangle=0 \quad \forall u \in L^{1}\left([0, T] ; \mathbb{R}^{m}\right)
$$

Using the linearity of $\langle\cdot, \cdot\rangle$ and taking $u(t)=B^{*} e^{-t A^{*}} p$, we infer that

$$
p^{*} e^{-t A} B=0 \quad \forall t \in[0, T]
$$

Derivating n times at $t=0$ yields

$$
p^{*} B=p^{*} A B=p^{*} A^{2} B=\cdots=p^{*} A^{n-1} B=0
$$

Which means that p is orthogonal to the image of the $n \times m n$ matrix

$$
\left(B, A B, A^{2} B, \cdots, A^{n-1} B\right)
$$

Proof of $(\mathrm{ii}) \Rightarrow(\mathrm{i})$

If \mathcal{F}^{T} is not onto (for some $T>0$), there is $p \neq 0_{n}$ such that

$$
\left\langle p, \int_{0}^{T} e^{-t A} B u(t) d t\right\rangle=0 \quad \forall u \in L^{1}\left([0, T] ; \mathbb{R}^{m}\right)
$$

Using the linearity of $\langle\cdot, \cdot\rangle$ and taking $u(t)=B^{*} e^{-t A^{*}} p$, we infer that

$$
p^{*} e^{-t A} B=0 \quad \forall t \in[0, T]
$$

Derivating n times at $t=0$ yields

$$
p^{*} B=p^{*} A B=p^{*} A^{2} B=\cdots=p^{*} A^{n-1} B=0
$$

Which means that p is orthogonal to the image of the $n \times m n$ matrix

$$
\left(B, A B, A^{2} B, \cdots, A^{n-1} B\right)
$$

Contradiction !!!

Proof of (i) \Rightarrow (ii)

If

$$
\operatorname{rk}\left(B, A B, A^{2} B, \cdots, A^{n-1} B\right)<n,
$$

there is a nonzero vector p such that

$$
p^{*} B=p^{*} A B=p^{*} A^{2} B=\cdots=p^{*} A^{n-1} B=0 .
$$

Proof of (i) \Rightarrow (ii)

If

$$
\operatorname{rk}\left(B, A B, A^{2} B, \cdots, A^{n-1} B\right)<n,
$$

there is a nonzero vector p such that

$$
p^{*} B=p^{*} A B=p^{*} A^{2} B=\cdots=p^{*} A^{n-1} B=0 .
$$

By the Cayley-Hamilton Theorem, we deduce that

$$
p^{*} A^{k} B=0 \quad \forall k \geq 1,
$$

Proof of (i) \Rightarrow (ii)

If

$$
\mathrm{rk}\left(B, A B, A^{2} B, \cdots, A^{n-1} B\right)<n,
$$

there is a nonzero vector p such that

$$
p^{*} B=p^{*} A B=p^{*} A^{2} B=\cdots=p^{*} A^{n-1} B=0 .
$$

By the Cayley-Hamilton Theorem, we deduce that

$$
p^{*} A^{k} B=0 \quad \forall k \geq 1,
$$

and in turn

$$
p^{*} e^{-t A} B=0 \quad \forall t \geq 0 .
$$

Proof of (i) \Rightarrow (ii)

If

$$
\mathrm{rk}\left(B, A B, A^{2} B, \cdots, A^{n-1} B\right)<n,
$$

there is a nonzero vector p such that

$$
p^{*} B=p^{*} A B=p^{*} A^{2} B=\cdots=p^{*} A^{n-1} B=0 .
$$

By the Cayley-Hamilton Theorem, we deduce that

$$
p^{*} A^{k} B=0 \quad \forall k \geq 1,
$$

and in turn

$$
p^{*} e^{-t A} B=0 \quad \forall t \geq 0 .
$$

We infer that

$$
\left\langle p, \int_{0}^{T} e^{-t A} B u(t) d t\right\rangle=0 \quad \forall u \in L^{1}\left([0, T] ; \mathbb{R}^{m}\right), \forall T>0 .
$$

Proof of (i) \Rightarrow (ii)

If

$$
\mathrm{rk}\left(B, A B, A^{2} B, \cdots, A^{n-1} B\right)<n,
$$

there is a nonzero vector p such that

$$
p^{*} B=p^{*} A B=p^{*} A^{2} B=\cdots=p^{*} A^{n-1} B=0 .
$$

By the Cayley-Hamilton Theorem, we deduce that

$$
p^{*} A^{k} B=0 \quad \forall k \geq 1,
$$

and in turn

$$
p^{*} e^{-t A} B=0 \quad \forall t \geq 0 .
$$

We infer that
$\left\langle p, \int_{0}^{T} e^{-t A} B u(t) d t\right\rangle=0 \quad \forall u \in L^{1}\left([0, T] ; \mathbb{R}^{m}\right), \forall T>0$.
Contradiction !!!

Application to local controllability

Let $\dot{x}=f(x, u)$ be a nonlinear control system with $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}$ and $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ of class C^{1}.

Theorem

Assume that $f\left(x_{0}, 0\right)=0$ and that the pair

$$
A=\frac{\partial f}{\partial x}\left(x_{0}, 0\right), \quad B=\frac{\partial f}{\partial u}\left(x_{0}, 0\right)
$$

satisfies the Kalman rank condition. Then for there is $\delta>0$ such that for any x_{1}, x_{2} with $\left|x_{1}-x_{0}\right|,\left|x_{2}-x_{0}\right|<\delta$, there is $u:[0,1] \rightarrow \mathbb{R}^{m}$ smooth satisfying

$$
x\left(1 ; x_{1}, u\right)=x_{2}
$$

Local controllability around x_{0}

Proof of the Theorem

Define $\mathcal{G}: \mathbb{R}^{n} \times L^{1}\left([0,1] ; \mathbb{R}^{m}\right) \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$ by

$$
\mathcal{G}(x, u):=(x, x(1 ; x, u))
$$

Proof of the Theorem

Define $\mathcal{G}: \mathbb{R}^{n} \times L^{1}\left([0,1] ; \mathbb{R}^{m}\right) \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$ by

$$
\mathcal{G}(x, u):=(x, x(1 ; x, u))
$$

The mapping \mathcal{G} is a C^{1} submersion at $(0,0)$.

Proof of the Theorem

Define $\mathcal{G}: \mathbb{R}^{n} \times L^{1}\left([0,1] ; \mathbb{R}^{m}\right) \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$ by

$$
\mathcal{G}(x, u):=(x, x(1 ; x, u))
$$

The mapping \mathcal{G} is a C^{1} submersion at $(0,0)$. Thus there are n controls u^{1}, \cdots, u^{n} in $L^{1}\left([0,1] ; \mathbb{R}^{m}\right)$ such that

$$
\begin{aligned}
\tilde{\mathcal{G}}: \mathbb{R}^{n} \times \mathbb{R}^{n} & \longrightarrow \mathbb{R}^{n} \times \mathbb{R}^{n} \\
(x, \lambda) & \longmapsto \mathcal{G}\left(x, \sum_{i=k}^{n} \lambda_{k} u^{k}\right)
\end{aligned}
$$

is a C^{1} diffeomorphism at $(0,0)$.

Proof of the Theorem

Define $\mathcal{G}: \mathbb{R}^{n} \times L^{1}\left([0,1] ; \mathbb{R}^{m}\right) \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$ by

$$
\mathcal{G}(x, u):=(x, x(1 ; x, u))
$$

The mapping \mathcal{G} is a C^{1} submersion at $(0,0)$. Thus there are n controls u^{1}, \cdots, u^{n} in $L^{1}\left([0,1] ; \mathbb{R}^{m}\right)$ such that

$$
\begin{aligned}
\tilde{\mathcal{G}}: \mathbb{R}^{n} \times \mathbb{R}^{n} & \longrightarrow \mathbb{R}^{n} \times \mathbb{R}^{n} \\
(x, \lambda) & \longmapsto \mathcal{G}\left(x, \sum_{i=k}^{n} \lambda_{k} u^{k}\right)
\end{aligned}
$$

is a C^{1} diffeomorphism at $(0,0)$. Since the set of smooth controls is dense in $L^{1}\left([0,1] ; \mathbb{R}^{m}\right)$, we can take u^{1}, \ldots, u^{n} to be smooth.

Proof of the Theorem

Define $\mathcal{G}: \mathbb{R}^{n} \times L^{1}\left([0,1] ; \mathbb{R}^{m}\right) \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$ by

$$
\mathcal{G}(x, u):=(x, x(1 ; x, u))
$$

The mapping \mathcal{G} is a C^{1} submersion at $(0,0)$. Thus there are n controls u^{1}, \cdots, u^{n} in $L^{1}\left([0,1] ; \mathbb{R}^{m}\right)$ such that

$$
\begin{aligned}
\tilde{\mathcal{G}}: \mathbb{R}^{n} \times \mathbb{R}^{n} & \longrightarrow \mathbb{R}^{n} \times \mathbb{R}^{n} \\
(x, \lambda) & \longmapsto \mathcal{G}\left(x, \sum_{i=k}^{n} \lambda_{k} u^{k}\right)
\end{aligned}
$$

is a C^{1} diffeomorphism at $(0,0)$. Since the set of smooth controls is dense in $L^{1}\left([0,1] ; \mathbb{R}^{m}\right)$, we can take u^{1}, \ldots, u^{n} to be smooth. We apply the Inverse Function Theorem.

Back to the inverted pendulum

The equations of motion are given by

$$
\begin{aligned}
(M+m) \ddot{x}+m \ell \ddot{\theta} \cos \theta-m \ell \dot{\theta}^{2} \sin \theta & =u \\
m \ell^{2} \ddot{\theta}-m g \ell \sin \theta+m \ell \ddot{x} \cos \theta & =0
\end{aligned}
$$

Back to the inverted pendulum

The linearized control system at $x=\dot{x}=\theta=\dot{\theta}=0$ is given by

$$
\begin{aligned}
(M+m) \ddot{x}+m \ell \ddot{\theta} & =u \\
2 \ddot{\theta}-m g \ell \theta+m \ell \ddot{x} & =0 .
\end{aligned}
$$

Back to the inverted pendulum

The linearized control system at $x=\dot{x}=\theta=\dot{\theta}=0$ is given by

$$
\begin{aligned}
(M+m) \ddot{x}+m \ell \ddot{\theta} & =u \\
m \ell^{2} \ddot{\theta}-m g \ell \theta+m \ell \ddot{x} & =0 .
\end{aligned}
$$

It can be written as a control system

$$
\dot{\xi}=A \xi+B u,
$$

with $\xi=(x, \dot{x}, \theta, \dot{\theta})$,

$$
A=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & -\frac{m g}{M} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \frac{(M+m) g}{M \ell} & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{c}
0 \\
\frac{1}{M} \\
0 \\
-\frac{1}{M \ell}
\end{array}\right) \text {. }
$$

Back to the inverted pendulum

The Kalman matrix $\left(B, A B, A^{2}, A^{3} B\right)$ equals

$$
\left(\begin{array}{cccc}
0 & \frac{1}{M} & 0 & \frac{m g}{M^{2} \ell} \\
\frac{1}{M} & 0 & \frac{m g}{M^{2} \ell} & 0 \\
0 & -\frac{1}{M \ell} & 0 & -\frac{(M+m) g}{M^{2} \ell^{2}} \\
-\frac{1}{M \ell} & 0 & -\frac{(M+m) g}{M^{2} \ell^{2}} & 0
\end{array}\right) .
$$

Back to the inverted pendulum

The Kalman matrix $\left(B, A B, A^{2}, A^{3} B\right)$ equals

$$
\left(\begin{array}{cccc}
0 & \frac{1}{M} & 0 & \frac{m g}{M^{2} \ell} \\
\frac{1}{M} & 0 & \frac{m g}{M^{2} \ell} & 0 \\
0 & -\frac{1}{M \ell} & 0 & -\frac{(M+m) g}{M^{2} \ell^{2}} \\
-\frac{1}{M \ell} & 0 & -\frac{(M+m) g}{M^{2} \ell^{2}} & 0
\end{array}\right) .
$$

Its determinant equals

$$
-\frac{g^{2}}{M^{4} \ell^{4}}<0
$$

Back to the inverted pendulum

The Kalman matrix $\left(B, A B, A^{2}, A^{3} B\right)$ equals

$$
\left(\begin{array}{cccc}
0 & \frac{1}{M} & 0 & \frac{m g}{M^{2} \ell} \\
\frac{1}{M} & 0 & \frac{m g}{M^{2} \ell} & 0 \\
0 & -\frac{1}{M \ell} & 0 & -\frac{(M+m) g}{M^{2} \ell^{2}} \\
-\frac{1}{M \ell} & 0 & -\frac{(M+m) g}{M^{2} \ell^{2}} & 0
\end{array}\right) .
$$

Its determinant equals

$$
-\frac{g^{2}}{M^{4} \ell^{4}}<0
$$

In conclusion, the inverted pendulum is locally controllable around $(0,0,0,0)^{*}$.

Movie

The Chow-Rashevsky Theorem

Theorem (Chow 1939, Rashevsky 1938)

Let M be a smooth manifold and X^{1}, \cdots, X^{m} be m smooth vector fields on M. Assume that

$$
\operatorname{Lie}\left\{X^{1}, \ldots, X^{m}\right\}(x)=T_{x} M \quad \forall x \in M
$$

Then the control system

$$
\dot{x}=\sum_{i=1}^{m} u_{i} X^{i}(x)
$$

is locally controllable in any time at every point of M.

Comment I

The local controllability in any time at every point means that for every $x_{0} \in M$, every $T>0$ and every neighborhood U of x_{0}, there is a neighborhood $V \subset U$ of x_{0} such that for any $x_{1}, x_{2} \in V$, there is a control $u \in L^{1}\left([0, T] ; \mathbb{R}^{m}\right)$ such that the trajectory $x\left(\cdot ; x_{1}, u\right):[0, T] \rightarrow M$ remains in U and steers x_{1} to x_{2}, i.e. $x\left(T ; x_{1}, u\right)=x_{2}$.

Comment I

The local controllability in any time at every point means that for every $x_{0} \in M$, every $T>0$ and every neighborhood U of x_{0}, there is a neighborhood $V \subset U$ of x_{0} such that for any $x_{1}, x_{2} \in V$, there is a control $u \in L^{1}\left([0, T] ; \mathbb{R}^{m}\right)$ such that the trajectory $x\left(\cdot ; x_{1}, u\right):[0, T] \rightarrow M$ remains in U and steers x_{1} to x_{2}, i.e. $x\left(T ; x_{1}, u\right)=x_{2}$.

Local controllability in time $T>0$
\Rightarrow Local controllability in time $T^{\prime}>0, \quad \forall T^{\prime}>0$

Comment II

If M is connected then
Local controllability \Rightarrow Global controllability
Let $x \in M$ be fixed. Denote by $\mathcal{A}(x)$ the accessible set from x, that is

$$
\begin{aligned}
\mathcal{A}(x) & :=\left\{x(T ; x, u) \mid T \geq 0, u \in L^{1}\right\} \\
& =\left\{x(1 ; x, u) \mid u \in L^{1}\right\}
\end{aligned}
$$

Comment II

If M is connected then
Local controllability \Rightarrow Global controllability
Let $x \in M$ be fixed. Denote by $\mathcal{A}(x)$ the accessible set from x, that is

$$
\begin{aligned}
\mathcal{A}(x) & :=\left\{x(T ; x, u) \mid T \geq 0, u \in L^{1}\right\} \\
& =\left\{x(1 ; x, u) \mid u \in L^{1}\right\}
\end{aligned}
$$

- By local controllability, $\mathcal{A}(x)$ is open.

Comment II

If M is connected then

Local controllability \Rightarrow Global controllability

Let $x \in M$ be fixed. Denote by $\mathcal{A}(x)$ the accessible set from x, that is

$$
\begin{aligned}
\mathcal{A}(x) & :=\left\{x(T ; x, u) \mid T \geq 0, u \in L^{1}\right\} \\
& =\left\{x(1 ; x, u) \mid u \in L^{1}\right\}
\end{aligned}
$$

- By local controllability, $\mathcal{A}(x)$ is open.
- Let y be in the closure of $\mathcal{A}(x)$. The set $\mathcal{A}(y)$ contains a small ball centered at y and there are points of $\mathcal{A}(x)$ in that ball. Then $\mathcal{A}(x)$ is closed.

Comment II

If M is connected then
Local controllability \Rightarrow Global controllability
Let $x \in M$ be fixed. Denote by $\mathcal{A}(x)$ the accessible set from x, that is

$$
\begin{aligned}
\mathcal{A}(x) & :=\left\{x(T ; x, u) \mid T \geq 0, u \in L^{1}\right\} \\
& =\left\{x(1 ; x, u) \mid u \in L^{1}\right\}
\end{aligned}
$$

- By local controllability, $\mathcal{A}(x)$ is open.
- Let y be in the closure of $\mathcal{A}(x)$. The set $\mathcal{A}(y)$ contains a small ball centered at y and there are points of $\mathcal{A}(x)$ in that ball. Then $\mathcal{A}(x)$ is closed.
By connectedness of M, we infer that $\mathcal{A}(x)=M$ for every $x \in M$, and in turn that the control system is globally controllable in any time.

The Chow-Rashevsky Theorem

Theorem (Chow 1939, Rashevsky 1938)

Let M be a smooth manifold and X^{1}, \cdots, X^{m} be m smooth vector fields on M. Assume that

$$
\operatorname{Lie}\left\{X^{1}, \ldots, X^{m}\right\}(x)=T_{x} M \quad \forall x \in M .
$$

Then the control system $\dot{x}=\sum_{i=1}^{m} u_{i} X^{i}(x)$ is locally controllable in any time at every point of M.

The condition in red is called Hörmander's condition or bracket generating condition. Families of vector fields satisfying that condition are called nonholonomic, completely nonholonomic, or totally nonholonomic.

Comment III

Definition

Given two smooth vector fields X, Y on \mathbb{R}^{n}, the Lie bracket [$X, Y]$ at $x \in \mathbb{R}^{n}$ is defined by

$$
[X, Y](x)=D Y(x) X(x)-D X(x) Y(x) .
$$

The Lie brackets of two smooth vector fields on M can be defined in charts with the above formula.

Comment III

Definition

Given two smooth vector fields X, Y on \mathbb{R}^{n}, the Lie bracket $[X, Y]$ at $x \in \mathbb{R}^{n}$ is defined by

$$
[X, Y](x)=D Y(x) X(x)-D X(x) Y(x) .
$$

The Lie brackets of two smooth vector fields on M can be defined in charts with the above formula.

Given a family \mathcal{F} of smooth vector fields on M, we denote by $\operatorname{Lie}\{\mathcal{F}\}$ the Lie algebra generated by \mathcal{F}. It is the smallest vector subspace S of smooth vector fields containing \mathcal{F} that also satisfies

$$
[X, Y] \in S \quad \forall X \in \mathcal{F}, \forall Y \in S .
$$

Comment III

(

Comment III

Comment III

		T				T			\square	\square	\square										\square						
																				1							
																					,						
						- ${ }^{t}$				$t \times($	$x)$																
																									(x)		
						x																					

Comment III

Comment III

	T	T	\square	\square	\square		T	\square	\square	T	T	\square	\square	\square		\square	T	\square	T ${ }^{\text {d }}$	T			\square
																			$e^{t X}$	(x)			
																	1						
																	,						
								$e^{t X}$	(x)														
									-														
									-														
				\downarrow e	$e^{-t Y}$		e	$e^{-t X}$	$\bigcirc e^{t}$		o e^{t}								$e^{t X}$				
																			$e^{t X}$	(x)			
				\checkmark																			
					x																		

Comment III

Exercise

We have

$$
[X, Y](x)=\lim _{t \downarrow 0} \frac{\left(e^{-t Y} \circ e^{-t X} \circ e^{t Y} \circ e^{t X}\right)(x)-x}{t^{2}} .
$$

Comment III

Given a family \mathcal{F} of smooth vector fields on M, we set $\operatorname{Lie}^{1}(\mathcal{F}):=\operatorname{Span}(\mathcal{F})$, and define recursively $\mathrm{Lie}^{k}(\mathcal{F})$
($k=2,3, \ldots$) by
$\operatorname{Lie}^{k+1}(\mathcal{F}):=\operatorname{Span}\left(\operatorname{Lie}^{k}(\mathcal{F}) \cup\left\{[X, Y] \mid X \in \mathcal{F}, Y \in \operatorname{Lie}^{k}(\mathcal{F})\right\}\right)$.
We have

$$
\operatorname{Lie}\{\mathcal{F}\}=\bigcup_{k \geq 1} \operatorname{Lie}^{k}(\mathcal{F}) .
$$

Comment III

Given a family \mathcal{F} of smooth vector fields on M, we set $\operatorname{Lie}^{1}(\mathcal{F}):=\operatorname{Span}(\mathcal{F})$, and define recursively $\mathrm{Lie}^{k}(\mathcal{F})$
($k=2,3, \ldots$) by

$$
\operatorname{Lie}^{k+1}(\mathcal{F}):=\operatorname{Span}\left(\operatorname{Lie}^{k}(\mathcal{F}) \cup\left\{[X, Y] \mid X \in \mathcal{F}, Y \in \operatorname{Lie}^{k}(\mathcal{F})\right\}\right) .
$$

We have

$$
\operatorname{Lie}\{\mathcal{F}\}=\bigcup_{k \geq 1} \operatorname{Lie}^{k}(\mathcal{F}) .
$$

For example, the Lie algebra $\operatorname{Lie}\left\{X^{1}, \ldots, X^{m}\right\}$ is the vector subspace of smooth vector fields which is spanned by all the brackets (made from X^{1}, \ldots, X^{m}) of length $1,2,3, \ldots$.

Comment III

Given a family \mathcal{F} of smooth vector fields on M, we set $\operatorname{Lie}^{1}(\mathcal{F}):=\operatorname{Span}(\mathcal{F})$, and define recursively $\mathrm{Lie}^{k}(\mathcal{F})$
($k=2,3, \ldots$) by

$$
\operatorname{Lie}^{k+1}(\mathcal{F}):=\operatorname{Span}\left(\operatorname{Lie}^{k}(\mathcal{F}) \cup\left\{[X, Y] \mid X \in \mathcal{F}, Y \in \operatorname{Lie}^{k}(\mathcal{F})\right\}\right) .
$$

We have

$$
\operatorname{Lie}\{\mathcal{F}\}=\bigcup_{k \geq 1} \operatorname{Lie}^{k}(\mathcal{F}) .
$$

For example, the Lie algebra $\operatorname{Lie}\left\{X^{1}, \ldots, X^{m}\right\}$ is the vector subspace of smooth vector fields which is spanned by all the brackets (made from X^{1}, \ldots, X^{m}) of length $1,2,3, \ldots$. Since M has finite dimension, for every $x \in M$, there is $r=r(x) \geq 1$ (called degree of nonholonomy at x) such that

$$
T_{x} M \supset \operatorname{Lie}\left\{X^{1}, \ldots, X^{m}\right\}(x)=\operatorname{Lie}^{r}\left\{X^{1}, \ldots, X^{m}\right\}(x) .
$$

Comment IV

We can prove the Chow-Rashevsky Theorem in the contact case in \mathbb{R}^{3} as follows:

Exercise

Let X^{1}, X^{2} be two smooth vector fields in \mathbb{R}^{3} such that

$$
\operatorname{Span}\left\{X^{1}(0), X^{2}(0),\left[X^{1}, X^{2}\right](0)\right\}=\mathbb{R}^{3}
$$

Then the mapping $\varphi_{\lambda}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
\varphi_{\lambda}\left(t_{1}, t_{2}, t_{3}\right)=e^{\lambda X^{1}} \circ e^{t_{3} X^{2}} \circ e^{-\lambda X^{1}} \circ e^{t_{2} X^{2}} \circ e^{t_{1} X^{1}}(0)
$$

is a local diffeomorphism at the origin for $\lambda>0$ small.

Comment IV

We can prove the Chow-Rashevsky Theorem in the contact case in \mathbb{R}^{3} as follows:

Exercise

Let X^{1}, X^{2} be two smooth vector fields in \mathbb{R}^{3} such that

$$
\operatorname{Span}\left\{X^{1}(0), X^{2}(0),\left[X^{1}, X^{2}\right](0)\right\}=\mathbb{R}^{3}
$$

Then the mapping $\varphi_{\lambda}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
\varphi_{\lambda}\left(t_{1}, t_{2}, t_{3}\right)=e^{\lambda X^{1}} \circ e^{t_{3} X^{2}} \circ e^{-\lambda X^{1}} \circ e^{t_{2} X^{2}} \circ e^{t_{1} X^{1}}(0)
$$

is a local diffeomorphism at the origin for $\lambda>0$ small.
\rightsquigarrow Ball-Box Theorem

The End-Point mapping

Given a control system of the form

$$
\dot{x}=\sum_{i=1}^{m} u_{i} X^{i}(x) \quad\left(x \in M, u \in \mathbb{R}^{m}\right)
$$

we define the End-Point mapping from x in time $T>0$ as

$$
\begin{aligned}
E^{x, T}: L^{2}\left([0, T] ; \mathbb{R}^{m}\right) & \longrightarrow M \\
u & \longmapsto x(T ; x, u)
\end{aligned}
$$

The End-Point mapping

Given a control system of the form

$$
\dot{x}=\sum_{i=1}^{m} u_{i} X^{i}(x) \quad\left(x \in M, u \in \mathbb{R}^{m}\right)
$$

we define the End-Point mapping from x in time $T>0$ as

$$
\begin{aligned}
E^{x, T}: L^{2}\left([0, T] ; \mathbb{R}^{m}\right) & \longrightarrow M \\
u & \longmapsto x(T ; x, u)
\end{aligned}
$$

Proposition

The mapping $E^{x, T}$ is of class C^{1} (on its domain) and

$$
\begin{gathered}
D_{u} E^{x, T}(v)=\xi(T), \quad \text { where } \\
\dot{\xi}=\left(\sum_{i=1}^{m} u_{i} D_{x_{u}} X^{i}\right) \cdot \xi+\sum_{i=1}^{m} v_{i} X^{i}\left(x_{u}\right), \quad \xi(0)=0 .
\end{gathered}
$$

Linearized control system

Remark

Setting for every $t \in[0, T], A_{u}(t):=\sum_{i=1}^{m} u_{i}(t) D_{x_{u}(t)} X^{i}$, we have

$$
D_{u} E^{x, T}(v)=S_{u}(T) \int_{0}^{T} S_{u}(t)^{-1} \sum_{i=1}^{m} v_{i}(t) X^{i}\left(x_{u}(t)\right) d t
$$

with S_{u} solution of $\dot{S}_{u}=A_{u} S_{u}$ a.e. $t \in[0, T], S_{u}(0)=I_{n}$.

Linearized control system

Remark

Setting for every $t \in[0, T], A_{u}(t):=\sum_{i=1}^{m} u_{i}(t) D_{x_{\mu}(t)} X^{i}$, we have

$$
D_{u} E^{x, T}(v)=S_{u}(T) \int_{0}^{T} S_{u}(t)^{-1} \sum_{i=1}^{m} v_{i}(t) X^{i}\left(x_{u}(t)\right) d t
$$

with S_{u} solution of $\dot{S}_{u}=A_{u} S_{u}$ a.e. $t \in[0, T], S_{u}(0)=I_{n}$.

Proposition

For every $u \in L^{2}\left([0, T] ; \mathbb{R}^{m}\right)$ and any $i=1, \ldots, m$, we have

$$
X^{i}\left(E^{\chi, T}(u)\right) \in D_{u} E^{x, T}\left(L^{2}\left([0, T] ; \mathbb{R}^{m}\right)\right)
$$

Regular controls vs. Singular controls

Definition

A control $u \in L^{2}\left([0, T] ; \mathbb{R}^{m}\right)$ is called regular with respect to $E^{x, T}$ if $E^{x, T}$ is a submersion at u. If not, u is called singular.

Regular controls vs. Singular controls

Definition

A control $u \in L^{2}\left([0, T] ; \mathbb{R}^{m}\right)$ is called regular with respect to $E^{x, T}$ if $E^{x, T}$ is a submersion at u. If not, u is called singular.

Exercise

The concatenations $u^{1} * u^{2}$ and $u^{2} * u^{1}$ of a regular control u^{1} with another control u^{2} are regular.

Rank of a control

Definition

The rank of a control $u \in L^{2}\left([0, T] ; \mathbb{R}^{m}\right)$ (with respect to $\left.E^{x, T}\right)$ is defined as the dimension of the image of the linear mapping $D_{u} E^{x, T}$. We denote it by $\operatorname{rank}^{x, T}(u)$.

Rank of a control

Definition

The rank of a control $u \in L^{2}\left([0, T] ; \mathbb{R}^{m}\right)$ (with respect to $\left.E^{x, T}\right)$ is defined as the dimension of the image of the linear mapping $D_{u} E^{x, T}$. We denote it by $\operatorname{rank}^{x, T}(u)$.

Exercise

The following properties hold:

- $\operatorname{rank}^{x, T_{1}+T_{2}}\left(u^{1} * u^{2}\right) \geq \max \left\{\operatorname{rank}^{\chi, T_{1}}\left(u^{1}\right), \operatorname{rank}^{y, T_{2}}\left(u^{2}\right)\right\}$.
- $\operatorname{rank}^{y, T_{1}}\left(\check{u}^{1}\right)=\operatorname{rank}^{x, T_{1}}\left(u^{1}\right)$.

Openness: Statement

The Chow-Rashevsky will follow from the following result:

Proposition

Let M be a smooth manifold and X^{1}, \cdots, X^{m} be m smooth vector fields on M. Assume that

$$
\operatorname{Lie}\left\{X^{1}, \ldots, X^{m}\right\}(x)=T_{x} M \quad \forall x \in M
$$

Then, for every $x \in M$ and every $T>0$, the End-Point mapping

$$
\begin{aligned}
E^{x, T}: L^{2}\left([0, T] ; \mathbb{R}^{m}\right) & \longrightarrow M \\
u & \longmapsto x(T ; x, u)
\end{aligned}
$$

is open (on its domain).

Openness: Sketch of proof

Let $x \in M$ and $T>0$ be fixed. Set for every $\epsilon>0$,

$$
d(\epsilon)=\max \left\{\operatorname{rank}^{x, \epsilon}(u) \mid\|u\|_{L^{2}}<\epsilon\right\} .
$$

Openness: Sketch of proof

Let $x \in M$ and $T>0$ be fixed. Set for every $\epsilon>0$,

$$
d(\epsilon)=\max \left\{\operatorname{rank}^{x, \epsilon}(u) \mid\|u\|_{L^{2}}<\epsilon\right\} .
$$

Claim: $d(\epsilon)=n \quad \forall \epsilon>0$.

Openness: Sketch of proof

Let $x \in M$ and $T>0$ be fixed. Set for every $\epsilon>0$,

$$
d(\epsilon)=\max \left\{\operatorname{rank}^{x, \epsilon}(u) \mid\|u\|_{L^{2}}<\epsilon\right\} .
$$

Claim: $d(\epsilon)=n \quad \forall \epsilon>0$.
If not, we have $d(\epsilon)=d_{0} \in\{1, \ldots, n-1\}$ for some $\epsilon>0$.
Given u^{ϵ} s.t. $\operatorname{rank}^{x, \epsilon}\left(u^{\epsilon}\right)=d_{0}$, there are d_{0} controls $v^{1}, \ldots, v^{d_{0}}$ such that the mapping

$$
\mathcal{E}: \lambda=\left(\lambda^{1}, \ldots, \lambda^{d_{0}}\right) \in \mathbb{R}^{d_{0}} \mapsto E^{x, \epsilon}\left(u^{\epsilon}+\sum_{j=1}^{d_{0}} \lambda^{j} v^{j}\right)
$$

is an immersion near 0 .

Openness: Sketch of proof

Let $x \in M$ and $T>0$ be fixed. Set for every $\epsilon>0$,

$$
d(\epsilon)=\max \left\{\operatorname{rank}^{x, \epsilon}(u) \mid\|u\|_{L^{2}}<\epsilon\right\} .
$$

Claim: $d(\epsilon)=n \quad \forall \epsilon>0$.
If not, we have $d(\epsilon)=d_{0} \in\{1, \ldots, n-1\}$ for some $\epsilon>0$.
Given u^{ϵ} s.t. $\operatorname{rank}^{\chi, \epsilon}\left(u^{\epsilon}\right)=d_{0}$, there are d_{0} controls $v^{1}, \ldots, v^{d_{0}}$ such that the mapping

$$
\mathcal{E}: \lambda=\left(\lambda^{1}, \ldots, \lambda^{d_{0}}\right) \in \mathbb{R}^{d_{0}} \mapsto E^{x, \epsilon}\left(u^{\epsilon}+\sum_{j=1}^{d_{0}} \lambda^{j} v^{j}\right)
$$

is an immersion near 0 . Thus, its local image N is a d_{0} dimensional submanifold of M of class C^{1} such that

$$
X^{i}(\mathcal{E}(\lambda)) \in \operatorname{Im}\left(D_{\lambda} \mathcal{E}\right)=T_{y} N .
$$

Openness: Sketch of proof

Let $x \in M$ and $T>0$ be fixed. Set for every $\epsilon>0$,

$$
d(\epsilon)=\max \left\{\operatorname{rank}^{x, \epsilon}(u) \mid\|u\|_{L^{2}}<\epsilon\right\} .
$$

Claim: $d(\epsilon)=n \quad \forall \epsilon>0$.
If not, we have $d(\epsilon)=d_{0} \in\{1, \ldots, n-1\}$ for some $\epsilon>0$.
Given u^{ϵ} s.t. $\operatorname{rank}^{\chi, \epsilon}\left(u^{\epsilon}\right)=d_{0}$, there are d_{0} controls $v^{1}, \ldots, v^{d_{0}}$ such that the mapping

$$
\mathcal{E}: \lambda=\left(\lambda^{1}, \ldots, \lambda^{d_{0}}\right) \in \mathbb{R}^{d_{0}} \mapsto E^{x, \epsilon}\left(u^{\epsilon}+\sum_{j=1}^{d_{0}} \lambda^{j} v^{j}\right)
$$

is an immersion near 0 . Thus, its local image N is a d_{0} dimensional submanifold of M of class C^{1} such that

$$
X^{i}(\mathcal{E}(\lambda)) \in \operatorname{Im}\left(D_{\lambda} \mathcal{E}\right)=T_{y} N .
$$

Contradiction!!!

Openness: Sketch of proof (the return method)

To conclude, we pick (for any $\epsilon>0$ small) a regular control u^{ϵ} in $L^{2}\left([0, \epsilon] ; \mathbb{R}^{m}\right)$ and define $\tilde{u} \in L^{2}\left([0, T+2 \epsilon] ; \mathbb{R}^{m}\right)$ by

$$
\tilde{u}:=u^{\epsilon} * \check{u}^{\epsilon} * u .
$$

Up to reparametrizing u into a control v on $[0, T-2 \epsilon]$, the new control $\tilde{v}=u^{\epsilon} * \check{u}^{\epsilon} * v$ is regular, close to u in L^{2} provided $\epsilon>0$ is small, and steers x to $E^{x, T}(u)$.

Openness: Sketch of proof (the return method)

To conclude, we pick (for any $\epsilon>0$ small) a regular control u^{ϵ} in $L^{2}\left([0, \epsilon] ; \mathbb{R}^{m}\right)$ and define $\tilde{u} \in L^{2}\left([0, T+2 \epsilon] ; \mathbb{R}^{m}\right)$ by

$$
\tilde{u}:=u^{\epsilon} * \check{u}^{\epsilon} * u .
$$

Up to reparametrizing u into a control v on $[0, T-2 \epsilon]$, the new control $\tilde{v}=u^{\epsilon} * \check{u}^{\epsilon} * v$ is regular, close to u in L^{2} provided $\epsilon>0$ is small, and steers x to $E^{x, T}(u)$.
The openness follows from the Inverse Function Theorem.

Remarks

Proposition

Let M be a smooth manifold and X^{1}, \cdots, X^{m} be m smooth vector fields on M. Assume that

$$
\operatorname{Lie}\left\{X^{1}, \ldots, X^{m}\right\}(x)=T_{x} M \quad \forall x \in M
$$

Then, for every $x \in M$ and every $T>0$, the set of controls which are regular w.r.t. $E^{x, T}$ is open and dense in L^{2}.

Remarks

Proposition

Let M be a smooth manifold and X^{1}, \cdots, X^{m} be m smooth vector fields on M. Assume that

$$
\operatorname{Lie}\left\{X^{1}, \ldots, X^{m}\right\}(x)=T_{x} M \quad \forall x \in M
$$

Then, for every $x \in M$ and every $T>0$, the set of controls which are regular w.r.t. $E^{x, T}$ is open and dense in L^{2}.

The above result holds indeed in the smooth topology.

Proposition (Sontag)

Under the same assumptions, the set of controls which are regular w.r.t. $E^{x, T}$ is open and dense in C^{∞}.

Example: The baby stroller

$$
\left\{\begin{array}{l}
\dot{x}=u_{1} \cos \theta \\
\dot{y}=u_{1} \sin \theta \\
\dot{\theta}=u_{2}
\end{array}\right.
$$

Example: The baby stroller

$$
\left\{\begin{array}{l}
\dot{x}=u_{1} \cos \theta \\
\dot{y}=u_{1} \sin \theta \\
\dot{\theta}=u_{2}
\end{array}\right.
$$

$$
X=\left(\begin{array}{c}
\cos \theta \\
\sin \theta \\
0
\end{array}\right), \quad Y=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \quad[X, Y]=\left(\begin{array}{c}
-\sin \theta \\
\cos \theta \\
0
\end{array}\right)
$$

Example: The baby stroller

$$
\left\{\begin{array}{l}
\dot{x}=u_{1} \cos \theta \\
\dot{y}=u_{1} \sin \theta \\
\dot{\theta}=u_{2}
\end{array}\right.
$$

$X=\left(\begin{array}{c}\cos \theta \\ \sin \theta \\ 0\end{array}\right), \quad Y=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right), \quad[X, Y]=\left(\begin{array}{c}-\sin \theta \\ \cos \theta \\ 0\end{array}\right)$
$\operatorname{Span}\{X(\xi), Y(\xi),[X, Y](\xi)\}=\mathbb{R}^{3} \quad \forall \xi=(x, y, \theta)$.

Example: The baby stroller

Example: The baby stroller

Thank you for your attention !!

Lecture 2

Sub-Riemannian geodesics

Sub-Riemannian structures

Let M be a smooth connected manifold of dimension $n \geq 2$.

Sub-Riemannian structures

Let M be a smooth connected manifold of dimension $n \geq 2$.

Definition

A sub-Riemannian structure on M is a pair (Δ, g) where:

- Δ is a totally nonholonomic distribution of rank $m \in[2, n]$, that is it is defined locally as

$$
\Delta(x)=\operatorname{Span}\left\{X^{1}(x), \ldots, X^{m}(x)\right\} \subset T_{x} M
$$

where X^{1}, \ldots, X^{m} are m linearly independent vector fields satisfying the Hörmander condition.

- g_{x} is a scalar product on $\Delta(x)$.

Sub-Riemannian structures

Remark

- In general Δ does not admit a global frame. However we can always construct $k=m \cdot(n+1)$ smooth vector fields Y^{1}, \ldots, Y^{k} such that

$$
\Delta(x)=\operatorname{Span}\left\{Y^{1}(x), \ldots, Y^{k}(x)\right\} \quad \forall x \in M
$$

Sub-Riemannian structures

Remark

- In general Δ does not admit a global frame. However we can always construct $k=m \cdot(n+1)$ smooth vector fields Y^{1}, \ldots, Y^{k} such that

$$
\Delta(x)=\operatorname{Span}\left\{Y^{1}(x), \ldots, Y^{k}(x)\right\} \quad \forall x \in M
$$

- If (M, g) is a Riemannian manifold, then any totally nonholomic distribution Δ gives rise to a $S R$ structure (Δ, g) on M.

Sub-Riemannian structures

Remark

- In general Δ does not admit a global frame. However we can always construct $k=m \cdot(n+1)$ smooth vector fields Y^{1}, \ldots, Y^{k} such that

$$
\Delta(x)=\operatorname{Span}\left\{Y^{1}(x), \ldots, Y^{k}(x)\right\} \quad \forall x \in M
$$

- If (M, g) is a Riemannian manifold, then any totally nonholomic distribution Δ gives rise to a $S R$ structure (Δ, g) on M.

Example (Heisenberg)

Take in $\mathbb{R}^{3}, \Delta=\operatorname{Span}\left\{X^{1}, X^{2}\right\}$ with

$$
X^{1}=\partial_{x}-\frac{y}{2} \partial_{z}, \quad X^{2}=\partial_{y}+\frac{x}{2} \partial_{z} \text { and } g=d x^{2}+d y^{2}
$$

The Chow-Rashevsky Theorem

Definition

We call horizontal path any path $\gamma \in W^{1,2}([0,1] ; M)$ satisfying

$$
\dot{\gamma}(t) \in \Delta(\gamma(t)) \quad \text { a.e. } t \in[0,1] .
$$

We observe that if $\Delta=\operatorname{Span}\left\{Y^{1}, \ldots, Y^{k}\right\}$, for any $x \in M$ and any control $u \in L^{2}\left([0,1] ; \mathbb{R}^{k}\right)$, the solution to

$$
\dot{\gamma}=\sum_{i=1}^{k} u_{i} Y^{i}(\gamma), \quad \gamma(0)=x
$$

is an horizontal path joining x to $\gamma(1)$.

The Chow-Rashevsky Theorem

Definition

We call horizontal path any path $\gamma \in W^{1,2}([0,1] ; M)$ satisfying

$$
\dot{\gamma}(t) \in \Delta(\gamma(t)) \quad \text { a.e. } t \in[0,1] .
$$

We observe that if $\Delta=\operatorname{Span}\left\{Y^{1}, \ldots, Y^{k}\right\}$, for any $x \in M$ and any control $u \in L^{2}\left([0,1] ; \mathbb{R}^{k}\right)$, the solution to

$$
\dot{\gamma}=\sum_{i=1}^{k} u_{i} Y^{i}(\gamma), \quad \gamma(0)=x
$$

is an horizontal path joining x to $\gamma(1)$.

Theorem (Chow-Rashevsky)

Let Δ be a totally nonholonomic distribution on M then any pair of points can be joined by an horizontal path.

The sub-Riemannian distance

The length (w.r.t g) of an horizontal path γ is defined as

$$
\text { length }{ }^{g}(\gamma):=\int_{0}^{T}|\dot{\gamma}(t)|_{\gamma(t)}^{g} d t
$$

Definition

Given $x, y \in M$, the sub-Riemannian distance between x and y is

$$
d_{S R}(x, y):=\inf \left\{\text { length }^{g}(\gamma) \mid \gamma \text { hor., } \gamma(0)=x, \gamma(1)=y\right\}
$$

Proposition

The manifold M equipped with the distance $d_{S R}$ is a metric space whose topology coincides with the topology of M (as a manifold).

Minimizing horizontal paths and geodesics

Definition

Given $x, y \in M$, we call minimizing horizontal path between x and y any horizontal path $\gamma:[0, T] \rightarrow M$ connecting x to y such that

$$
d_{S R}(x, y)=\text { length }^{g}(\gamma)
$$

Minimizing horizontal paths and geodesics

Definition

Given $x, y \in M$, we call minimizing horizontal path between x and y any horizontal path $\gamma:[0, T] \rightarrow M$ connecting x to y such that

$$
d_{S R}(x, y)=\operatorname{length}^{g}(\gamma) .
$$

The sub-Riemannian energy between x and y is defined as

$$
e_{S R}(x, y):=\inf \left\{\operatorname{energy}^{g}(\gamma):=\int_{0}^{1}\left(|\dot{\gamma}(t)|_{\gamma(t)}^{g}\right)^{2} d t \mid \gamma \ldots\right\}
$$

Definition

We call minimizing geodesic between x and y any horizontal path $\gamma:[0,1] \rightarrow M$ connecting x to y such that

$$
e_{S R}(x, y)=\operatorname{energy}^{g}(\gamma)
$$

A SR Hopf-Rinow Theorem

Theorem

Let (Δ, g) be a sub-Riemannian structure on M. Assume that $\left(M, d_{S R}\right)$ is a complete metric space. Then the following properties hold:

- The closed balls $\bar{B}_{S R}(x, r)$ are compact (for any $r \geq 0$).
- For every $x, y \in M$, there exists at least one minimizing geodesic joining x to y.

A SR Hopf-Rinow Theorem

Theorem

Let (Δ, g) be a sub-Riemannian structure on M. Assume that $\left(M, d_{S R}\right)$ is a complete metric space. Then the following properties hold:

- The closed balls $\bar{B}_{S R}(x, r)$ are compact (for any $r \geq 0$).
- For every $x, y \in M$, there exists at least one minimizing geodesic joining x to y.

Remark

Given a complete Riemannian manifold (M, g), for any totally nonholonomic distribution Δ on M, the SR structure (Δ, g) is complete.

A SR Hopf-Rinow Theorem

Theorem

Let (Δ, g) be a sub-Riemannian structure on M. Assume that $\left(M, d_{S R}\right)$ is a complete metric space. Then the following properties hold:

- The closed balls $\bar{B}_{S R}(x, r)$ are compact (for any $r \geq 0$).
- For every $x, y \in M$, there exists at least one minimizing geodesic joining x to y.

Remark

Given a complete Riemannian manifold (M, g), for any totally nonholonomic distribution Δ on M, the SR structure (Δ, g) is complete. As a matter of fact, since $d_{g} \leq d_{S R}$ any Cauchy sequence w.r.t. $d_{S R}$ is Cauchy w.r.t. d_{g}.

The Hamiltonian geodesic equation

Let $x, y \in M$ and a minimizing geodesic $\bar{\gamma}$ joining x to y be fixed. The SR structure admits an orthonormal frame along $\bar{\gamma}$, that is there is an open neighborhood \mathcal{V} of $\bar{\gamma}([0,1])$ and an orthonormal family of m vector fields X^{1}, \ldots, X^{m} such that

$$
\Delta(z)=\operatorname{Span}\left\{X^{1}(z), \ldots, X^{m}(z)\right\} \quad \forall z \in \mathcal{V} .
$$

The Hamiltonian geodesic equation

There is a control $\bar{u} \in L^{2}\left([0,1] ; \mathbb{R}^{m}\right)$ such that

$$
\dot{\bar{\gamma}}(t)=\sum_{i=1}^{m} \bar{u}_{i}(t) X^{i}(\bar{\gamma}(t)) \quad \text { a.e. } t \in[0,1]
$$

The Hamiltonian geodesic equation

There is a control $\bar{u} \in L^{2}\left([0,1] ; \mathbb{R}^{m}\right)$ such that

$$
\dot{\bar{\gamma}}(t)=\sum_{i=1}^{m} \bar{u}_{i}(t) X^{i}(\bar{\gamma}(t)) \quad \text { a.e. } t \in[0,1]
$$

Moreover, on the one hand any control $u \in \mathcal{U} \subset L^{2}\left([0,1] ; \mathbb{R}^{m}\right)$ (u sufficiently close to \bar{u}) gives rise to a trajectory γ_{u} solution of

$$
\dot{\gamma}_{u}=\sum_{i=1}^{m} u^{i} X^{i}\left(\gamma_{u}\right) \quad \text { on }[0, T], \quad \gamma_{u}(0)=x .
$$

The Hamiltonian geodesic equation

There is a control $\bar{u} \in L^{2}\left([0,1] ; \mathbb{R}^{m}\right)$ such that

$$
\dot{\bar{\gamma}}(t)=\sum_{i=1}^{m} \bar{u}_{i}(t) X^{i}(\bar{\gamma}(t)) \quad \text { a.e. } t \in[0,1] .
$$

Moreover, on the one hand any control $u \in \mathcal{U} \subset L^{2}\left([0,1] ; \mathbb{R}^{m}\right)$ (u sufficiently close to \bar{u}) gives rise to a trajectory γ_{u} solution of

$$
\dot{\gamma}_{u}=\sum_{i=1}^{m} u^{i} X^{i}\left(\gamma_{u}\right) \quad \text { on }[0, T], \quad \gamma_{u}(0)=x .
$$

On the other hand, for any horizontal path $\gamma:[0,1] \rightarrow \mathcal{V}$ there is a (unique) control $u \in L^{2}\left([0,1] ; \mathbb{R}^{m}\right)$ for which the equation in red is satisfied.

The Hamiltonian geodesic equation

So, considering as previously the End-Point mapping

$$
E^{x, 1}: L^{2}\left([0,1] ; \mathbb{R}^{m}\right) \longrightarrow M
$$

defined by

$$
E^{x, 1}(u):=\gamma_{u}(1)
$$

and setting $C(u)=\|u\|_{L^{2}}^{2}$, we observe that \bar{u} is solution to the following optimization problem with constraints:

The Hamiltonian geodesic equation

So, considering as previously the End-Point mapping

$$
E^{x, 1}: L^{2}\left([0,1] ; \mathbb{R}^{m}\right) \longrightarrow M
$$

defined by

$$
E^{x, 1}(u):=\gamma_{u}(1)
$$

and setting $C(u)=\|u\|_{L^{2}}^{2}$, we observe that \bar{u} is solution to the following optimization problem with constraints:
\bar{u} minimizes $C(u)$ among all $u \in \mathcal{U}$ s.t. $E^{x, 1}(u)=y$.

The Hamiltonian geodesic equation

So, considering as previously the End-Point mapping

$$
E^{x, 1}: L^{2}\left([0,1] ; \mathbb{R}^{m}\right) \longrightarrow M
$$

defined by

$$
E^{x, 1}(u):=\gamma_{u}(1)
$$

and setting $C(u)=\|u\|_{L^{2}}^{2}$, we observe that \bar{u} is solution to the following optimization problem with constraints:

$$
\bar{u} \text { minimizes } C(u) \text { among all } u \in \mathcal{U} \text { s.t. } E^{x, 1}(u)=y \text {. }
$$

(Since the family X^{1}, \ldots, X^{m} is orthonormal, we have

$$
\left.\operatorname{energy}^{g}\left(\gamma_{u}\right)=C(u) \quad \forall u \in \mathcal{U} .\right)
$$

The Hamiltonian geodesic equation

Proposition (Lagrange Multipliers)
There are $p \in T_{y}^{*} M \simeq\left(\mathbb{R}^{n}\right)^{*}$ and $\lambda_{0} \in\{0,1\}$ with $\left(\lambda_{0}, p\right) \neq(0,0)$ such that

$$
p \cdot D_{\bar{u}} E^{x, 1}=\lambda_{0} D_{\bar{u}} C .
$$

The Hamiltonian geodesic equation

Proposition (Lagrange Multipliers)

There are $p \in T_{y}^{*} M \simeq\left(\mathbb{R}^{n}\right)^{*}$ and $\lambda_{0} \in\{0,1\}$ with $\left(\lambda_{0}, p\right) \neq(0,0)$ such that

$$
p \cdot D_{\bar{u}} E^{x, 1}=\lambda_{0} D_{\bar{u}} C .
$$

Proof.

The mapping $\Phi: \mathcal{U} \rightarrow \mathbb{R} \times M$ defined by

$$
\Phi(u):=\left(C(u), E^{x, 1}(u)\right)
$$

cannot be a submersion at \bar{u}. As a matter of fact, if $D_{\bar{u}} \Phi$ is surjective, then it is open at \bar{u}, so it must contain elements of the form $(C(\bar{u})-\delta, y)$ for $\delta>0$ small.
\rightsquigarrow two cases: $\lambda_{0}=0$ or $\lambda_{0}=1$.

The Hamiltonian geodesic equation

First case: $\lambda_{0}=0$

Then we have

$$
p \cdot D_{\bar{u}} E^{x, 1}=0 \text { with } p \neq 0 .
$$

So \bar{u} is singular (w.r.t. x and $T=1$).

The Hamiltonian geodesic equation

First case: $\lambda_{0}=0$
Then we have

$$
p \cdot D_{\bar{u}} E^{x, 1}=0 \text { with } p \neq 0 .
$$

So \bar{u} is singular (w.r.t. x and $T=1$).
Remark

- If Δ has rank n, that is $\Delta=T M$ (Riemannian case), then there are no singular control. So this case cannot occur.

The Hamiltonian geodesic equation

First case: $\lambda_{0}=0$
Then we have

$$
p \cdot D_{\bar{u}} E^{x, 1}=0 \text { with } p \neq 0 .
$$

So \bar{u} is singular (w.r.t. x and $T=1$).

Remark

- If Δ has rank n, that is $\Delta=T M$ (Riemannian case), then there are no singular control. So this case cannot occur.
- If there are no nontrivial singular control, then this case cannot occur.

The Hamiltonian geodesic equation

First case: $\lambda_{0}=0$
Then we have

$$
p \cdot D_{\bar{u}} E^{x, 1}=0 \text { with } p \neq 0 .
$$

So \bar{u} is singular (w.r.t. x and $T=1$).

Remark

- If Δ has rank n, that is $\Delta=T M$ (Riemannian case), then there are no singular control. So this case cannot occur.
- If there are no nontrivial singular control, then this case cannot occur.
- If there are no nontrivial singular minimizing control, then this case cannot occur.

The Hamiltonian geodesic equation

Second case: $\lambda_{0}=1$
Define the Hamiltonian $H: \mathcal{V} \times\left(\mathbb{R}^{n}\right)^{*} \rightarrow \mathbb{R}$ by

$$
H(x, p):=\frac{1}{2} \sum_{i=1}^{m}\left(p \cdot X^{i}(x)\right)^{2} .
$$

Proposition

There is a smooth arc $p:[0,1] \rightarrow\left(\mathbb{R}^{n}\right)^{*}$ with $p(1)=p / 2$ such that

$$
\left\{\begin{array}{l}
\dot{\bar{\gamma}}=\frac{\partial H}{\partial p}(\bar{\gamma}, p)=\sum_{i=1}^{m}\left[p \cdot X^{i}(\bar{\gamma})\right] X^{i}(\bar{\gamma}) \\
\dot{p}=-\frac{\partial H}{\partial x}(\bar{\gamma}, p)=-\sum_{i=1}^{m}\left[p \cdot X^{i}(\bar{\gamma})\right] p \cdot D \bar{\gamma} X^{i}
\end{array}\right.
$$

for a.e. $t \in[0,1]$ and $\bar{u}_{i}(t)=p \cdot X^{i}(\bar{\gamma}(t))$ for a.e. $t \in[0,1]$ and any i.

The Hamiltonian geodesic equation

Second case: $\lambda_{0}=1$
Define the Hamiltonian $H: \mathcal{V} \times\left(\mathbb{R}^{n}\right)^{*} \rightarrow \mathbb{R}$ by

$$
H(x, p):=\frac{1}{2} \sum_{i=1}^{m}\left(p \cdot X^{i}(x)\right)^{2} .
$$

Proposition

There is a smooth arc $p:[0,1] \rightarrow\left(\mathbb{R}^{n}\right)^{*}$ with $p(1)=p / 2$ such that

$$
\left\{\begin{array}{l}
\dot{\bar{\gamma}}=\frac{\partial H}{\partial p}(\bar{\gamma}, p)=\sum_{i=1}^{m}\left[p \cdot X^{i}(\bar{\gamma})\right] X^{i}(\bar{\gamma}) \\
\dot{p}=-\frac{\partial H}{\partial x}(\bar{\gamma}, p)=-\sum_{i=1}^{m}\left[p \cdot X^{i}(\bar{\gamma})\right] p \cdot D \bar{\gamma} X^{i}
\end{array}\right.
$$

for a.e. $t \in[0,1]$ and $\bar{u}_{i}(t)=p \cdot X^{i}(\bar{\gamma}(t))$ for a.e. $t \in[0,1]$ and any i. In particular, the path $\bar{\gamma}$ is smooth on $[0,1]$.

The Hamiltonian geodesic equation

Proof.

We have $D_{\bar{u}} C(v)=2\langle\bar{u}, v\rangle_{L^{2}}$ and we remember that

$$
D_{\bar{u}} E^{x, T}(v)=S(1) \int_{0}^{1} S(t)^{-1} B(t) v(t) d t
$$

with

$$
\left\{\begin{array}{l}
A(t)=\sum_{i=1}^{m} u_{i}(t) D_{\bar{\gamma}(t)} X^{i}, \\
B(t)=\left(X^{1}(\bar{\gamma}(t)), \ldots, X^{m}(\bar{\gamma}(t))\right)
\end{array} \quad \forall t \in[0,1]\right.
$$

and S solution of

$$
\dot{S}(t)=A(t) S(t) \text { for a.e. } t \in[0,1], \quad S(0)=I_{n}
$$

The Hamiltonian geodesic equation

Proof.

Then $p \cdot D_{\bar{u}} E^{x, 1}=\lambda_{0} D_{\bar{u}} C$ yields

$$
\int_{0}^{1}\left[p \cdot S(1) S(t)^{-1} B(t)-2 \bar{u}(t)^{*}\right] v(t) d t=0 \quad \forall v \in L^{2}
$$

We infer that

$$
\bar{u}(t)=\frac{1}{2}\left(p \cdot S(1) S(t)^{-1} B(t)\right)^{*} \quad \text { a.e. } t \in[0,1]
$$

and that the absolutely continuous arc $p:[0,1] \rightarrow\left(\mathbb{R}^{n}\right)^{*}$ defined by

$$
p(t):=\frac{1}{2} p \cdot S(1) S(t)^{-1}
$$

satisfies the desired equations.

The Hamiltonian geodesic equation

Define the Hamiltonian $H: T^{*} M \rightarrow \mathbb{R}$ by

$$
H(x, p)=\frac{1}{2} \max \left\{\left.\frac{p(v)^{2}}{g_{x}(v, v)} \right\rvert\, v \in \Delta_{x} \backslash\{0\}\right\}
$$

We call normal extremal any curve $\psi:[0, T] \rightarrow T^{*} M$ satisfying

$$
\dot{\psi}(t)=\vec{H}(\psi(t)) \quad \forall t \in[0, T]
$$

The Hamiltonian geodesic equation

Define the Hamiltonian $H: T^{*} M \rightarrow \mathbb{R}$ by

$$
H(x, p)=\frac{1}{2} \max \left\{\left.\frac{p(v)^{2}}{g_{x}(v, v)} \right\rvert\, v \in \Delta_{x} \backslash\{0\}\right\}
$$

We call normal extremal any curve $\psi:[0, T] \rightarrow T^{*} M$ satisfying

$$
\dot{\psi}(t)=\vec{H}(\psi(t)) \quad \forall t \in[0, T]
$$

Theorem

Let $\gamma:[0,1] \rightarrow M$ be a minimizing geodesic. One of the two following non-exclusive cases occur:

- γ is singular.
- γ admits a normal extremal lift.

Examples

Example 1: The Riemannian case

Let $\Delta(x)=T_{x} M$ for any $x \in M$ so that ANY curve is horizontal. There are no singular curve, so any minimizing geodesic is the projection of a normal extremal.

Examples

Example 1: The Riemannian case

Let $\Delta(x)=T_{x} M$ for any $x \in M$ so that ANY curve is horizontal. There are no singular curve, so any minimizing geodesic is the projection of a normal extremal.

Example 2: Heisenberg
Recall that in $\mathbb{R}^{3}, \Delta=\operatorname{Span}\left\{X^{1}, X^{2}\right\}$ with

$$
X^{1}=\partial_{x}-\frac{y}{2} \partial_{z}, \quad X^{2}=\partial_{y}+\frac{x}{2} \partial_{z} \text { and } g=d x^{2}+d y^{2}
$$

Examples

Any horizontal path has the form $\gamma_{u}=(x, y, z):[0,1] \rightarrow \mathbb{R}^{3}$ with

$$
\left\{\begin{aligned}
\dot{x}(t) & =u_{1}(t) \\
\dot{y}(t) & =u_{2}(t) \\
\dot{z}(t) & =\frac{1}{2}\left(u_{2}(t) x(t)-u_{1}(t) y(t)\right)
\end{aligned}\right.
$$

for some $u \in L^{2}$.

Examples

Any horizontal path has the form $\gamma_{u}=(x, y, z):[0,1] \rightarrow \mathbb{R}^{3}$ with

$$
\left\{\begin{aligned}
\dot{x}(t) & =u_{1}(t) \\
\dot{y}(t) & =u_{2}(t) \\
\dot{z}(t) & =\frac{1}{2}\left(u_{2}(t) x(t)-u_{1}(t) y(t)\right)
\end{aligned}\right.
$$

for some $u \in L^{2}$. This means that

$$
z(1)-z(0)=\int_{\alpha} \frac{1}{2}(x d y-y d x)
$$

where α is the projection of γ to the plane $z=0$.

Examples

Any horizontal path has the form $\gamma_{u}=(x, y, z):[0,1] \rightarrow \mathbb{R}^{3}$ with

$$
\left\{\begin{aligned}
\dot{x}(t) & =u_{1}(t) \\
\dot{y}(t) & =u_{2}(t) \\
\dot{z}(t) & =\frac{1}{2}\left(u_{2}(t) x(t)-u_{1}(t) y(t)\right)
\end{aligned}\right.
$$

for some $u \in L^{2}$. This means that

$$
z(1)-z(0)=\int_{\alpha} \frac{1}{2}(x d y-y d x)
$$

where α is the projection of γ to the plane $z=0$. By Stokes' Theorem, we get

$$
z(1)-z(0)=\int_{\mathcal{D}} d x \wedge d y+\int_{c} \frac{1}{2}(x d y-y d x)
$$

where \mathcal{D} is the domain enclosed by α and the segment $c=[\alpha(0), \alpha(1)]$.

Examples

Any horizontal path has the form $\gamma_{u}=(x, y, z):[0,1] \rightarrow \mathbb{R}^{3}$ with

$$
\left\{\begin{aligned}
\dot{x}(t) & =u_{1}(t) \\
\dot{y}(t) & =u_{2}(t) \\
\dot{z}(t) & =\frac{1}{2}\left(u_{2}(t) x(t)-u_{1}(t) y(t)\right)
\end{aligned}\right.
$$

for some $u \in L^{2}$. This means that

$$
z(1)-z(0)=\int_{\alpha} \frac{1}{2}(x d y-y d x)
$$

where α is the projection of γ to the plane $z=0$. By Stokes' Theorem, we get

$$
z(1)-z(0)=\int_{\mathcal{D}} d x \wedge d y+\int_{c} \frac{1}{2}(x d y-y d x)
$$

where \mathcal{D} is the domain enclosed by α and the segment $c=[\alpha(0), \alpha(1)] . \rightsquigarrow$ Projections of minimizing horizontal paths must be circles.

Examples

Let $\gamma_{u}=(x, y, z):[0,1] \rightarrow \mathbb{R}^{3}$ be a minimizing geodesic from $P_{1}:=\gamma_{u}(0)$ to $P_{2}:=\gamma_{u}(1) \neq P_{1}$. Since u is necessarily regular, there is a smooth arc $p:[0,1] \rightarrow\left(\mathbb{R}^{3}\right)^{*}$ s.t.

Hence $p_{z}=\bar{p}_{z}$ for every t. Which implies that

$$
\ddot{x}=-\bar{p}_{z} \dot{y} \quad \text { and } \quad \ddot{y}=\bar{p}_{z} \dot{x} .
$$

If $\bar{p}_{z}=0$, then the geodesic from P_{1} to P_{2} is a segment with constant speed. If $\bar{p}_{z} \neq 0$, we have or

$$
\dddot{x}=-\bar{p}_{z}^{2} \dot{x} \quad \text { and } \quad \dddot{y}=-\bar{p}_{z}^{2} \dot{y} .
$$

Examples

Let $\gamma_{u}=(x, y, z):[0,1] \rightarrow \mathbb{R}^{3}$ be a minimizing geodesic from $P_{1}:=\gamma_{u}(0)$ to $P_{2}:=\gamma_{u}(1) \neq P_{1}$. Since u is necessarily regular, there is a smooth arc $p:[0,1] \rightarrow\left(\mathbb{R}^{3}\right)^{*}$ s.t.

Hence $p_{z}=\bar{p}_{z}$ for every t. Which implies that

$$
\ddot{x}=-\bar{p}_{z} \dot{y} \quad \text { and } \quad \ddot{y}=\bar{p}_{z} \dot{x} .
$$

If $\bar{p}_{z}=0$, then the geodesic from P_{1} to P_{2} is a segment with constant speed. If $\bar{p}_{z} \neq 0$, we have or

$$
\dddot{x}=-\bar{p}_{z}^{2} \dot{x} \quad \text { and } \quad \dddot{y}=-\bar{p}_{z}^{2} \dot{y} .
$$

Which means that the curve $t \mapsto(x(t), y(t))$ is a circle.

Examples

Example 3: The Martinet distribution
In \mathbb{R}^{3}, let $\Delta=\operatorname{Span}\left\{X^{1}, X^{2}\right\}$ with X^{1}, X^{2} fo the form

$$
X^{1}=\partial_{x_{1}} \quad \text { and } \quad X^{2}=\left(1+x_{1} \phi(x)\right) \partial_{x_{2}}+x_{1}^{2} \partial_{x_{3}}
$$

where ϕ is a smooth function and g be a smooth metric on Δ.

Examples

Example 3: The Martinet distribution
In \mathbb{R}^{3}, let $\Delta=\operatorname{Span}\left\{X^{1}, X^{2}\right\}$ with X^{1}, X^{2} fo the form

$$
X^{1}=\partial_{x_{1}} \quad \text { and } \quad X^{2}=\left(1+x_{1} \phi(x)\right) \partial_{x_{2}}+x_{1}^{2} \partial_{x_{3}}
$$

where ϕ is a smooth function and g be a smooth metric on Δ.

Theorem

There is $\bar{\epsilon}>0$ such that for every $\epsilon \in(0, \bar{\epsilon})$, the (singular) horizontal path given by

$$
\gamma(t)=(0, t, 0) \quad \forall t \in[0, \epsilon]
$$

minimizes the length (w.r.t. g) among all horizontal paths joining 0 to $(0, \epsilon, 0)$.

Examples

Example 3: The Martinet distribution
In \mathbb{R}^{3}, let $\Delta=\operatorname{Span}\left\{X^{1}, X^{2}\right\}$ with X^{1}, X^{2} fo the form

$$
X^{1}=\partial_{x_{1}} \quad \text { and } \quad X^{2}=\left(1+x_{1} \phi(x)\right) \partial_{x_{2}}+x_{1}^{2} \partial_{x_{3}}
$$

where ϕ is a smooth function and g be a smooth metric on Δ.

Theorem

There is $\bar{\epsilon}>0$ such that for every $\epsilon \in(0, \bar{\epsilon})$, the (singular) horizontal path given by

$$
\gamma(t)=(0, t, 0) \quad \forall t \in[0, \epsilon]
$$

minimizes the length (w.r.t. g) among all horizontal paths joining 0 to $(0, \epsilon, 0)$. Moreover if $\left\{X^{1}, X^{2}\right\}$ is orthonormal w.r.t. g and $\phi(0) \neq 0$, then γ can not be the projection of a normal extremal.

The SR exponential mapping

Denote by $\psi_{x, p}:[0,1] \rightarrow T^{*} M$ the solution of

$$
\dot{\psi}(t)=\vec{H}(\psi(t)) \quad \forall t \in[0,1], \quad \psi(0)=(x, p)
$$

and let

$$
\mathcal{E}_{x}:=\left\{p \in T_{x}^{*} M \mid \psi_{x, p} \text { defined on }[0,1]\right\}
$$

Definition

The sub-Riemannian exponential map from $x \in M$ is defined by

$$
\begin{aligned}
\exp _{x}: \mathcal{E}_{x} \subset T_{x}^{*} M & \longrightarrow M \\
p & \longmapsto \pi\left(\psi_{x, p}(1)\right)
\end{aligned}
$$

The SR exponential mapping

Denote by $\psi_{x, p}:[0,1] \rightarrow T^{*} M$ the solution of

$$
\dot{\psi}(t)=\vec{H}(\psi(t)) \quad \forall t \in[0,1], \quad \psi(0)=(x, p)
$$

and let

$$
\mathcal{E}_{x}:=\left\{p \in T_{x}^{*} M \mid \psi_{x, p} \text { defined on }[0,1]\right\}
$$

Definition

The sub-Riemannian exponential map from $x \in M$ is defined by

$$
\begin{aligned}
\exp _{x}: \mathcal{E}_{x} \subset T_{x}^{*} M & \longrightarrow M \\
p & \longmapsto \pi\left(\psi_{x, p}(1)\right)
\end{aligned}
$$

Proposition

Assume that $\left(M, d_{S R}\right)$ is complete. Then for every $x \in M$, $\mathcal{E}_{x}=T_{x}^{*} M$.

On the image of the exponential mapping

Proposition (Agrachev-Trélat-LR)

Assume that $\left(M, d_{S R}\right)$ is complete. Then for every $x \in M$, the set $\exp _{x}\left(T_{x}^{*} M\right)$ is open and dense.

On the image of the exponential mapping

Proposition (Agrachev-Trélat-LR)

Assume that $\left(M, d_{S R}\right)$ is complete. Then for every $x \in M$, the set $\exp _{x}\left(T_{x}^{*} M\right)$ is open and dense.

Lemma

Let $y \neq x$ in M be such that there is a function $\phi: M \rightarrow \mathbb{R}$ differentiable at y such that

$$
\phi(y)=d_{S R}^{2}(x, y) \quad \text { and } \quad d_{S R}^{2}(x, z) \geq \phi(z) \quad \forall z \in M
$$

Then there is a unique minimizing geodesic $\gamma:[0,1] \rightarrow M$ between x and y. It is the projection of a normal extremal $\psi:[0,1] \rightarrow T^{*} M$ satisfying $\psi(1)=\left(y, \frac{1}{2} D_{y} \phi\right)$. In particular $x=\exp _{y}\left(-\frac{1}{2} D_{y} \phi\right)$.

On the image of the exponential mapping

Proof.

Let $y \neq x$ in M satisfying the assumption and
$\bar{\gamma}=\gamma_{\bar{u}}:[0,1] \rightarrow M$ be a minimizing geodesic from x to y.

On the image of the exponential mapping

Proof.

Let $y \neq x$ in M satisfying the assumption and
$\bar{\gamma}=\gamma_{\bar{u}}:[0,1] \rightarrow M$ be a minimizing geodesic from x to y.
We have for every $u \in \mathcal{U} \subset L^{2}\left([0,1] ; \mathbb{R}^{m}\right)($ close to $\bar{u})$,

$$
\|u\|_{L^{2}}^{2}=C(u) \geq e_{S R}\left(x, E^{x, 1}(u)\right)
$$

with equality if $u=\bar{u}$.

On the image of the exponential mapping

Proof.

Let $y \neq x$ in M satisfying the assumption and
$\bar{\gamma}=\gamma_{\bar{u}}:[0,1] \rightarrow M$ be a minimizing geodesic from x to y.
We have for every $u \in \mathcal{U} \subset L^{2}\left([0,1] ; \mathbb{R}^{m}\right)($ close to $\bar{u})$,

$$
\|u\|_{L^{2}}^{2}=C(u) \geq e_{S R}\left(x, E^{x, 1}(u)\right) \geq \phi\left(E^{x, 1}(u)\right)
$$

with equality if $u=\bar{u}$. So \bar{u} is solution to the following optimization problem:

On the image of the exponential mapping

Proof.

Let $y \neq x$ in M satisfying the assumption and
$\bar{\gamma}=\gamma_{\bar{u}}:[0,1] \rightarrow M$ be a minimizing geodesic from x to y.
We have for every $u \in \mathcal{U} \subset L^{2}\left([0,1] ; \mathbb{R}^{m}\right)($ close to $\bar{u})$,

$$
\|u\|_{L^{2}}^{2}=C(u) \geq e_{S R}\left(x, E^{x, 1}(u)\right) \geq \phi\left(E^{x, 1}(u)\right)
$$

with equality if $u=\bar{u}$. So \bar{u} is solution to the following optimization problem:

$$
\bar{u} \text { minimizes } C(u)-\phi\left(E^{x, 1}(u)\right) \text { among all } u \in \mathcal{U} \text {. }
$$

On the image of the exponential mapping

Proof.

Let $y \neq x$ in M satisfying the assumption and
$\bar{\gamma}=\gamma_{\bar{u}}:[0,1] \rightarrow M$ be a minimizing geodesic from x to y.
We have for every $u \in \mathcal{U} \subset L^{2}\left([0,1] ; \mathbb{R}^{m}\right)($ close to $\bar{u})$,

$$
\|u\|_{L^{2}}^{2}=C(u) \geq e_{S R}\left(x, E^{x, 1}(u)\right) \geq \phi\left(E^{x, 1}(u)\right)
$$

with equality if $u=\bar{u}$. So \bar{u} is solution to the following optimization problem:

$$
\bar{u} \text { minimizes } C(u)-\phi\left(E^{x, 1}(u)\right) \text { among all } u \in \mathcal{U} \text {. }
$$

We infer that there is $p \neq 0$ such that

$$
p \cdot D_{u} E^{x, 1}=D_{u} C \quad \text { with } p=D_{E^{x, 1}(u)} \phi
$$

and in turn get the result.

On the image of the exponential mapping

Remark

If $\left(M, d_{S R}\right)$ is complete and there are no singular minimizing curves, then $\exp _{x}\left(T_{x}^{*} M\right)=M$.

Examples:

On the image of the exponential mapping

Remark

If $\left(M, d_{S R}\right)$ is complete and there are no singular minimizing curves, then $\exp _{x}\left(T_{x}^{*} M\right)=M$.

Examples:

- Heisenberg.

On the image of the exponential mapping

Remark

If $\left(M, d_{S R}\right)$ is complete and there are no singular minimizing curves, then $\exp _{x}\left(T_{x}^{*} M\right)=M$.

Examples:

- Heisenberg.
- Fat distributions.

On the image of the exponential mapping

Remark

If $\left(M, d_{S R}\right)$ is complete and there are no singular minimizing curves, then $\exp _{x}\left(T_{x}^{*} M\right)=M$.

Examples:

- Heisenberg.
- Fat distributions.
- For generic $S R$ structures of rank ≥ 3.

On the image of the exponential mapping

Remark

If $\left(M, d_{S R}\right)$ is complete and there are no singular minimizing curves, then $\exp _{x}\left(T_{x}^{*} M\right)=M$.

Examples:

- Heisenberg.
- Fat distributions.
- For generic $S R$ structures of rank ≥ 3.

Remark

If $\left(M, d_{S R}\right)$ is complete and there are no strictly singular minimizing curves, then $\exp _{x}\left(T_{x}^{*} M\right)=M$.

On the image of the exponential mapping

Remark

If $\left(M, d_{S R}\right)$ is complete and there are no singular minimizing curves, then $\exp _{x}\left(T_{x}^{*} M\right)=M$.

Examples:

- Heisenberg.
- Fat distributions.
- For generic $S R$ structures of rank ≥ 3.

Remark

If $\left(M, d_{S R}\right)$ is complete and there are no strictly singular minimizing curves, then $\exp _{x}\left(T_{x}^{*} M\right)=M$.
\rightsquigarrow Medium fat distributions.

Open problems in SR geometry I: The Sard conjecture

Let M be a smooth connected manifold of dimension n and $\mathcal{F}=\left\{X^{1}, \ldots, X^{k}\right\}$ be a family of smooth vector fields on M satisfying the Hörmander condition. Given $x \in M$ and $T>0$, the End-Point mapping $E^{x, T}$ is defined as

$$
\begin{aligned}
E^{x, T}: L^{2}\left([0, T] ; \mathbb{R}^{m}\right) & \longrightarrow M \\
u & \longmapsto x(T ; x, u)
\end{aligned}
$$

where $x(\cdot)=x(\cdot ; x, u):[0, T] \longrightarrow M$ is solution to the Cauchy problem

$$
\dot{x}=\sum_{i=1}^{m} u_{i} X^{i}(x), \quad x(0)=x
$$

Open problems in SR geometry I: The Sard

 conjectureLet M be a smooth connected manifold of dimension n and $\mathcal{F}=\left\{X^{1}, \ldots, X^{k}\right\}$ be a family of smooth vector fields on M satisfying the Hörmander condition. Given $x \in M$ and $T>0$, the End-Point mapping $E^{x, T}$ is defined as

$$
\begin{aligned}
E^{x, T}: L^{2}\left([0, T] ; \mathbb{R}^{m}\right) & \longrightarrow M \\
u & \longmapsto x(T ; x, u)
\end{aligned}
$$

where $x(\cdot)=x(\cdot ; x, u):[0, T] \longrightarrow M$ is solution to the Cauchy problem

$$
\dot{x}=\sum_{i=1}^{m} u_{i} X^{i}(x), \quad x(0)=x
$$

Proposition

The map $E^{x, T}$ is smooth on its domain.

The Sard Conjecture

Theorem (Morse 1939, Sard 1942)

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{p}$ be a function of class C^{k}, then

$$
k \geq \max \{1, d-p+1\} \quad \Longrightarrow \quad \mathcal{L}^{p}(f(\operatorname{Crit}(f)))=0,
$$

where $\operatorname{Crit}(f)$ is the set of critical points of f, i.e. the points where $D_{x} f$ is not onto.

The Sard Conjecture

Theorem (Morse 1939, Sard 1942)

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{p}$ be a function of class C^{k}, then

$$
k \geq \max \{1, d-p+1\} \quad \Longrightarrow \quad \mathcal{L}^{p}(f(\operatorname{Crit}(f)))=0
$$

where $\operatorname{Crit}(f)$ is the set of critical points of f, i.e. the points where $D_{x} f$ is not onto.

Let

$$
\operatorname{Sing}_{\mathcal{F}}^{x, T}:=\left\{u \in L^{2}\left([0, T] ; \mathbb{R}^{m}\right) \mid u \text { singular }\right\} .
$$

The Sard Conjecture

Theorem (Morse 1939, Sard 1942)

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{p}$ be a function of class C^{k}, then

$$
k \geq \max \{1, d-p+1\} \quad \Longrightarrow \quad \mathcal{L}^{p}(f(\operatorname{Crit}(f)))=0,
$$

where $\operatorname{Crit}(f)$ is the set of critical points of f, i.e. the points where $D_{x} f$ is not onto.

Let

$$
\operatorname{Sing}_{\mathcal{F}}^{\chi, T}:=\left\{u \in L^{2}\left([0, T] ; \mathbb{R}^{m}\right) \mid u \text { singular }\right\} .
$$

Conjecture

The set $E^{x, T}\left(\operatorname{Sing}_{\mathcal{F}}^{x, T}\right) \subset M$ has Lebesgue measure zero.

Open problems in SR geometry II: Regularity of minimizing geodesics

Let (Δ, g) be complete SR structure on a smooth manifold M.

Open Question

Do the minimizing geodesics enjoy some regularity ? Are they at least of class C^{1} ?

Open problems in SR geometry II: Regularity of minimizing geodesics

Let (Δ, g) be complete SR structure on a smooth manifold M.

Open Question

Do the minimizing geodesics enjoy some regularity ? Are they at least of class C^{1} ?
\rightsquigarrow Very partial results by Monti, Leonardi and later Monti.

References

References

- V. Jurdjevic. "Geometric Control Theory".
- A. Bellaïche. "The tangent space in sub-Riemannian geometry".
- R. Montgomery. "A tour of subriemannian geometries, their geodesics and applications".
- A. Agrachev, D. Barilari, U. Boscain. "Introduction to Riemannian and sub-Riemannian geometry".
- F. Jean. "Control of Nonholonomic Systems: From Sub-Riemannian Geometry to Motion Planning".
- L. Rifford. "Sub-Riemannian Geometry and Optimal Transport".

Thank you for your attention !!

