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Abstract

Given a Tonelli Hamiltonian H : T ∗M → R of class Ck, with k ≥ 2, we prove the
following results: (1) Assume there exist a recurrent point of the projected Aubry set
x̄, and a critical viscosity subsolution u, such that u is a C1 critical solution in an open
neighborhood of the positive orbit of x̄. Suppose further that u is “C2 at x̄”. Then there
exists a Ck potential V : M → R, small in C2 topology, for which the Aubry set of
the new Hamiltonian H + V is either an equilibrium point or a periodic orbit. (2) If M
is two dimensional, (1) holds replacing “C1 critical solution + C2 at x̄” by “C3 critical
subsolution”.

These results can be considered as a first step through the attempt of proving the
Mañé’s conjecture in C2 topology. In a second paper [27], we will generalize (2) to arbitrary
dimension. Moreover, such an extension will need the introduction of some new techniques,
which will allow us to prove in [27] the Mañé’s density Conjecture in C1 topology. Our
proofs are based on a combination of techniques coming from finite dimensional control
theory and Hamilton-Jacobi theory, together with some of the ideas which were used to
prove C1-closing lemmas for dynamical systems.
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1 Introduction

Let (M, g) be a smooth compact Riemannian manifold without boundary of dimension n ≥ 2.
Given H : T ∗M → R a smooth Tonelli Hamiltonian, the Mañé conjecture in Ck topology (with
k ≥ 2) asserts that, for generic potentials V ∈ Ck(M), the projected Aubry set Ã(H + V )
associated to the Hamiltonian H + V is either an equilibrium point or a periodic orbit.

This paper is the first of a series of articles where we plan to make progress toward a
proof of the Mañé Conjecture in C2 topology. The aim of this first paper is to show how to
prove the density part of the Mañé Conjecture in C2 topology under the following assumptions
(Theorem 2.1): there exist a recurrent point of the projected Aubry set x̄, and a critical viscosity
subsolution u, such that u is a C1 critical solution in an open neighborhood of the positive orbit
of x̄, and u is “C2 at x̄”. Then, in two dimensions we show how to replace the above assumption
by replacing “C1 critical solution + C2 at the point” with “C3 critical subsolution” (Theorem
2.4). In a second paper we will perform the extension of this last result to arbitrary dimension
[27, Theorem 1.1]. Moreover, the proof of this last result will involve the introduction of some
new ideas and techniques, which will allow us to prove the (density part of the) Mañé Conjecture
in C1 topology [27, Theorem 1.2].
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Before describing our results in detail, we first introduce the Aubry-Mather theory from both
the Lagrangian and the Hamiltonian points of view. Some conventions and standing notation
are gathered in Appendix A.

1.1 Aubry-Mather theory from the Lagrangian viewpoint

Let L : TM → R be a Ck Tonelli Lagrangian, that is, a Lagrangian of class Ck (with k ≥ 2)
satisfying the two following assumptions:

(L1) Superlinear growth: For every K ≥ 0, there is a finite constant C(K) such that

L(x, v) ≥ K‖v‖x + C(K) ∀ (x, v) ∈ TM.

(L2) Strict convexity: For every (x, v) ∈ TM , the second derivative along the fibers ∂2L
∂v2 (x, v)

is positive definite.

The critical value of L is defined as

c[L] := − inf
T>0

{

1

T
A
(

γ; [0, T ]
)

| γ ∈ C1
(

[0, T ],M
)

, γ(0) = γ(T )

}

, (1.1)

where A
(

γ; [0, T ]
)

denotes the action of the C1 curve γ : [0, T ] →M on the time interval [0, T ],
that is,

A
(

γ; [0, T ]
)

:=

∫ T

0

L
(

γ(t), γ̇(t)
)

dt.

By the assumptions on L, the critical value c[L] is necessarily finite, and satisfies

inf
(x,v)∈TM

L(x, v) ≤ −c[L] ≤ inf
x∈M

L(x, 0).

To each closed curve γ ∈ C1
per
(

[0, T ],M
)

, we can associate a probability measure µγ on TM
by

∫

TM

fdµγ :=
1

T

∫ T

0

f
(

γ(t), γ̇(t)
)

dt ∀ f ∈ C0(TM,R).

Following Mañé [35], we call holonomic probability measure any element in the set

H :=
{

µγ |T > 0, γ ∈ C1
per
(

[0, T ],M
)

}

,

where the closure is taken with respect to the weak-∗ topology on the space of measures. Define
the action functional

AL : P(TM) −→ R ∪ {+∞}
µ 7−→ AL(µ) :=

∫

TM
Ldµ.

By construction, we have
inf
{

AL(µ) |µ ∈ H
}

= −c[L].

The set H is a (nonempty) closed convex subset of P(TM), which is not compact (with respect
to the weak-∗ topology). However, thanks to (L1), the set H0 := H ∩ {AL ≤ −c(L) + 1} is a
compact convex subset of H. This implies that AL attains a minimum on H, that is,

c[L] = −min
µ∈H

{AL(µ)} .

3



The measures µ ∈ H such that AL(µ) = −c[L] are called minimizing measures. It can be shown
that they are invariant under the Euler-Lagrange flow φLt [35], and they minimize the functional
AL among all Borel probability measures on TM which are invariant under φLt .

The Mather set of L is the nonempty compact subset of TM defined as

M̃(L) :=
⋃

AL(µ)=−c[L]

Supp(µ),

and the projected Mather set M(L) ⊂M is given by

M(L) := π
(

M̃(L)
)

.

In [37], Mather proved the following result:

Mather’s Graph Theorem I. The set M̃(L) ⊂ TM is invariant under φLt . Moreover the
map π|M̃(L) : M̃(L) →M is injective, and

(

π|M̃(L)

)−1

: M(L) → M̃(L)

is Lipschitz.

Following Mather [38], for every T > 0 we define the function hT : M ×M → R as

hT (x, y) := inf
{

A
(

γ; [0, T ]
)

| γ ∈ C1
(

[0, T ],M
)

, γ(0) = x, γ(T ) = y
}

.

The Peierls barrier associated with L is the function h : M ×M → R defined by

h(x, y) := lim inf
T→+∞

{

hT (x, y) + c[L]T
}

.

It is immediately seen that the following inequalities hold for all T > 0, for every x, y, z ∈M :

h(x, z) ≤ h(x, y) + hT (y, z) + c[L]T,

h(x, z) ≤ hT (x, y) + c[L]T + h(y, z).

In particular, we deduce that the following “triangle inequality” holds:

h(x, z) ≤ h(x, y) + h(y, z) ∀x, y, z ∈M.

By compactness of M and (1.1), it is not difficult to prove that there is at least one point x ∈M
such that h(x, x) = 0. Hence the above triangle inequality shows that h is finite everywhere on
M ×M . The projected Aubry set A(L) is then defined as the nonempty compact set given by

A(L) :=
{

x ∈M | h(x, x) = 0
}

. (1.2)

We observe that for every x ∈ A(L) there exist a sequence {Tk}k∈N of real numbers tending to
+∞, and a sequence {γk}k∈N of C1 curves γk : [0, Tk] → M , such that γk(0) = γk(Tk) and

lim
k→∞

A
(

γk; [0, Tk]
)

+ c[L]Tk = 0.

Applying the Arzelà-Ascoli Theorem, it can be shown that the sequence {γ̃k} of curves
(

γk, γ̇k
)

:
[0, Tk] → TM is relatively compact, so that for each integer l > 0 the sequence of curves

t ∈ [−l, l] 7−→

{

γ̃k(t) if t ≥ 0
γ̃k(Tk + t) if t < 0
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admits, up to a subsequence, a uniform limit. Then, one can show that such limit curve is
uniquely determined [38], and deduce that to each x ∈ A(L) it can be associated in a unique
way a Ck−1 curve γx : R →M , with γx(0) = x, which solves the Euler-Lagrange equation

d

dt

{

∂L

∂v

(

γx(t), γ̇x(t)
)

}

=
∂L

∂x

(

γx(t), γ̇x(t)
)

∀ t ∈ R.

Then, the Aubry set of L is the compact subset of TM defined by

Ã(L) :=
{

(

γx(t), γ̇x(t)
)

|x ∈ A(L), t ∈ R

}

.

It can be proved that Aubry set Ã(L) contains the Mather set M̃(L). Moreover, in [38] Mather
showed the following result:

Mather’s Graph Theorem II. The set Ã(L) ⊂ TM is invariant under φLt . Moreover the
map π|Ã(L) : Ã(L) →M is injective, its image coincides with A(L), and

(

π|Ã(L)

)−1

: A(L) → Ã(L)

is Lipschitz.

In other terms, Mather’s Graph Theorems state that M̃(L) ⊂ Ã(L) are contained in the
graph of a Lipschitz section of TM .

1.2 Aubry-Mather theory from the Hamiltonian viewpoint

The Tonelli Hamiltonian H : T ∗M → R associated to L by Legendre-Fenchel duality is defined
as

H(x, p) := max
v∈TxM

{

p(v) − L(x, v)
}

∀ (x, p) ∈ T ∗
xM.

Thanks to our assumptions on L, it is well-known that H is of class Ck and satisfies both
properties of superlinear growth and strict convexity in T ∗M :

(H1) Superlinear growth: For every K ≥ 0, there is a finite constant C∗(K) such that

H(x, p) ≥ K‖p‖x + C∗(K) ∀ (x, p) ∈ T ∗M.

(H2) Strict convexity: For every (x, p) ∈ T ∗M , the second derivative along the fibers ∂2H
∂p2 (x, p)

is positive definite.

Under the above assumptions, the Hamiltonian flow φHt of H is of class Ck−1, and is conjugated
with the Euler-Lagrange flow φLt of L. The critical value or Mañé critical value of H is defined
as

c[H ] := c[L], (1.3)

while the Aubry set “seen in T ∗M” is defined as

Ã(H) := L
(

Ã(L)
)

,

where L : TM → T ∗M denotes the Legendre transform (see Appendix A). By construction
Ã(H) is a nonempty compact subset of T ∗M which is invariant under φHt . In a series of papers
[16, 17, 18], Fathi established a deep link between the concept of Aubry sets and the concept
of viscosity solutions of the Hamilton-Jacobi associated with H , which we now describe.
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A continuous function u : M → R is called a viscosity subsolution of the Hamilton-Jacobi
equation

H
(

x, du(x)
)

= c ∀x ∈M, (1.4)

if, for every C1 function φ : M → R such that φ ≤ u and every z ∈M , the following holds:

φ(z) = u(z) =⇒ H(z, dφ(z)) ≤ c.

This is equivalent to asking that

u
(

γ(b)
)

− u
(

γ(a)
)

≤

∫ b

a

L
(

γ(t), γ̇(t)
)

dt+ c(b− a) (1.5)

for every C1 curve γ : [a, b] →M .
A continuous function u : M → R is called a viscosity solution of (1.4) if, for every C1

function φ : M → R such that φ ≤ u and every z ∈M , the following holds1:

φ(z) = u(z) =⇒ H(z, dφ(z)) = c.

As shown by Fathi, a continuous function u : M → R is a viscosity solution of (1.4) if and only if
it is a viscosity subsolution of (1.4) and, for each x ∈M , there is a Ck−1 curve γx : (−∞, 0] →M
such that

u
(

x
)

− u
(

γx(−T )
)

=

∫ 0

−T

L
(

γx(t), γ̇x(t)
)

dt+ cT ∀T ≥ 0. (1.6)

In [16], Fathi proved the following result:

Fathi’s Weak KAM Theorem. The critical Hamilton-Jacobi equation

H
(

x, du(x)
)

= c[H ] ∀x ∈M (1.7)

admits at least one viscosity solution.

Let us recall that, by the compactness of M , c[H ] is the only value of c for which the
Hamilton-Jacobi equation (1.4) admits a viscosity solution. Indeed, if a continuous function
u : M → R is a viscosity subsolution of (1.4) for some c ∈ R, then for every C1 curve
γ : [0, T ] →M one has

−2‖u‖∞ ≤ u
(

γ(T )
)

− u
(

γ(0)
)

≤

∫ T

0

L
(

γ(t), γ̇(t)
)

dt+ cT,

1We notice that the definitions of viscosity subsolution and viscosity solution given here are equivalent to
the usual definitions: usually, a continuous function u : M → R is called a viscosity solution of the first-order
partial differential equation

F
`

x, u(x), du(x)
´

= 0 ∀x ∈ M,

if it satisfies the two following properties:

(i) (u is supersolution) For every C1 function φ : M → R such that φ ≤ u and every z ∈ M , it holds

φ(z) = u(z) =⇒ F (z, φ(z), dφ(z)) ≥ c,

(ii) (u is subsolution) For every C1 function φ : M → R such that φ ≥ u and every z ∈ M , it holds

φ(z) = u(z) =⇒ F (z, φ(z), dφ(z)) ≤ c,

Since H is convex in the p variable with bounded sublevel sets, the above definitions are equivalent to the one
given in the paper.
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where ‖u‖∞ denotes the supremum norm of u. Hence, letting T → +∞, (1.1) yields2

c ≥ c[L] = c[H ]. (1.8)

On the other hand, if γx : (−∞, 0] → M is a C1 curve such that (1.6) is satisfied and ū is a
viscosity solution of (1.7), then for every T ≥ 0 we have

ū
(

γx(0)
)

− ū
(

γx(−T )
)

≤

∫ 0

−T

L
(

γx(t), γ̇x(t)
)

dt+ c[H ]T

= u
(

γx(0)
)

− u
(

γx(−T )
)

+
(

c[H ] − c
)

T.

Hence, letting T → +∞ we get c ≤ c[H ], which together with (1.8) proves that c = c[H ], as
desired. Incidentally, the above argument shows that c[H ] may also be viewed as the infimum
of the values c ∈ R for which there exists a smooth function u : M → R satisfying

H(x, du(x)) ≤ c ∀x ∈M

(see also [13]). In the sequel, we call critical viscosity solution (resp. subsolution) any continuous
function u : M → R which is a viscosity solution (resp. subsolution) of (1.7). If the solution
(resp. subsolution) u is indeed C1, then we call it simply a critical solution (resp. subsolution).
We mention that critical viscosity solutions are sometimes referred as weak KAM solutions.

As shown by Fathi and Siconolfi [25], every critical viscosity subsolution is differentiable on
the projected Aubry set, and it can always be extended outside the projected Aubry set to a
(strict) critical subsolution of class C1:

Fathi-Siconolfi’s Theorem. Let u : M → R be a critical viscosity subsolution. Then u is
differentiable on the projected Aubry set and satisfies

(

x, du(x)
)

∈ Ã(H) ∀x ∈ A(H).

Moreover, there is a critical subsolution v : M → R of class C1 which coincides with u on A(H)
and satisfies

H
(

x, dv(x)
)

) < c[H ] ∀x ∈M \ A(H).

The above result combined with Mather’s Theorem implies that the differential of any crit-
ical viscosity subsolution u : M → R is Lipschitz on the projected Aubry set, does not depend
on u, and satisfies H(x, du(x)) = c[H ] for every x ∈ A(H). In [7] Bernard improved the Fathi-
Siconolfi’s Theorem as follows (we refer the reader to [20, 46] for a survey on the Fathi-Siconolfi’s
and Bernard’s Theorems):

Bernard’s Theorem. If u is a critical viscosity subsolution, then there exists a critical sub-
solution v of class C1,1 whose restriction to the projected Aubry set is equal to u.

The latter result is optimal: there are Hamiltonians which admit C1,1 critical subsolutions
but no C2 critical subsolutions (see [20]).

2We leave the reader to check that, by an easy concatenation procedure, c[L] could also be defined as

c[L] := − lim inf
T→+∞



1

T
A

`

γ; [0, T ]
´

| γ ∈ C1
`

[0, T ], M
´

, γ(0) = γ(T )

ff

.
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Another result on the regularity of viscosity (sub)solutions which will be used in the sequel
is the following theorem of Fathi [19] (see also [44]):

Fathi’s C1,1 Theorem. Let u be a critical viscosity subsolution, and assume that u is a C1

viscosity solution on some open set V . Then u is (locally) C1,1 inside V .

Several works have been devoted to the regularity of critical viscosity solutions [3, 6, 19, 44],
to the structure of general Aubry sets [23, 39, 40, 48], or to the structure of generic Aubry sets
[8, 9, 35, 36]. The purpose of the present paper is to take a first step toward a proof of the
Mañé Conjecture in C2 topology.

1.3 The Mañé Conjecture

Following Mañé [35], given a Tonelli Lagrangian L : TM → R of class Ck (with k ≥ 2) and a
potential V : M → R of class Ck (with k ≥ 2), we define the Lagrangian LV : TM → R by

LV (x, v) := L(x, v) − V (x) ∀ (x, v) ∈ TM.

Denote by Ck(M) the set of Ck potentials on M equipped with the Ck topology. The Mañé
conjecture in Ck topology (with k ≥ 2) can be stated as follows:

Mañé’s Conjecture. For every Tonelli Lagrangian L : TM → R of class Ck (with k ≥ 2),
there is a residual subset (i.e., a countable intersection of open and dense subsets) G of Ck(M)
such that, for every V ∈ G, the Aubry set of the Lagrangian LV is either an equilibrium point
or a periodic orbit.

Equivalently, if we denote by HV the Hamiltonian HV : T ∗M → R associated with LV , that
is

HV (x, p) = H(x, p) + V (x) ∀ (x, p) ∈ T ∗M,

the Mañé Conjecture asserts that for generic potentials V ∈ Ck(M) the set Ã(HV ) is either an
equilibrium point or a periodic orbit.

A natural way to attack the Mañé Conjecture in any dimension would be to prove first a
density result, then a stability result. Namely, given an Hamiltonian of class Ck satisfying (H1)
and (H2), first one could show that the set of potentials V ∈ Ck(M) such that Ã(HV ) is either
a hyperbolic equilibrium point or a hyperbolic periodic orbit is dense, and then prove that the
latter property is open in Ck topology. Since the stability part is contained in the results in
[12] (see Section 7), we can consider that the Mañé Conjecture reduces to the density part:

Mañé’s density Conjecture. For every Tonelli Lagrangian L : TM → R of class Ck (with
k ≥ 2) there exists a dense set D in Ck(M) such that, for every V ∈ D, the Aubry set of the
Lagrangian LV is either an equilibrium point or a periodic orbit.

The aim of the present paper and [27] is to show that the approach, which was adopted (by
Pugh [41, 42], Pugh and Robinson [43], and Mai [34]) to prove closing lemmas for dynamical
systems and Hamiltonian vector fields, proves the Mañé density Conjecture in C1 topology, and
could be used to show the validity of the Mañé density Conjecture in C2 topology. In the next
section, we present our results.

2 Statement of the results

Our first goal is to show how to close an Aubry set in C2 topology under the assumption that
there exists a critical viscosity subsolution which is a C1 (or equivalently C1,1, by Fathi’s The-
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orem) critical solution in an open neighborhood of a positive orbit of a recurrent point of the
projected Aubry set, and which is C2 at that point.

Let x ∈ A(H), fix u : M → R a critical viscosity subsolution, and denote by O+(x) the
positive orbit of x in the projected Aubry set, that is,

O+(x) :=
{

π∗
(

φHt (x, du(x))
)

| t ≥ 0
}

,

Note that, thanks to Mather’s and Fathi-Siconolfi’s Theorems, the positive orbit of any
point of the projected Aubry set belongs to A(H) and does not depend on u. Moreover, if a
point x ∈ A(H) does not belong to the projection of a periodic orbit of Ã(H), it is well-known
that its positive orbit O+(x) cannot be closed. A point x ∈ A(H) is called recurrent if there
exists a sequence of times tk → +∞ such that

lim
k→∞

π∗
(

φHtk(x, du(x))
)

= x,

where u : M → R is again any critical viscosity subsolution. As before, the above definition
does not depend on u.

We now formalize the concept of a C1,1 function being C2 at one point. Let v : V → R be a
function of class C1,1 in an open set V ⊂M . Thanks to Rademacher’s Theorem, its differential
dv is differentiable almost everywhere in M . Let Dom(Hessgv) ⊂ V be the set of points where
dv is differentiable. Then, for every x ∈ Dom(Hessgv), the function v is two times differentiable
at x, and its Hessian with respect to the metric g is the symmetric bilinear form on TxM defined
as

Hessgv(x)[ξ, η] :=
〈(

∇g
ξdv
)

(x), η
〉

∀ ξ, η ∈ TxM,

where ∇g denotes the covariant derivative with respect to g (see [47]). We call generalized
Hessian of v at x ∈ V the set of symmetric bilinear form on TxM defined by

Hessgv(x) := conv

(

{

lim
k→∞

Hessgv(xk) |xk → x, xk ∈ Dom(Hessgv)
}

)

,

where conv denotes the convex envelope, and the limit is taken in the fiber bundle of symmetric
bilinear forms on the fibers of TM . By construction, Hessgv(x) is a nonempty compact convex
set of symmetric bilinear forms on TxM for any x ∈ M . Then, the informal sentence “v is C2

at a point x” that we used before in the introduction, means that Hessgv(x) is a singleton.
(This definition is motivated by the fact that a C1,1 function is C2 on an open set V if and only
if its generalized Hessian is a singleton at every point of V .)

Recall that, by Fathi’s C1,1 Theorem (see Subsection 1.2), C1 viscosity solutions are C1,1.
So it make sense to talk about their generalized Hessian. Our first result is the following:

Theorem 2.1. Let H : T ∗M → R be a Tonelli Hamiltonian of class Ck with k ≥ 2, and
fix ǫ > 0. Assume that there are a recurrent point x̄ ∈ A(H), a critical viscosity subsolution
u : M → R, and an open neighborhood V of O+

(

x̄
)

such that the following properties are
satisfied:

(i) u is of class C1 in V;

(ii) H(x, du(x)) = c[H ] for every x ∈ V;

(iii) Hessgu(x̄) is a singleton.

Then there exists a potential V : M → R of class Ck, with ‖V ‖C2 < ǫ, such that c[HV ] = c[H ]
and the Aubry set of HV is either an equilibrium point or a periodic orbit.
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In the above theorem, the generalized Hessian of u at x̄ depends upon the Riemannian
metric g. However, it is worth noticing that assumption (iii) does not depend on the metric g.
Such an assumption is motivated by some recent results of Arnaud [3, 4, 5]. Let us also point
out that, since the graph of du is invariant under the Hamiltonian flow in V , assumption (iii)
implies that Hessgxu is a singleton for any x ∈ O+

(

x̄
)

.
We note that since the Mather set is a compact set invariant under the Lagrangian flow,

it necessarily contains recurrent points. (Indeed, given any minimal invariant subset of M(L),
minimality implies that all orbits are dense in such a subset.) Thus, the following result is a
straightforward corollary of Theorem 2.1:

Corollary 2.2. Let H : T ∗M → R be a Tonelli Hamiltonian of class Ck with k ≥ 2, and fix
ǫ > 0. Assume that there is a critical viscosity solution which is of class C2 in a neighborhood
of M(L). Then there exists a potential V : M → R of class Ck, with ‖V ‖C2 < ǫ, such that
c[HV ] = c[H ] and the Aubry set of HV is either an equilibrium point or a periodic orbit.

This result applies to the case of Mañé Lagrangians: given X a Ck-vector field on M with
k ≥ 2, the Mañé Lagrangian LX : TM → R associated to X is defined by

LX(x, v) :=
1

2

∥

∥v −X(x)
∥

∥

2

x
∀ (x, v) ∈ TM,

while the Mañé Hamiltonian HX : TM → R is given by

HX(x, p) =
1

2

∥

∥p
∥

∥

2

x
+ 〈p,X(x)〉 ∀ (x, p) ∈ T ∗M.

Since LX ≥ 0 and u ≡ 0 is solution of the Hamilton-Jacobi equation

HX

(

x, du(x)
)

= 0 ∀x ∈M,

by the discussion in Subsections 1.1 and 1.2 we deduce that c[HX ] = 0 and u ≡ 0 is a critical
solution for HX . Then Theorem 2.1 yields the following closing-type result:

Corollary 2.3. Let X be a vector field on M of class Ck with k ≥ 2. Then for every ǫ > 0
there is a potential V : M → R of class Ck, with ‖V ‖C2 < ǫ, such that the Aubry set of HX +V
is either an equilibrium point or a periodic orbit.

In the present paper we prove the following variant of Theorem 2.1 in the case of surfaces,
leaving to [27] the (nontrivial) extension to arbitrary dimension:

Theorem 2.4. Assume that dim M = 2, let H : T ∗M → R be a Tonelli Hamiltonian of class
Ck with k ≥ 2, and fix ǫ > 0. Assume that there are a recurrent point x̄ ∈ A(H), a critical
viscosity subsolution u : M → R, and an open neighborhood V of O+

(

x̄
)

, such that u is at least
of class Ck+1 on V. Then there exists a potential V : M → R of class Ck, with ‖V ‖C2 < ǫ,
such that c[HV ] = c[H ] and the Aubry set of HV is either an equilibrium point or a periodic
orbit.

In analogy with Theorem 2.1, one could check that the above result is still true when
replacing C3 with “C2,1+ C3 at the point”. To achieve this, some minor modifications in the
proof would be needed. However, since we did not see any big improvement in stating the result
in this sharper form, we have preferred to state it under this more “conventional” assumptions.

The extension of Theorem 2.4 to arbitrary dimension will be performed in [27, Theorem
1.1], where we will need some refined versions of the results presented here. Moreover, the
combinations of some of the techniques and ideas introduced here and in the proof of [27,
Theorem 1.1] will allow us to show the validity of the Mañé’s density conjecture in C1 topology
(i.e., for every ǫ > 0 there exists a potential V : M → R of class C2 such that ‖V ‖C1 < ǫ,
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c[HV ] = c[H ], and the Aubry set of HV is either an equilibrium point or a periodic orbit, see
[27, Theorem 1.2]).

The proofs of both Theorems 2.1 and 2.4 involve techniques from finite dimensional control
theory, together with ideas coming from the proof of the classical closing lemma [41, 42, 43, 34].

Let us point out that the assumptions of Theorem 2.1 have no reason to be satisfied for gen-
eral Hamiltonians. This motivated us to introduce Theorem 2.4 (and then to extend Theorem
2.4 to any dimension in [27, Theorem 1.1]). Indeed, even if, in general, critical subsolutions
are at most C1,1 (see the discussion after the statement of Bernard’s Theorem), it may be
possible to prove the generic existence of smooth critical viscosity subsolutions (at least in a
neighborhood of a positive orbit). We plan to address this question in a future work.

As we will see, Theorem 2.4 is proved from Theorem 2.1 by “locally transforming” a critical
subsolution into a critical solution for a different Hamiltonian (see Section 6). Although this
may look a “cheap trick”, the proof is still very involved. Moreover, at this moment we do not
see how to adapt the construction used in the proof of Theorem 2.1 to address directly the case
of subsolution (without passing to the case of solutions).

Let us now briefly explain the difficulties behind the proof of Theorem 2.1, and the strat-
egy to bypass them. Since x̄ is recurrent, the curve t 7→ π∗

(

φHt
(

x̄, du(x̄)
))

passes near x̄
infinitely many times. Then, the rough idea would be to choose a time T ≫ 1 such that
x̄T := π∗

(

φHT
(

x̄, du(x̄)
))

is sufficiently close to x̄, and then try to “close” the trajectory in one
step. There are many points to address here:

1) It is not possible to close the trajectory in one step by adding a potential small in C2-
norm: indeed, if we add a potential V small in C2 topology, the Hamiltonian vector field
associated to HV is close in C1 topology to the Hamiltonian vector field of H . However, if one
wants to close the orbit in only one step, then ∇V can be small only in C0 topology, due to the
fact that the potential V has to be supported in a small neighborhood of the orbit in order not
to intersect with the curve t 7→ π∗

(

φHt
(

x̄, du(x̄)
))

for t ∈ [0, T ]3. Hence, to close the trajectory
we will use Mai Lemma D.1: roughly speaking, fixed an error size ǫ > 0 and a small radius r
which “ideally represents” the distance between x̄ and x̄T , the idea is to close the trajectory
in 1/ǫ steps where at each step we “move” x̄T in the direction of x̄ by a size ǫr. (Actually the
strategy is much more involved, as we have to take care that the modification we do at every
“approaching step” does not influence the modifications done before, and moreover does not
“destroy” the property of x̄ of being recurrent, see Subsection 5.3.)

In order to perform the strategy described above, we need to be able to go from one point
to another by adding a small potential. To this aim, using techniques and results from control
theory, in Section 3 we prove a general result which allows to connect points by Hamiltonian
trajectories.

2) Point 1 above deals with the “closing part of our statement”, i.e., finding a closed orbit for
HV . However, we still need this new orbit to belong to the Aubry set of the new Hamiltonian.
In order to do this, we have first to control the action of the Lagrangian LV along this closed
trajectory (see Subsection 5.4) and then to construct a suitable global critical subsolution which
will allow us to deduce that the curve belongs to the projected Aubry set (Subsection 5.5). The
first part will need again a general “control theory” result proved in Section 4.

The combination of Points 1 and 2 will conclude the proof of Theorem 2.1.

3This is the analogous of the classical “closing lemma”: fixed k ≥ 0, one asks whether, given a vector field
X with a recurrent point x̃, one can find a vector field Y close to X in Ck topology which has a periodic orbit.
The “cheap strategy” of closing the trajectory in one step proves that the closing lemma is true when k = 0,
while for k = 1 new deep ideas have been introduced to solve the problem [41, 42, 43, 34]. Let us recall that
the problem for k ≥ 2 is still open, though many results suggest it may be false when k is sufficiently large (or
that at least there is no possibility to prove such a result by means of “local techniques”, see [28, 31, 32]), unless
some additional assumptions are made [29, 30, 33].
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The paper is organized as follows: in Sections 3 and 4, using techniques from finite di-
mensional control theory, we prove connecting results for Hamiltonian trajectories by adding
potentials, where we further control the Lagrangian action of the trajectories. It is important to
point out that these results (which are essential for the proof of Theorem 2.1) are very general,
and they may be useful for other applications. The proofs of our two theorems are given in
Sections 5 and 6. In Section 7, we will make some final comments on our results and the Mañé
conjecture.

Finally, there are five short appendices that contain either technical results or auxiliary
results, like some tools of control theory, and the exact statement of Mai Lemma which plays
a crucial role in our proofs.

Acknowledgements: The authors are grateful to Didier Auroux, Patrick Bernard, Bernard Bon-
nard, Jean-Michel Coron, Albert Fathi, Gilles Lebeau, Jean-Baptiste Pomet, Rafael Ruggiero,
Emmanuel Trélat, and Constantin Vernicos for enlightening discussions.

3 Connecting Hamiltonian orbits by potentials

3.1 Statement of the result

Let n ≥ 2 be fixed. We denote a point x ∈ Rn either as x = (x1, . . . , xn) or in the form
x = (x1, x̂), where x̂ = (x2, . . . , xn) ∈ Rn−1. Let H̄ : Rn × Rn → R be a Hamiltonian4 of class
Ck, with k ≥ 2, satisfying (H1), (H2) and the additional hypothesis

(H3) Uniform boundedness in the fibers: For every R ≥ 0 we have

A∗(R) := sup
{

H̄(x, p) | |p| ≤ R
}

< +∞.

Note that, under these assumptions, the Hamiltonian H̄ generates a flow φH̄t which is of class
Ck−1 and complete (see [24, corollary 2.2]). Let τ̄ ∈ (0, 1) be fixed. We suppose that there
exists a solution

(

x̄(·), p̄(·)
)

: [0, τ̄ ] −→ R
n × R

n

of the Hamiltonian system

{

˙̄x(t) = ∇pH̄
(

x̄(t), p̄(t)
)

˙̄p(t) = −∇xH̄
(

x̄(t), p̄(t)
) (3.1)

on [0, τ̄ ] satisfying the following conditions5:

(A1) x̄0 =
(

0, ˆ̄x0
)

:= x̄(0) = 0n and ˙̄x(0) = e1;

(A2) x̄τ̄ =
(

τ̄ , ˆ̄xτ̄
)

:= x̄(τ̄ ) =
(

τ̄ , 0n−1

)

and ˙̄x(τ̄ ) = e1;

(A3)
∣

∣ ˙̄x(t) − e1
∣

∣ < 1/2 for any t ∈ [0, τ̄ ].

4Note that we identify T ∗(Rn) with Rn × Rn. For that reason, throughout Section 3 the adjoint variable p

will always be seen as a vector in Rn.
5The purpose of this section is to prove connecting results which can be applied to connect Hamiltonian

trajectories associated with Hamiltonians H : T ∗M → R of class at least C2. Let us remark that any local
Hamiltonian trajectory of a Hamiltonian H : T ∗M → R of class C2 can be sent via a local diffeomorphism of
class C∞ (from an open set of M to an open subset of Rn) to a Hamiltonian trajectory of the form

`

x̄(·), p̄(·)
´

in Rn × Rn satisfying (A1)-(A3) and associated with a Hamiltonian H̄ : Rn × Rn → R of class C2. We note
however that, whenever H is merely C2, we cannot assume that (x(·), p(·)) in Rn ×Rn satisfies x(t) = (t, 0n−1)
∀ t ∈ [0, τ̄ ] up to a smooth change of coordinates.
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For every (x0, p0) ∈ Rn × Rn satisfying H̄(x0, p0) = 0, we denote by
(

X
(

· ; (x0, p0)
)

, P
(

· ; (x0, p0)
)

)

: [0,+∞) −→ R
n × R

n

the solution of the Hamiltonian system
{

ẋ(t) = ∇pH̄
(

x(t), p(t)
)

ṗ(t) = −∇xH̄
(

x(t), p(t)
) (3.2)

satisfying

x(0) = x0 and p(0) = p0. (3.3)

Since the curve x̄(·) is transverse to the hyperplane Πτ̄ :=
{

x =
(

τ̄ , x̂
)

∈ R
n
}

at time τ̄ ,

there is a neighborhood V0 of
(

x̄0, p̄0 := p̄(0)
)

in R
n × R

n such that the Poincaré mapping
τ : V0 → R with respect to the section Πτ̄ is well-defined. That is, it is Ck−1 and satisfies

τ
(

x̄0, p̄0
)

= τ̄ and X1

(

τ(x0, p0); (x0, p0)
)

= τ̄ ∀ (x0, p0) ∈ V0. (3.4)

Our aim is to show that, given a point
(

x0 = (0, x̂0), p0
)

such that H̄(x0, p0) = 0 and sufficiently

close to (x̄0, p̄0), and chosen a point
(

xf = (τ̄ , x̂f ), pf
)

satisfying H̄(xf , pf ) = 0 and sufficiently
close to the final state

(

X
(

τ(x0, p0); (x0, p0)
)

, P
(

τ(x0, p0); (x0, p0)
)

)

,

there exists a time T f close to τ(x0, p0), together with a potential V : Rn → R of class Ck whose
support and C2-norm6 are controlled, such that the solution

(

x(·), p(·)
)

: [0, T f ] → Rn ×Rn of
the Hamiltonian system7

{

ẋ(t) = ∇pH̄V (x(t), p(t)) = ∇pH̄(x(t), p(t))
ṗ(t) = −∇xH̄V (x(t), p(t)) = −∇xH̄(x(t), p(t)) −∇V (x(t))

(3.5)

starting at
(

x(0), p(0)
)

= (x0, p0) satisfies
(

x(T f ), p(T f)
)

= (xf , pf ). Since we also want to
estimate the action of the new “connecting” Hamiltonian trajectory, we introduce some more
notation.

We denote by L̄V : Rn × Rn → R the Lagrangian associated to H̄V by Legendre-Fenchel
duality, i.e.,

L̄V (x, v) = L̄(x, v) − V (x) ∀ (x, v) ∈ R
n × R

n,

where L̄ is the Lagrangian associated to H̄ . For every (x0, p0) ∈ Rn × Rn, T > 0, and every
C2 potential V : Rn → R, we denote by AV

(

(x0, p0);T
)

the action of the curve γ : [0, T ] → Rn

defined as the projection (onto the x variable) of the Hamiltonian trajectory t 7→ φH̄V

t (x0, p0),
that is,

AV

(

(x0, p0);T
)

:=

∫ T

0

L̄V

(

π∗
(

φH̄V

t (x0, p0)
)

,
d

dt

(

π∗
(

φH̄V

t (x0, p0)
))

)

dt (3.6)

=

∫ T

0

L̄

(

π∗
(

φH̄V

t (x0, p0)
)

,
d

dt

(

π∗
(

φH̄V

t (x0, p0)
))

)

(3.7)

−V
(

π∗
(

φH̄V

t (x0, p0)
))

dt.

6Recall that the C2-norm of a compactly supported C2 function V : Rn → R is defined as

‖V ‖C2 := ‖V ‖∞ + ‖∇V ‖∞ + ‖Hess V ‖∞,

where ‖ · ‖∞ denotes the supremum norm. For C1,1 function, the definition of the C1,1-norm is the same just
replacing the sup norm of the Hessian with the esssup (since the Hessian is only defined a.e.).

7As in Section 1, we define H̄V , : Rn × Rn → R by

H̄V (x, p) := H̄(x, p) + V (x) ∀ (x, p) ∈ R
n × R

n.
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Note that, when V = 0, we have

A
(

(x0, p0);T
)

:= A0

(

(x0, p0);T
)

=

∫ T

0

L̄
(

X
(

t; (x0, p0)
)

, Ẋ
(

t; (x0, p0)
)

)

dt.

We are now ready to state our result:

Proposition 3.1. Let H̄ : Rn × Rn → R be a Hamiltonian of class Ck with k ≥ 2 satisfying
(H1)-(H3), and let

(

x̄(·), p̄(·)
)

: [0, τ̄ ] → Rn × Rn be a solution of (3.1) with H̄(x̄0, p̄0) = 0 and

satisfying (A1)-(A3). Then there are δ̄, r̄, ǭ ∈ (0, 1) with B2n
(

(x̄0, p̄0), δ̄
)

⊂ V0, and K > 0, such

that the following property holds: For every r ∈
(

0, r̄
)

, ǫ ∈
(

0, ǭ
)

, and every x0 = (0, x̂0), p0, xf =
(τ̄ , x̂f ), pf ∈ Rn satisfying

∣

∣x̂0
∣

∣,
∣

∣p0 − p̄0
∣

∣ < δ̄, (3.8)

∣

∣

∣(τ̄ , x̂f ) −X
(

τ(x0, p0); (x0, p0)
)

∣

∣

∣,
∣

∣

∣pf − P
(

τ(x0, p0); (x0, p0)
)

∣

∣

∣ < rǫ, (3.9)

H̄
(

x0, p0
)

= H̄
(

xf , pf
)

= 0, (3.10)

there exist a time T f > 0 and a potential V : Rn → R of class Ck such that:

(i) Supp(V ) ⊂ C
(

(

x0, p0
)

; τ(x0, p0); r
)

;

(ii) ‖V ‖C2 < Kǫ;

(iii)
∣

∣T f − τ(x0, p0)
∣

∣ < Krǫ;

(iv) φH̄V

T f

(

x0, p0
)

= (xf , pf );

(v)
∣

∣

∣AV

(

(x0, p0);T f
)

− A
(

(x0, p0); τ(x0, p0)
)

− ∆
(

(x0, p0); τ(x0, p0);xf
)

∣

∣

∣ < Kr2ǫ2.

Here C
(

(

x0, p0
)

; τ(x0, p0); r
)

is the “cylinder” defined as

C
(

(

x0, p0
)

; τ(x0, p0); r
)

:=
{

X
(

t; (x0, p0)
)

+ (0, ŷ) | t ∈
[

0, τ(x0, p0)
]

, |ŷ| < r
}

, (3.11)

and

∆
(

(x0, p0); τ(x0, p0);xf
)

:=
〈

P
(

τ(x0, p0); (x0, p0)
)

, xf −X
(

τ(x0, p0); (x0, p0)
)〉

. (3.12)

3.2 Proof of Proposition 3.1

Given x0 = (0, x̂0), p0, xf = (τ̄ , x̂f ), pf such that (3.8)-(3.10) are satisfied, we are going to show
the existence of a time T f > 0 and a function v : [0, T f ] → Rn of class Ck−1 such that the
solution to the system

{

ẋ(t) = ∇pH̄
(

x(t), p(t)
)

ṗ(t) = −∇xH̄
(

x(t), p(t)
)

− v(t),
(3.13)

starting at (x0, p0), satisfies
(

x(T f ), p(T f)
)

= (xf , pf ). In this way, if we can find a function
V : Rn → R of class Ck such that ∇V (x(t)) = v(t) for all t ∈ [0, T f ], then the solution of
the Hamiltonian system (3.5), starting at (x0, p0), will satisfy (iv). By suitably estimating the
C1-norm of v and by constructing V carefully, we will also ensure that all the other properties
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Figure 1: By adding a potential V , small in C2 topology and supported inside the “cylin-

der” C
“

`

x0, p0
´

; τ (x0, p0); r
”

, we can connect a point x0 to any point xf = (τ̄ , x̂f ) such that
˛

˛xf − X
`

τ (x0, p0); (x0, p0)
´˛

˛ < rǫ.

are satisfied.

Since the Hamiltonian is preserved along the flow, we will work in the hypersurface

{

(x, p) | H̄(x, p) = 0
}

⊂ R
n × R

n.

For every p ∈ R
n, denote by p̂ the n − 1 last coordinates of p, that is the element p̂ ∈ R

n−1

such that p =
(

p1, p̂
)

. (We use the same convention as for x, y ∈ Rn.) By (A3) and the Implicit
Function Theorem, there is a bounded open neighborhood W of the set

{

(

x̄(t), p̄(t)
)

| t ∈ [0, τ̄ ]
}

⊂ R
n × R

n,

a bounded open neighborhood Ŵ of the set

{

(

x̄(t), ˆ̄p(t)
)

| t ∈ [0, τ̄ ]
}

⊂ R
n × R

n−1,

and a function ϕ : Ŵ → R of class Ck such that

{

∀ (x, p) ∈ W : H̄(x, p) = 0 =⇒ p1 = ϕ(x, p̂);

∀ (x, q) ∈ Ŵ :
(

x, (ϕ(x, q), q)
)

∈ W and H̄
(

x, (ϕ(x, q), q)
)

= 0.
(3.14)

Define the Ck function ψ : Ŵ → Rn by

ψ(x, q) :=
(

ϕ(x, q), q
)

. (3.15)
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Then, any solution (x(t), q(t)) ∈ Rn × Rn−1 of
{

ẋ(t) = ∇pH̄
(

x(t), ψ
(

x(t), q(t)
))

q̇(t) = −∇x̂H̄
(

x(t), ψ
(

x(t), q(t)
))

− u(t).
(3.16)

induces a unique solution
(

x(t), ψ
(

x(t), q(t)
))

∈ Rn × Rn of (3.13), as proved in the following
lemma:

Lemma 3.2. Let
(

x(·), q(·)
)

: [0, T ] → Ŵ be a solution of (3.16) on [0, T ] starting at (x0, q0)
and associated with a control u : [0, T ] → Rn−1 of class C∞. Then, the extended trajectory
(

x(·), p(·)
)

: [0, T ] → W defined by

p(t) := ψ
(

x(t), q(t)
)

∀ t ∈ [0, T ] (3.17)

is the unique solution of the Hamiltonian system (3.13) starting at
(

x0, p0 :=
(

ϕ(x0, q0), q0
)

)

and associated with the control v = (v1, u) : [0, T ] → Rn of class Ck−1 defined by

v1(t) := −

(

∂H̄

∂p1

(

x(t), ψ(x(t), p̂(t))
)

)−1
〈

u(t),∇p̂H̄
(

x(t), ψ(x(t), p̂(t))
)〉

. (3.18)

In particular,
〈

v(t), ẋ(t)
〉

= 0 for all t ∈ [0, T ].

Proof of Lemma 3.2. It is sufficient to show that ṗ1(t) is given by

ṗ1(t) = −
∂H̄

∂x1

(

x(t), ψ(x(t), p̂(t)
)

− v1(t),

with v1 as in (3.18). Differentiating (3.17) with respect to t we get

ṗ1(t) =
〈

∇xϕ(x(t), q(t)), ẋ(t)
〉

+
〈

∇qϕ(x(t), q(t)), q̇(t)
〉

for all t ∈ [0, T ]. Moreover, differentiating the equality H̄
(

x, (ϕ(x, q), q)
)

= 0 (given by (3.14))
with respect to both x and q gives











∇xϕ(x, q) = −
(

∂H̄
∂p1

(

x, ψ(x, q)
)

)−1

∇xH̄
(

x, ψ(x, q)
)

,

∇qϕ(x, q) = −
(

∂H̄
∂p1

(

x, ψ(x, q)
)

)−1

∇p̂H̄
(

x, ψ(x, q)
)

.

We conclude easily.

Restricting V0 if necessary, we can assume that there is µ̄ > 0 such that, for any starting
point

(

x0 = (0, x̂0), q0
)

∈ Ŵ0 :=
{

(x, q) |
(

x, ψ(x, q)
)

∈ V0
}

, (3.19)

any time T ∈ (τ̄ − µ̄, τ̄ + µ̄), and any control u : [0, T ] → Rn−1 of class C∞ with ‖u‖C1 < µ̄,
the solution

(

Xu
(x0,q0)(·), Q

u
(x0,q0)(·)

)

: [0, T ] −→ R
n × R

n−1

of (3.16) starting at
(

x0, q0
)

satisfies

(

Xu
(x0,q0)(t), Q

u
(x0,q0)(t)

)

∈ Ŵ ∀ t ∈ [0, T ]. (3.20)

Define the mapping

E(x0,q0),T : C∞
(

[0, T ]; Rn−1
)

−→ Rn × Rn−1

u 7−→
(

Xu
(x0,q0)(T ), Qu(x0,q0)(T )

)

.
(3.21)
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Given δ, r, ǫ > 0 small enough (the smallness to be chosen later) and points
(

x0 = (0, x̂0), q0
)

,
(

xf =

(τ̄ , x̂f ), qf
)

satisfying

∣

∣x̂0
∣

∣,
∣

∣q0 − ˆ̄p0
∣

∣ < δ, (3.22)

and
{
∣

∣(τ̄ , x̂f ) −X
(

τ(x0, ψ(x0, q0)); (x0, ψ(x0, q0)
)∣

∣ < rǫ,
∣

∣qf − P̂
(

τ(x0, ψ(x0, q0)); (x0, ψ(x0, q0))
)∣

∣ < Cϕrǫ,
(3.23)

for some universal constant Cϕ depending only on ϕ, we want to find T f ∈ (τ̄ − µ̄, τ̄ + µ̄) and
a control u : [0, T f ] → Rn−1 of class C∞ such that

E(x0,q0),T f

(u) =
(

xf , qf ), with a bound on the C1-norm of u.

We will apply the controllability results which are given in Appendix B.

Consider the following nonlinear control system in Rn × Rn−1:

ξ̇ = F0(ξ) +

n−1
∑

i=1

uiFi(ξ), (3.24)

where the Ck−1 vector fields F0, Fi : Rn × Rn−1 → Rn × Rn−1 are defined by

F0(ξ) :=

(

∇pH̄
(

x, ψ(x, q)
)

−∇x̂H̄
(

x, ψ(x, q)
)

)

, Fi(ξ) :=

(

0n
−en−1

i

)

, (3.25)

for every i = 1, . . . , n− 1, ξ = (x, q) ∈ Rn×Rn−1. (Recall that ek1 , . . . , e
k
k denotes the canonical

basis of Rk, see Appendix A.) Set p̄τ̄ := P
(

τ̄ ; (x̄0, p̄0)
)

= p̄(τ̄ ), and define the map

Φ : R × Rn−1 × Rn−1 −→ Rn × Rn−1

(

t, x̂, q
)

7−→
(

X
(

t;
(

(τ̄ , x̂), ψ((τ̄ , x̂f ), q)
)

, Q
(

t;
(

(τ̄ , x̂), ψ((τ̄ , x̂f ), q)
)

)

,

(3.26)
where Q = P̂ denotes the last n− 1 components of P . The function Φ is of class C1, and its
differential at

(

0, ˆ̄xτ̄ , ˆ̄pτ̄
)

is invertible. Denote by Ψ =
(

Ψt, Ψ̃
)

∈ R × (Rn−1 × Rn−1) the local

C1 inverse of Φ in an open neighborhood Ŵ τ̄ of
(

x̄τ̄ , ˆ̄pτ̄
)

(Ψ is a map which transforms the
Hamiltonian trajectories (X,Q) into straight lines), and define the C1 mapping

G : Ŵ τ̄ ⊂ Rn × Rn−1 −→ Rn−1 × Rn−1

(x, q) 7−→ Ψ̃(x, q).

Set q̄τ̄ := ˆ̄pτ̄ . By construction G is a submersion at
(

x̄τ̄ , q̄τ̄
)

, and the fact that ˙̄x(τ̄ ) = en1 gives

that the kernel of dG at
(

x̄τ̄ , q̄τ̄
)

is the one dimensional vector space Re2n−1
1 . In order to apply

Theorem B.5, let us compute the Lie brackets [F0, Fi] at ξ̄τ̄ :=
(

x̄τ̄ , q̄τ̄
)

for every i = 1, . . . , n−1.
The first n components of [F0, Fi] at ξ̄τ̄ are given by

∂2H̄

∂p2

(

x̄τ̄ , p̄τ̄
) ∂ψ

∂qi

(

ξ̄τ̄
)

.

Moreover, since ψ(x, q) =
(

ϕ(x, q), q
)

, H̄
(

x, ψ(x, q)
)

= 0 for any x, q, and ˙̄x(τ̄ ) = ∇pH̄
(

x̄τ̄ , p̄τ̄
)

=

en1 , one has ∂ψ
∂qi

(ξ̄τ̄ ) = eni+1. Therefore, the first n components of the bracket [F0, Fi] at ξ̄τ̄ cor-

respond to the (i + 1)-th column of the Hessian of H̄ in the p variable at
(

x̄τ̄ , p̄τ̄
)

. Since the
Hessian of H̄ in the p variable is positive definite,

Span
{

Fi(ξ̄
τ̄ ) | i = 1, . . . , n− 1

}

= {0n} × R
n−1, and Ker

(

dG
(

ξ̄τ̄
))

= Re2n−1
1 ,
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we easily deduce that assumption (B.14) is satisfied with N = 2n− 1.

Set ξ̄0 :=
(

x̄0, q̄0
)

, recall that ξ̄τ̄ =
(

x̄τ̄ , q̄τ̄
)

, and for every ξ0 = (x0, q0) ∈ Ŵ0 (with Ŵ0

defined in (3.19)) and T ∈ (τ̄− µ̄, τ̄+ µ̄), consider the End-Point mapping Eξ
0,T associated with

ξ0 in time T (see (3.21)). From Theorem B.5, there are δ ∈ (0, µ̄) with B2n−1
(

ξ̄0, δ
)

⊂ Ŵ0,
constants KU ,Λ, ν > 0, and k := 2n−2 smooth controls u1, . . . , uk : [0,+∞) → Rn−1 satisfying

Supp(ui) ⊂ [δ, τ̄ − δ] ∀ i = 1, . . . , k, (3.27)

such that the following holds: set ū ≡ 0. Then, for every ξ0 ∈ Rn × Rn−1 and T > 0 satisfying

∣

∣ξ0 − ξ̄0
∣

∣, |T − τ̄ | < δ, (3.28)

there exists a C1 function

U ξ
0,T =

(

U ξ
0,T

1 , . . . , U ξ
0,T
k

)

: Bk
(

G
(

Eξ
0,T (ū)

))

, ν
)

−→ Bk(0,Λ),

with Lipschitz constant bounded by KU , such that U ξ
0,T
(

G
(

Eξ
0,T (ū)

)

)

= 0 and

(

G ◦ Eξ
0,T
)

( k
∑

i=1

U ξ
0,T
i (z)ui

)

= z ∀ z ∈ Bk
(

G
(

Eξ
0,T (ū)

)

, ν
)

.

Moreover, there exist r̄, ǭ ∈ (0, 1) such that, for any r ∈ (0, r̄), ǫ ∈ (0, ǭ), and any vectors

ξ0 =
(

x0 = (0, x̂0), q0
)

, ξf =
(

xf = (τ̄ , x̂f ), qf
)

(3.29)

satisfying (3.22) and (3.23), it holds

∣

∣

∣(x̂f , qf ) −G
(

(Eξ
0,T (ū)

)

∣

∣

∣ < ν,

where T := τ(x0, ψ(x0, q0)) and

G
(

(Eξ
0,T (ū)

)

= G
(

X
(

T ; (x0, ψ(x0, q0))
)

, Q
(

T ; (x0, ψ(x0, q0))
)

)

= G
(

τ̄ , X̂
(

T ; (x0, ψ(x0, q0))
)

, Q
(

T ; (x0, ψ(x0, q0))
)

)

=
(

X̂
(

T ; (x0, ψ(x0, q0))
)

, Q
(

T ; (x0, ψ(x0, q0))
)

)

.

Take r ∈ (0, r̄) with 3r ≤ δ (with δ as above, given by Theorem B.5), ǫ ∈ (0, ǭ), and fix ξ0, ξ
as in (3.29) and satisfying (3.22) and (3.23). From the above discussion, there exists a smooth
control u : [0, T ] → Rn−1 given by

u :=

k
∑

i=1

U ξ
0,T
i (x̂f , qf )ui (3.30)

such that
(

G ◦Eξ
0,T
)

(u) = (x̂f , qf ).

By the definition of G, this gives

Eξ
0,T f

(u) =
(

(τ̄ , x̂f ), qf
)

, (3.31)
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where T f is defined as

T f := T − Ψt

(

Eξ
0,T (u)

)

. (3.32)

Since the function U ξ
0,T is KU -Lipschitz and U ξ

0,T
(

G
(

Eξ
0,T (ū)

)

)

= 0, we have

∥

∥u
∥

∥

C1 ≤ KUNU

∣

∣

∣
(x̂f , qf ) −

(

X̂(T ; (x0, ψ(x0, q0)), Q(T ; (x0, ψ(x0, q0))
)

∣

∣

∣

≤ KUNU

√

1 + C2
ϕ rǫ, (3.33)

where

NU := max
{

∥

∥ui
∥

∥

C1 | i = 1, . . . , k
}

. (3.34)

Note that, up to choosing ν smaller, we can assume that KUNU
√

1 + C2
ϕν < µ̄, so that any

trajectory
(

Xu
ξ0(·), Q

u
ξ0(·)

)

associated with ξ0 = (x0, q0) ∈ B2n−1(ξ̄0, δ) and u given by (3.30)

is contained in Ŵ (thanks to (3.20)). Note also that

Ψt

(

Eξ
0,T (ū)

)

= Ψt

(

(

τ̄ , X̂(T ; (x0, ψ(x0, q0)
)

, Q(T ; (x0, ψ(x0, q0))
)

= 0.

Hence, if we denote by Kt the Lipschitz constant of the function Ψt in Ŵ τ̄ and by KE a uniform
(as ξ0 and T vary) local Lipschitz constant for the functions Eξ

0,T , thanks to (3.33) we get

|T f − T | =
∣

∣

∣Ψt

(

Eξ
0,T (u)

)

− Ψt

(

Eξ
0,T (ū)

)

∣

∣

∣

≤ Kt

∣

∣

∣Eξ
0,T (u) − Eξ

0,T (ū)
∣

∣

∣ (3.35)

≤ KtKE‖u‖C1 ≤ KtKEKUNU

√

1 + C2
ϕ rǫ.

Denote respectively by
(

x(·) = (x1(·), x̂(·)), p(·) = (p1(·), p̂(·))
)

: [0, T f ] → W and v =
(

v1, u
)

: [0, T f ] → Rn the trajectory and the control given by Lemma 3.2. Then by (A3), (3.18)
and (3.33), we have (note that x(·), p(·) and ψ(·) are of class Ck)

∥

∥v
∥

∥

C1 ≤ K̄KUNU

√

1 + C2
ϕ rǫ, (3.36)

where K̄ is a positive constant which depends on the C2-norm of the restriction of H̄ to W .
Moreover, our construction gives also

〈

v(t), ẋ(t)
〉

= 0 ∀ t ∈ [0, T f ] (3.37)

(see Lemma 3.2). Now, starting from the control v, we construct the potential V given in the
statement of Proposition 3.1. We state a general lemma which will be useful again in the proof
of Proposition 4.1, and whose proof is postponed to Appendix E.1. Let us point out that, for
the purpose of this paper, in assertion (ii) of the lemma below it would suffice to write ‖ṽ1‖∞
in place of ‖Ṽ1‖∞. However, this slightly stronger version will be useful in the proof of [27,
Lemma 4.1] (see [27, Lemma A.1]).

Lemma 3.3. Let τ̄ , δ, r ∈ (0, 2) with 3r ≤ δ < τ̄ , and let ṽ =
(

ṽ1, . . . , ṽn
)

: [0, τ̄ ] → Rn be a
function of class Ck−1 with k ≥ 2 satisfying

ṽ(t) = 0n ∀ t ∈ [0, δ] ∪ [τ̄ − δ, τ̄ ] (3.38)

19



and
∫ τ̄

0

ṽ1(t) dt = 0. (3.39)

Set Ṽ1(t) :=
∫ t

0 ṽ1(s) ds for t ∈ [0, τ̄ ]. Then, there exist a universal constant K depending only

on the dimension, and a function W : Rn → R of class Ck, such that the following properties
hold:

(i) Supp(W ) ⊂ [δ/2, τ̄ − δ/2]×Bn−1
(

0n−1, 2r/3
)

⊂ R × Rn−1;

(ii) ‖W‖C2 ≤ K
(

1
r2 ‖Ṽ1‖∞ + 1

r‖ṽ‖∞ + ‖ ˙̃v‖∞
)

;

(iii) ∇W
(

t, 0n−1

)

= ṽ(t) for every t ∈ [0, τ̄ ].

Define the function Γ : [0, τ̄ ] × Rn−1 → Rn by

Γ(t, ẑ) := x

(

tT f

τ̄

)

+ (0, ẑ) ∀ (t, ẑ) ∈ [0, τ̄ ] × R
n−1, (3.40)

where x(·) is the trajectory associated to the control v constructed above. Since H̄ is of class
Ck and v of class Ck−1, the curve t 7→ x(t) is of class Ck, thus Γ is of class Ck, too. Moreover,
since x1(0) = 0 and x1(T

f ) = τ̄ , we can easily check that Γ is a Ck diffeomorphism from
[0, τ̄ ] × R

n−1 into [0, τ̄ ] × R
n−1 which sends the cylinder [0, τ̄ ] ×Bn−1

r into the “cylinder”

C′ :=
{

x(t) + (0, ŷ) | t ∈ [0, T f ], |ŷ| < 2r/3
}

and which satisfies

‖Γ‖C2,
∥

∥Γ−1‖C2 ≤ K̄ ′, (3.41)

for some positive constant K̄ ′ depending on the C2-norm of the restriction of H̄ to W and on
the C0-norm of v (since ẍ(t) can be written in terms of x(t), p(t), ẋ(t) and ṗ(t)). Define the
function ṽ =

(

ṽ1, . . . , ṽn
)

: [0, τ̄ ] → Rn by

ṽ(t) :=
(

dΓ(t, 0n−1)
)∗
(

v

(

tT f

τ̄

))

∀ t ∈ [0, τ̄ ]. (3.42)

The function ṽ is Ck−1; in addition, thanks to (3.37) and (3.40), for every t ∈ [0, τ̄ ] we have

ṽ1(t) = 0 and ṽi(t) = vi

(

tT f

τ̄

)

∀ i = 2, . . . , n.

Hence ṽ satisfies both (3.38) and (3.39), so that applying Lemma 3.3 yields a function W :
R
n → R of class Ck satisfying assertions (i)-(iii) of Lemma 3.3, with

‖W‖C2 ≤
C

r

∥

∥ṽ
∥

∥

C1 (3.43)

(as ṽ1 = 0). Define the potential V : R
n → R of class Ck by

V (x) =

{

W
(

Γ−1(x)
)

if x ∈ C′

0 otherwise.

Thanks to Lemma 3.3(i) we have Supp(V ) ⊂ C′. Furthermore, since the mapping

Ŵ0 × C1
(

[0, τ̄ + µ̄],Rm
)

×
[

0, τ̄ + µ̄
]

−→ Rn
(

ξ0, u, t
)

7−→ Xu
ξ0(t)
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is locally Lipschitz, there exists K̂ > 0 such that

∣

∣x(t) −X
(

t;ψ(ξ0)
)∣

∣ =
∣

∣Xu
ξ0(t) −X ū

ξ0(t)
∣

∣ ≤ K̂‖u‖C1 ∀ t ∈ [0, T f ]. (3.44)

(By abuse of notation, we write ψ(ξ0) :=
(

x0, ψ(q0)
)

for ξ0 = (x0, p0).) Thanks to (3.33), this
implies that, for ǫ sufficiently small, C′ is contained in the “cylinder” defined in (3.11):

Supp(V ) ⊂ C′ ⊂ C
(

ψ(ξ0); τ(x0, p0); r
)

. (3.45)

Now, the gradient of V at a point x is given by

∇V (x) =
(

dΓ−1(x)
)∗
∇W

(

Γ−1(x)
)

,

so that by Lemma 3.3(iii) and (3.42) we get

∇V (x(t)) = v(t) ∀ t ∈ [0, T f ]. (3.46)

Moreover,

‖Hess V ‖∞ ≤
∥

∥∇W
∥

∥

∞

∥

∥d2Γ−1
∥

∥

∞
+
∥

∥Hess W
∥

∥

∞

∥

∥dΓ−1
∥

∥

2

∞
. (3.47)

Thanks to (3.31), (3.35), (3.36), (3.41), (3.42), (3.43), (3.45), (3.46), (3.47), we conclude easily
that there are δ̄, r̄, ǭ ∈ (0, 1) small enough and K > 0 such that assertions (i)-(iv) of Proposition
3.1 hold.

It remains to show that, up to choosing K larger, assertion (v) holds. Let us compute the
differences of the actions between the two trajectories

x(·) : [0, T f ] → R
n and X0(·) := X

(

·; (x0, p0
)

: [0, T ] → R
n.

Set P 0(t) := P
(

t; (x0, p0)
)

for every t ∈ [0, T ]. Observe that, by (3.37) and (3.46), V = 0 along
the new trajectory x(·). Moreover, due to (3.36) and a simple Gronwall argument, we have

∣

∣x(t) −X0(t)
∣

∣+
∣

∣ẋ(t) − Ẋ0(t)
∣

∣ ≤ K̄rǫ ∀ t ∈ [0, T f ],

for some constant K̄ depending only on H̄ . Hence, thanks to this estimate there exists a
constant K̃ such that

∣

∣AV

(

(x0, p0);T f
)

− A
(

(x0, p0); T
)

− ∆
(

(x0, p0); τ(x0, p0);xf
)∣

∣

=

∣

∣

∣

∣

∣

∫ T f

0

L̄V
(

x(t), ẋ(t)
)

dt−

∫ T

0

L̄
(

X0(t), Ẋ0(t)
)

dt−
〈

P 0(T ), x(T f ) −X0(T )
〉

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T f

0

L̄
(

x(t), ẋ(t)
)

dt−

∫ T

0

L̄
(

X0(t), Ẋ0(t)
)

dt−
〈

P 0(T ), x(T f ) −X0(T )
〉

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0

(

L̄
(

x(t), ẋ(t)
)

− L̄
(

X0(t), Ẋ0(t)
)

)

dt

+

∫ T f

T

L̄
(

x(t), ẋ(t)
)

dt−
〈

P 0(T ), x(T f ) −X0(T )
〉

∣

∣

∣

∣

∣

≤
∣

∣

∣

〈

∇vL̄
(

X0(T ), Ẋ0(T )
)

, x(T ) −X0(T )
〉

+

∫ T f

T

L̄
(

x(t), ẋ(t)
)

dt−
〈

P 0(T ), x(T f ) −X0(T )
〉

∣

∣

∣

∣

∣

+ K̃r2ǫ2,
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where we use Taylor’s formula at second order for L̄, together with an integration by part and
the fact that the Euler-Lagrange equations

d

dt

{

∇vL̄
(

X0(t), Ẋ0(t)
)

}

= ∇xL̄
(

X0(t), Ẋ0(t)
)

are satisfied for any t ∈ [0, T ]. Using now that

P 0(T ) = ∇vL̄
(

X0(T ), Ẋ0(T )
)

and L̄
(

x(t), ẋ(t)
)

=
〈

p(t), ẋ(t)
〉

∀ t ∈ [0, T f ]

(since H̄(x0, p0) = 0, and
〈

∇V (x(t)), ẋ(t)
〉

= 0 by (3.37) and (3.46)), we obtain
∣

∣AV

(

(x0, p0);T f
)

− A
(

(x0, p0); T
)

− ∆
(

(x0, p0); τ(x0, p0);xf
)∣

∣

≤

∣

∣

∣

∣

∣

〈

P 0(T ), x(T ) −X0(T )
〉

+

∫ T f

T

〈

p(t), ẋ(t)
〉

dt−
〈

P 0(T ), x(T f ) −X0(T )
〉

∣

∣

∣

∣

∣

+ K̃r2ǫ2

≤

∣

∣

∣

∣

∣

〈

P 0(T ), x(T ) − x(T f )
〉

+

∫ T f

T

〈

P 0(T ), ẋ(t)
〉

dt

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ T f

T

〈

p(t) − P 0(T ), ẋ(t)
〉

dt

∣

∣

∣

∣

∣

+ K̃r2ǫ2

=

∣

∣

∣

∣

∣

〈

P 0(T ), x(T ) − x(T f )
〉

+
〈

P 0(T ),

∫ T f

T

ẋ(t) dt
〉

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ T f

T

〈

p(t) − P 0(T ), ẋ(t)
〉

dt

∣

∣

∣

∣

∣

+ K̃r2ǫ2

=

∣

∣

∣

∣

∣

∫ T f

T

〈

p(t) − P 0(T ), ẋ(t)
〉

dt

∣

∣

∣

∣

∣

+ K̃r2ǫ2

≤

∫ T f

T

∣

∣p(t) − P 0(T )
∣

∣

∣

∣ẋ(t)
∣

∣ dt+ K̃r2ǫ2.

Now, note that by our assumptions on
(

xf , pf := ψ(xf , qf )
)

we have
∣

∣p(T f) − P 0(T )
∣

∣ =
|pf − P 0(T )| < rǫ. Moreover, (3.35) holds. Hence, since the function t 7→ p(t) is Lipschitz and
t 7→ |ẋ(t)| is bounded (both with bounds depending only on H̄), we can find K > 0 such that
(v) holds.

Remark 3.4. Let us point out that the above bound on the action can be slightly refined: indeed
(3.33) shows that

∥

∥u
∥

∥

C1 ≤ KUNU

∣

∣

∣(x̂f , qf ) −
(

X̂(T ; (x0, p0), Q(T ; (x0, p0)
)

∣

∣

∣,

so it is easily seen that the above proof actually gives

∣

∣AV

(

(x0, p0);T f
)

− A
(

(x0, p0); T
)

− ∆
(

(x0, p0); τ(x0, p0);xf
)∣

∣

≤ K ′
∣

∣

∣
(x̂f , qf ) −

(

X̂(T ; (x0, p0), Q(T ; (x0, p0)
)

∣

∣

∣

2

for some uniform constant K ′, which of course implies (v). Moreover, the above estimates hold
also with different final times: for any τ ∈ [0, τ̄ ], t ∈ [0, τ(x1, p1)] and tV ∈ [0, T f ] such that
x(tV ), X

(

t; (x0, p0)
)

∈ Πτ :=
{

x = (τ, x̂) ∈ Rn
}

, it holds:

|tV − t| ≤ K ′
∣

∣

∣

(

x̂(tV ), q(tV )
)

−
(

X̂(t; (x0, p0), Q(t; (x0, p0)
)

∣

∣

∣, (3.48)

∣

∣AV

(

(x0, p0); tV
)

− A
(

(x0, p0); t
)

− ∆
(

(x0, p0); t;x(tV )
)∣

∣

≤ K ′
∣

∣

∣

(

x̂(tV ), q(tV )
)

−
(

X̂(t; (x0, p0), Q(t; (x0, p0)
)

∣

∣

∣

2

(3.49)

Although these two refined bounds will never be used in this paper, they will be crucial for
future applications (see [27, Propositions 2.1 and 2.2]).
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4 Controlling the action by potentials

4.1 Statement of the result

Fix n ≥ 2, τ̄ ∈ (0, 1), and consider a Hamiltonian H̄ : Rn × Rn → R of class Ck, with k ≥ 2,
satisfying (H1)-(H3). Let

(

x̄(·), p̄(·)
)

: [0, τ̄ ] −→ R
n × R

n

be a trajectory satisfying (A1)-(A3). We keep the same notation as the ones in Subsection 3.1.
Recall that the Poincaré mapping τ = τ(x, p), with respect to the section Πτ̄ , is defined on
an open neighborhood V0 of

(

x̄0, p̄0
)

. Our aim is to show that, given
(

x0 = (0, x̂0), p0
)

with

H̄(x0, p0) = 0 sufficiently close to
(

x̄0, p̄0
)

, and σ ∈ R sufficiently small, there exist a time T f

close to τ(x0, p0) and a potential V : Rn → R of class Ck whose support and C2-norm are
controlled, such that the solution

(

XV (·), PV (·)
)

: [0, T ] −→ R
n × R

n

of the Hamiltonian system
{

ẋ(t) = ∇pH̄V (x(t), p(t)) = ∇pH̄(x(t), p(t))
ṗ(t) = −∇xH̄V (x(t), p(t)) = −∇xH̄(x(t), p(t)) −∇V (x(t))

(4.1)

starting at (XV (0), PV (0)) = (x0, p0) satisfies

(

XV (T ), PV (T )
)

= φH̄τ(x0,p0)

(

x0, p0
)

and
AV

(

(x0, p0);T f
)

= A
(

(x0, p0); τ(x0, p0)
)

+ σ,

where AV is defined in (3.6) and A = A0. We now state our result.

We recall that C
(

(

x0, p0
)

; τ(x0, p0); r
)

denotes the “cylinder” defined in (3.11), and we

define the two matrices

∂2H̄

∂p̂2

(

x̄τ̄ , p̄τ̄
)

:=

(

∂2H̄

∂pi∂pj

(

x̄τ̄ , p̄τ̄
)

)

i,j=2,...,n

∈Mn−1(R),

∂2H̄

∂p2

(

x̄τ̄ , p̄τ̄
)

:=

(

∂2H̄

∂pi∂pj

(

x̄τ̄ , p̄τ̄
)

)

i,j=1,...,n

∈Mn(R),

where x̄τ̄ = x̄(τ̄ ) and p̄τ̄ = p̄(τ̄ ).

Proposition 4.1. Let H̄ : Rn × Rn → R be a Hamiltonian of class Ck with k ≥ 2 satisfying
(H1)-(H3), and let

(

x̄(·), p̄(·)
)

: [0, τ̄ ] → R
n × R

n be a solution of (3.1) with H̄(x̄0, p̄0) = 0 and

satisfying (A1)-(A3). Set p̄τ̄1 := p̄
(

τ̄
)

1
, and assume that the following property is satisfied:

(A4) det
(

∂2H̄
∂p̂2

(

x̄τ̄ , p̄τ̄
)

)

+ p̄τ̄1 det
(

∂2H̄
∂p2

(

x̄τ̄ , p̄τ̄
)

)

6= 0.

Then there are δ̄, r̄ ∈ (0, 1) with B2n
(

(x̄0, p̄0), δ̄
)

⊂ V0, and K > 0, such that the following

property holds: For every r ∈
(

0, r̄
)

, ǫ ∈
(

0, 1
)

, and every x0 = (0, x̂0), p0 ∈ Rn, σ ∈ R satisfying
∣

∣x̂0
∣

∣,
∣

∣p0 − p̄0
∣

∣ < δ̄, (4.2)

|σ| < 2r2ǫ, (4.3)

H̄
(

x0, p0
)

= 0, (4.4)

there exist a time T f > 0 and a potential V : Rn → R of class Ck such that:
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(i) Supp(V ) ⊂ C
(

(

x0, p0
)

; τ(x0, p0); r
)

;

(ii) ‖V ‖C2 < K|σ|
r2 ≤ 2Kǫ;

(iii)
∣

∣T f − τ(x0, p0)
∣

∣ < K|σ| ≤ 2Kr2ǫ;

(iv) φH̄V

T f

(

x0, p0
)

= φH̄τ(x0,p0)

(

x0, p0
)

;

(v) AV

(

(x0, p0);T f
)

= A
(

(x0, p0); τ(x0, p0)
)

+ σ.

4.2 Proof of Proposition 4.1

Given
(

x0 = (0, x̂0), p0
)

and σ such that (4.2)-(4.4) are satisfied, we are going to look for a

function v :
[

0, T f
]

→ Rn of class Ck−1 such that the solution to the system

{

ẋ(t) = ∇pH̄(x(t), p(t))
ṗ(t) = −∇xH̄(x(t), p(t)) − v(t),

starting at (x0, p0) satisfies

(

x(T f ), p(T f)
)

= φH̄τ(x0,p0)

(

x0, p0
)

and

∫ T f

0

〈

p(t), ẋ(t)
〉

dt = A
(

(x0, p0); τ(x0, p0)
)

+ σ.

In that way, if we find a function V : Rn → R of class Ck such that ∇V (x(t)) = v(t) for all
t ∈ [0, T f ], then the solution (XV , PV ) of the Hamiltonian system (4.1) starting at (x̄0, p̄0)
satisfies

(

XV (T f ), PV (T f )
)

= φH̄τ(x0,p0)

(

x0, p0
)

. Moreover, since H̄V is preserved along the

trajectory t 7→
(

XV (t), PV (t)
)

, we have H̄V

(

XV (t), PV (t)
)

≡ 0 and we get

AV

(

(x0, p0);T f
)

=

∫ T f

0

L̄V
(

XV (t), ẊV (t)
)

dt

=

∫ T f

0

〈

PV (t), ẊV (t)
〉

− H̄V

(

XV (t), PV (t)
)

dt

=

∫ T f

0

〈

PV (t), ẊV (t)
〉

dt

= A
(

(x0, p0); τ(x0, p0)
)

+ σ.

Thus assertions (iv) and (v) will be satisfied. It will remain to control the support and the
C2-norm of V . In particular, since v has to be the gradient of a function V supported in

C
(

(

x0, p0
)

; τ(x0, p0), r
)

, it must satisfy

∫ T f

0

〈v(t), ẋ(t)〉 dt = 0.

For that reason, we study the control system














ẋ(t) = ∇pH̄(x(t), p(t))
ṗ(t) = −∇xH̄(x(t), p(t)) − v(t)

ϑ̇(t) =
〈

v(t),∇pH̄(x(t), p(t))
〉

σ̇(t) =
〈

p(t),∇pH̄(x(t), p(t))
〉

.

(4.5)

For every (x0, p0) ∈ V0, set

σ̄(x0, p0) := −A
(

(x0, p0); τ(x0, p0)
)

. (4.6)
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For each (x0, p0) ∈ V0 and every smooth function v : [0,+∞) → Rn, there is a unique trajectory
(

Xv
(x0,p0)(·), P

v
(x0,p0)(·), Θ

v
(x0,p0)(·), Σ

v
(x0,p0)(·)

)

:
[

0, τ(x0, p0)
]

−→ R
n × R

n × R × R

starting at
(

x0, p0, 0, σ̄(x0, p0)
)

which satisfies (4.5) for every t ∈
[

0,+∞). For every T > 0,

define the mapping E(x0,p0),T : C∞
(

[0, T ]; Rn
)

→ Rn × Rn × R × R by

E(x0,p0),T (v) :=
(

Xv
(x0,p0)(T ), P v(x0,p0)

(T ), Θv(x0,p0)(T ), Σv
(x0,p0)(T )

)

. (4.7)

Given (x0, p0) and σ ∈ R, our aim is to find T f > 0, together with a function v : [0, T f ] → R
n

of class C∞, such that

E(x0,p0),T f

(v) =
(

φHτ(x0,p0)

(

x0, p0
)

, 0, σ
)

, with a control on ‖v‖C1.

We observe that the control system (4.5) is over-determined: indeed, along any trajectory
(

Xv
(x0,p0), P

v
(x0,p0), Θ

v
(x0,p0), Σ

v
(x0,p0)

)

of (4.5) there holds

H̄
(

Xv
(x0,p0)(t), P

v
(x0,p0)

(t)
)

+Θv(x0,p0)(t) = H̄
(

x0, p0
)

= 0 ∀ t ∈ [0,+∞).

This means that we have at most 2n + 1 degrees of freedom in the choice of the final state
(

Xv
(x0,p0)(T

f), P v(x0,p0)
(T f ), Θv(x0,p0)(T

f), Σv
(x0,p0)(T

f )
)

. By (A3) and the Implicit Function

Theorem, there are a bounded open neighborhood W of the set
{

(

x̄(t), p̄(t), 0
)

| t ∈ [0, τ̄ ]
}

⊂ R
2n+1,

a bounded open neighborhood Ŵ of the set
{

(

x̄(t), ˆ̄p(t), 0
)

| t ∈ [0, τ̄ ]
}

⊂ R
2n,

and a function ϕ : Ŵ → R of class Ck such that
{

∀ (x, p, h) ∈ W : H̄(x, p) + ϑ = 0 =⇒ p1 = ϕ
(

x, p̂, ϑ
)

;

∀
(

x, q, ϑ) ∈ Ŵ :
(

x, (ϕ(x, q, z), q), ϑ
)

∈ W and H̄
(

x, (ϕ(x, q, ϑ), q)
)

+ ϑ = 0.
(4.8)

Define the Ck function ψ : Ŵ → Rn by

ψ(x, q, ϑ) :=
(

ϕ(x, q, ϑ), q
)

.

Then, any solution of














ẋ(t) = ∇pH̄
(

x(t), ψ(x(t), q(t), ϑ(t)
)

q̇(t) = −∇x̂H̄
(

x(t), ψ(x(t), q(t), ϑ(t)
)

− v̂(t)

ϑ̇(t) =
〈

v(t),∇pH̄
(

x(t), ψ(x(t), q(t), ϑ(t)
)〉

σ̇(t) =
〈

ψ
(

x(t), q(t), ϑ(t)
)

,∇pH̄
(

x(t), ψ(x(t), q(t), ϑ(t)
)〉

(4.9)

generates a unique solution of (4.5), where v̂(t) =
(

v2(t), . . . , vn(t)
)

:

Lemma 4.2. Let
(

x(·), q(·), ϑ(·), σ(·)
)

: [0, T ] → Ŵ × R be a solution of (4.9) starting at
(

x0, p̂0, 0, σ0
)

and associated with a smooth control v : [0, T ] → Rn. Then, the extended trajec-

tory
(

x(·), p(·), ϑ(·), σ(·)
)

: [0, T ] → W × R defined by

p1(t) = ϕ(x(t), q(t), ϑ(t)) ∀ t ∈ [0, T ], (4.10)

p̂(t) = q(t) ∀ t ∈ [0, T ],

is the solution of (4.5) starting at
(

x0, p0, 0, σ0
)

and associated with the control v.
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Proof of Lemma 4.2. It is sufficient to show that, for every t ∈ [0, T ], ṗ1(t) is given by

ṗ1(t) = −
∂H̄

∂x1

(

x(t), ψ(x(t), p̂(t), ϑ(t))
)

− v1(t).

Differentiating (4.10) with respect to t we get

ṗ1(t) = 〈∇xϕ(x(t), q(t), ϑ(t)), ẋ(t)〉 + 〈∇qϕ(x(t), q(t), ϑ(t)), q̇(t)〉 + 〈∇ϑϕ(x(t), q(t), ϑ(t)), ϑ̇(t)〉

for all t ∈ [0, T ]. Moreover, differentiating the equality H̄
(

x, (ϕ(x, q, ϑ), q)
)

+ ϑ = 0 (given by
(4.8)) with respect to x, q and ϑ yields























∇xϕ(x, q, ϑ) = −
(

∂H̄
∂p1

(

x, ψ(x, q, ϑ)
)

)−1

∇xH̄
(

x, ψ(x, q, ϑ)
)

,

∇qϕ(x, q, ϑ) = −
(

∂H̄
∂p1

(

x, ψ(x, q, ϑ)
)

)−1

∇p̂H̄
(

x, ψ(x, q, ϑ)
)

,

∇ϑϕ(x, q, ϑ) = −
(

∂H̄
∂p1

(

x, ψ(x, q, ϑ)
)

)−1

.

(4.11)

We conclude easily.

As in the proof of Proposition 3.1, we apply the controllability results given in Appendix B.

Consider the following nonlinear control system in Rn × Rn−1 × R × R:

ξ̇ = F0(ξ) +

n
∑

i=1

viFi(ξ), (4.12)

where the Ck−1 vector fields F0, Fi are defined by

F0(ξ) :=









∇pH̄
(

x, ψ(x, q, ϑ)
)

−∇x̂H̄
(

x, ψ(x, q, ϑ)
)

0
〈

ψ(x, q, ϑ),∇pH̄
(

x, ψ(x, q, ϑ)
)〉









, Fi(ξ) :=









0n
−en−1

i−1
∂H̄
∂pi

(

x, ψ(x, q, ϑ)
)

0









, (4.13)

for every i = 1, . . . , n, ξ = (x, q, ϑ, σ) ∈ Rn × Rn−1 × R × R (with the convention en−1
0 = 0).

Recall that φH̄t denotes the Hamiltonian flow associated with H̄ on Rn × Rn. Set

π̂(x, p) :=
(

x, p̂
)

∀ (x, p) ∈ R
n × R

n,

and define the C1 map Φ : R × Rn−1 × Rn−1 × R × R → Rn × Rn−1 × R × R

Φ
(

t, x̂, q, ϑ, σ
)

:=
(

π̂
(

φH̄t
(

(τ̄ , x̂), ψ
(

(τ̄ , x̂), q, ϑ
))

)

, ϑ, σ + A
((

(τ̄ , x̂), ψ
(

(τ̄ , x̂), q, ϑ
))

; t
)

)

.

(Observe that the first 2n− 1 components of the map Φ above coincides, up to the presence of
a dependence on ϑ, with the map Φ defined in the previous section, see (3.26).) The function
Φ is of class C1 and its differential at

(

0, ˆ̄xτ̄ , ˆ̄pτ̄ , 0, 0
)

is invertible. Denote by Ψ =
(

Ψt, Ψ̃
)

the

local C1 inverse of Φ in an open neighborhood Ŵ τ̄ of
(

x̄τ̄ , ˆ̄pτ̄ , 0, 0
)

(as in the previous section,
the map Ψ straightens the Hamiltonian trajectories), and define the C1 mapping

G : Ŵ1 ⊂ Rn × Rn−1 × R × R −→ Rn−1 × Rn−1 × R × R

(x, q, ϑ, σ) 7−→ Ψ̃(x, q, ϑ, σ).

By construction G is a submersion at ξ̄τ̄ :=
(

x̄τ̄ , q̄τ̄ := ˆ̄pτ̄ , 0, 0
)

, and the fact that ˙̄x(τ̄ ) = en1
gives that the kernel of dG at ξ̄τ̄ is the vector line Re2n+1

1 . As in the proof of Proposition 3.1,
we check that the following result holds (the proof of Lemma 4.3 is postponed to Appendix
E.2):
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Lemma 4.3. Assumption (B.14) is satisfied.

Now, restricting V0 if necessary, we can assume that there is µ̄ > 0 such that, for any
starting point

(

x0 = (0, x̂0), q0
)

∈ Ŵ0 :=
{

(x, q) |
(

x, ψ(x, q, 0)
)

∈ V0
}

,

any time T ∈ (τ̄ − µ̄, τ̄ + µ̄), and any control v : [0, T ] → Rn of class C∞ with ‖v‖C1 < µ̄, we
have

(

x(t), q(t)
)

∈ Ŵ ∀ t ∈ [0, T ]

for every solution (x(t), q(t), ϑ(t), σ(t)) of (4.9) starting at ξ0 := (x0, q0, 0, σ̄(x0, p0)), where
p0 := ψ

(

x0, q0, 0
)

and σ̄(x0, p0) was defined in (4.6).

Recall that ξ̄τ̄ =
(

x̄τ̄ , q̄τ̄ , 0, 0
)

, and for every

(

x0 = (0, x̂0), q0
)

∈ Ŵ0, T ∈ (τ̄ − µ̄, τ̄ + µ̄),

denote by Eξ
0,T = E(x0,p0),T the End-Point mapping associated with ξ0 =

(

x0, q0, 0, σ̄(x0, p0)
)

in time T (see (4.7)). From Theorem B.5, there are δ ∈ (0, µ̄) such that B2n−1
(

ξ̄0, δ
)

⊂ V0,
constants KU ,Λ, ν > 0, and k := 2n smooth controls v1, . . . , vk : [0,+∞) → Rn−1 such that

Supp(vi) ⊂ [δ, τ̄ − δ] ∀ i = 1, . . . , k, (4.14)

and the following property is satisfied: For every ξ0 ∈ Rn × Rn−1 and T > 0 satisfying

∣

∣ξ0 − ξ̄0
∣

∣, |T − τ̄ | < δ (4.15)

there is a C1 function of class

U ξ
0,T =

(

U ξ
0,T

1 , . . . , U ξ
0,T
k

)

: Bk
(

G
(

Eξ
0,T (v̄)

))

, ν
)

−→ Bk(0,Λ),

whose Lipschitz constant is bounded by KU , such that U ξ
0,T
(

G
(

Eξ
0,T (v̄)

)

)

= 0 (we are setting

v̄ ≡ 0) and

(

G ◦ Eξ
0,T
)

( k
∑

i=1

U ξ
0,T
i (z)vi

)

= z ∀ z ∈ Bk
(

G
(

Eξ
0,T (v̄)

)

, ν
)

.

Hence, there exists r̄ ∈ (0, δ/3) such that, for any r ∈ (0, r̄) and any vectors

ξ0 =
(

x0 = (0, x̂0), q0, 0, σ̄(x0, p0)
)

, ξ =
(

π̂
(

φH̄τ(x0,p0)

(

(0, x̂0), p0
)

)

, 0, σ
)

(4.16)

satisfying |σ| < 2r2, it holds

∣

∣

∣

(

π̃
(

φH̄τ(x0,p0)

(

x0, p0
)

)

, 0, σ
)

−G
(

(Eξ
0,T (ū)

)

∣

∣

∣ = |σ| < ν,

where π̃(x, p) := (x̂, p̂), T := τ(x0, p0), and

G
(

(Eξ
0,T (ū)

)

= G
(

X0
(x0,p0)(T ), P̂ 0

(x0,p0)
(T ), Θv(x0,p0)(T ), Σv

(x0,p0)(T )
)

= G
(

τ̄ , X̂0
(x0,p0)(T ), P̂ 0

(x0,p0)(T ), 0, σ̄(x0, p0)
)

=
(

π̃
(

φH̄τ(x0,p0)

(

x0, p0
))

, 0, 0
)

.
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Let r ∈ (0, r̄), ǫ ∈ (0, 1), and ξ0, ξ as in (4.16) with |σ| < 2r2ǫ. By the discussion above,
there exists a smooth control v : [0, T ] → Rn given by

v :=

k
∑

i=1

U ξ
0,T
i (x̂, q)vi (4.17)

such that
(

G ◦ Eξ
0,T
)

(v) =
(

π̃
(

φH̄τ(x0,p0)

(

x0, p0
)

)

, 0, σ
)

.

By the definition of Φ, this gives

Eξ
0,T f

(v) =
(

π̂
(

φH̄τ(x0,p0)

(

x0, p0
)

)

, 0, σ
)

, (4.18)

where T f is defined by

T f := T − Ψt

(

Eξ
0,T (v)

)

.

Since the function U ξ
0,T is KU -Lipschitz and U ξ

0,T
(

G
(

Eξ
0,T (v̄)

)

)

= 0, arguing as in (3.33)

we have

∥

∥v
∥

∥

C1 ≤ KUNU |σ|, (4.19)

where

NU := max
{

∥

∥vi
∥

∥

C1 | i = 1, . . . , k
}

. (4.20)

Furthermore, since Ψt

(

Eξ
0,T (ū)

)

= 0, if Kt denotes a Lipschitz constant for Ψt in Ŵ τ̄ , and KE

is a uniform (as ξ0 and T vary) local Lipschitz constant for the functions Eξ
0,T , as in (3.35)

we get

|T f − T | ≤ KtKEKUNU |σ|. (4.21)

Denote respectively by

(

x(·), p(·), ϑ(·), σ(·)
)

: [0, T f ] −→ W × R and v : [0, T f ] −→ R
n

the trajectory and the control given by Lemma 4.2. Then, there exists positive constant K̄,
depending only on the C2-norm of H̄ in a neighborhood of

(

x̄(·), p̄(·)
)

: [0, τ̄ ] → Rn ×Rn, such
that

∣

∣

〈

v(t), ẋ(t)
〉∣

∣+
∣

∣

∣

d

dt

{〈

v(t), ẋ(t)
〉}

∣

∣

∣ ≤ K̄‖v‖C1 ≤ K̄KUNU |σ| ∀ t ∈ [0, T f ], (4.22)

and

∫ T f

0

〈

v(t), ẋ(t)
〉

dt = 0. (4.23)

Let us now show how to construct the potential V given in the statement of Proposition 4.1
from v. We proceed as in the proof of Proposition 3.1.

Define the function Γ : [0, τ̄ ] × Rn−1 → Rn of class Ck by

Γ(t, ẑ) := x

(

tT f

τ̄

)

+ (0, ẑ) ∀ (t, ẑ) ∈ [0, τ̄ ] × R
n−1
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and the Ck−1 control ṽ : [0, τ̄ ] → Rn, with coordinates
(

ṽ1, . . . , ṽn
)

, by

ṽ(t) :=
(

dΓ(t, 0n−1)
)∗
(

v

(

tT f

τ̄

))

∀ t ∈ [0, τ̄ ]. (4.24)

By construction ṽ1(·) is given by

ṽ1(t) =
T f

τ̄

〈

v

(

tT f

τ̄

)

, ẋ

(

tT f

τ̄

)

〉

∀ t ∈ [0, τ̄ ],

so that (4.14) and (4.23) allow to apply Lemma 3.3. Set V := W ◦ Γ−1, with W given by
Lemma 3.3. Arguing as in the proof of Proposition 3.1, thanks to (4.18), (4.19), (4.21), (4.22),
(4.24), we conclude easily that there are δ̄, r̄,∈ (0, 1) small, and K > 0, such that assertions
(i)-(v) of Proposition 4.1 hold.

4.3 Remarks

Let us observe that (A4), together with the assumption ˙̄x(τ̄ ) = e1, is intrinsic. (Although we
will never use this fact, we think it is interesting to point this out.) Indeed, let H̄ : Rn×Rn → R

be a Hamiltonian of class Ck with k ≥ 2 and let
(

x̄(·), p̄(·)) : [0, τ̄ ] → Rn × Rn be a solution of
(3.1) which satisfies

˙̄x(τ̄ ) = e1 and det

(

∂2H̄

∂p̂2

(

x̄τ̄ , p̄τ̄
)

)

+ p̄τ̄1 det

(

∂2H̄

∂p2

(

x̄τ̄ , p̄τ̄
)

)

6= 0. (4.25)

Consider a smooth diffeomorphism Φ : Rn → Rn, and let H̃ : Rn × Rn → R denote the
Hamiltonian obtained from H̄ by Φ:

H̃(X,P ) := H̄
(

Φ−1(X),
(

dΦ−1(X)Φ
)∗

(P )
)

∀ (X,P ) ∈ R
n × R

n. (4.26)

Any Hamiltonian trajectory of H̄ is sent via Φ onto a trajectory of H̃ , and it can be easily
checked that if

(

X̄(·), P̄ (·)
)

:=
(

Φ(x̄(·)),
(

dΦ(x̄(·))Φ
−1
)∗
p̄(·)
)

: [0, τ̄ ] → R
n × R

n (4.27)

satisfies ˙̄X(τ̄) = e1, then

det

(

∂2H̃

∂P̂ 2

(

X̄(τ̄ ), P̄ (τ̄ )
)

)

+ P̄1(τ̄ ) det

(

∂2H̃

∂P 2

(

X̄(τ̄ ), p̄(τ̄ )
)

)

6= 0. (4.28)

Indeed, the condition ˙̄X(τ̄ ) = ˙̄x(τ̄ ) = e1 yields that the matrix R := dx̄τ̄ Φ ∈ Mn(R) has the
form

R =

(

1 w∗

0n−1 R′

)

with w ∈ R
n−1 and R′ ∈Mn−1(R).

Therefore, P̄1(τ̄ ) = p̄τ̄1 and

∂2H̃

∂P 2

(

X̄(τ̄ ), P̄ (τ̄ )
)

= R
∂2H̄

∂p2

(

x̄τ̄ , p̄τ̄
)

R∗

=

(

1 w∗

0n−1 R′

)

(

∗ ∗

∗ ∂2H̄
∂p̂2

(

x̄τ̄ , p̄τ̄
)

)

(

1 0
w R′∗

)

=

(

∗ ∗

∗ R′ ∂2H̄
∂p̂2

(

x̄τ̄ , p̄τ̄
)

R′∗

)

.
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This shows that






















det
(

∂2H̃
∂P 2

(

X̄(τ̄ ), p̄(τ̄ )
)

)

= det(R)2 det
(

∂2H̄
∂p2

(

x̄τ̄ , p̄τ̄
)

)

det
(

∂2H̃
∂P̂ 2

(

X̄(τ̄ ), P̄ (τ̄ )
)

)

= det(R′)2 det
(

∂2H̄
∂p̂2

(

x̄τ̄ , p̄τ̄
)

)

det(R′) = det(R)
P̄1(τ̄ ) = p̄τ̄1 ,

which together with (4.25) implies (4.28).

5 Proof of Theorem 2.1

5.1 Introduction

Let H : T ∗M → R be a Tonelli Hamiltonian of class Ck with k ≥ 2, and let ǫ ∈ (0, 1) be fixed.
Without loss of generality, up to adding a constant to H which does not change the dynamics,
we can assume that c[H ] = 0. Let L denote the Lagrangian associated to H . Our goal is to find
a potential V : M → R of class Ck with ‖V ‖C2 < ǫ, together with a C1 function v : M → R

and a curve γ : [0, T ] →M with γ(0) = γ(T ), such that the following properties are satisfied:

(P1) HV

(

x, dv(x)
)

≤ 0 ∀x ∈M .

(P2)
∫ T

0
LV (γ(t), γ̇(t)) dt = 0.

Indeed, if we are able to do this, then (P1) implies that c[HV ] ≤ 0 (see Subsection 1.2),
while (P2) together with (1.1) yields c[LV ] = c[HV ] ≥ 0. Therefore, by (1.2) the closed curve
Γ := γ([0, T ]) is contained in the projected Aubry set of HV . Now, if W : M → R is any
smooth function such that W = 0 on Γ, W > 0 outside Γ, and ‖W‖C2 < ǫ − ‖V ‖C2 , then
the function v is a critical subsolution of HV−W = H + V −W which is strict outside Γ, and

we have
∫ T

0
LV−W (γ(t), γ̇(t)) dt = 0. By the description of the projected Aubry set given in

Subsection 1.2, this implies that A(HV−W ) coincides with the periodic curve t 7→ γ(t), which
concludes the proof.

From now on, we assume that the Aubry set Ã(H) does not contain an equilibrium point or
a periodic orbit (otherwise, by the discussion above, the proof is trivial), and we fix x̄ ∈ A(H)
as in the statement of the theorem. By assumption, we know that there is a critical subsolution
u : M → R and an open neighborhood V of O+(x̄) such that u satisfies assertions (i)-(iii) in
the statement of Theorem 2.1. We set p̄ := du(x̄), and define the curve γ̄ : R → M by

γ̄(t) := π∗
(

φHt
(

x̄, p̄
)

)

∀ t ∈ R.

The idea is to find a time t̄ > 0 such that, up to a change of coordinates, all assumptions
(A1)-(A4) hold at ȳ := γ̄(t̄) (here, (A1)-(A3) are the assumptions introduced in Subsection 3.1,
while (A4) was introduced in Proposition 4.1), so that we can apply Propositions 3.1 and 4.1 to
connect Hamiltonian trajectories by controlling the action. As we will see in Subsection 5.3, in
order to close the trajectory γ̄(t) using a potential small in C2 topology we will need to apply
Mai Lemma D.1. Finally, in Subsection 5.5 we will show that this closed trajectory belongs to
a projected Aubry set by adding another small potential and constructing a critical viscosity
subsolution.

5.2 Preliminary steps

First of all, we claim that there is a time t̄ > 0 such that

d

dt

{

u
(

φHt
(

x̄, p̄
)

)}

|t=t̄
=
〈

du
(

γ̄(t̄)
)

, ˙̄γ
(

t̄
)〉

≥ 0. (5.1)
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Indeed, argue by contradiction and assume that

d

dt

{

u
(

φHt
(

x̄, p̄
)

)}

=
〈

du
(

γ̄(t)
)

, ˙̄γ(t)
〉

< 0 ∀ t > 0,

so that

u
(

γ̄(T )
)

− u(x̄) = u
(

γ̄(T )
)

− u
(

γ̄(0)
)

=

∫ T

0

〈

du
(

γ̄(t)
)

, ˙̄γ(t)
〉

dt ≤ −c0 < 0 ∀T ≥ 1

for some positive constant c0. As x̄ is recurrent we have limk→∞

∫ tk
0

〈

du
(

γ̄(t)
)

, ˙̄γ(t)
〉

dt = 0, a
contradiction.

Set ȳ := γ̄(t̄), and fix τ̄ ∈ (0, 1) small. Then, there exist an open neighborhood Uȳ ⊂ V of ȳ
in M (where V is as in the statement of the theorem) with x̄ /∈ Uȳ, and a smooth diffeomorphism

θȳ : Uȳ → Bn(0, 2),

such that
θȳ(ȳ) = (τ̄ , 0n−1) and

〈

dθȳ(ȳ), ˙̄γ(t̄)
〉

= en1 .

Denote by Π0 the hyperplane passing through the origin which is orthogonal to the vector e1
in Rn, let Πτ̄ := τ̄ e1 + Π0, Π3τ̄ := 3τ̄ e1 + Π0, and set

Π0
r := Π0 ∩Bn(0, r), Πτ̄

r := Πτ̄ ∩Bn
(

τ̄ e1, r
)

, Π3τ̄
r := Π3τ̄ ∩Bn

(

3τ̄ e1, r
)

∀ r > 0.

The Hamiltonian H : T ∗M → R is sent, via the smooth diffeomorphism θȳ, onto a Hamiltonian
H̄ of class Ck on Bn(0, 2)×Rn. Moreover, since Uȳ ⊂ V , the critical subsolution u : M → R is
sent via θȳ onto the C1,1 function ū : Bn(0, 2) → R,

ū(z) := u
(

θ−1
ȳ (z)

)

∀ z ∈ Bn(0, 2)

which solves the Hamilton-Jacobi equation8

H̄
(

z,∇ū(z)
)

= 0 ∀ z ∈ Bn(0, 2). (5.2)

Actually, the Hamiltonian H̄ can be seen as the restriction of a Hamiltonian H̄ defined on R
n×

Rn satisfying (H1)-(H3). Moreover, assuming τ̄ > 0 sufficiently small (so that
〈

dθȳ(γ̄(t)), ˙̄γ(t)
〉

is sufficiently close to en1 for t ∈ [t̄ − τ̄ , t̄]), we can modify θȳ in such a way that the integral
trajectory of H̄

(

x̄(t), p̄(t)
)

:=
(

θȳ
(

γ(t− t̄+ τ̄ )
)

,
(

dθȳ(γ̄(t−t̄+τ̄))θ
−1
ȳ

)∗
du
(

γ̄(t− t̄+ τ̄)
)

)

(5.3)

satisfies (A1)-(A3) over the interval [0, τ̄/2] (i.e., replacing τ̄ by τ̄ /2, with obvious notation),
and satisfies (A1)-(A4) on [τ̄ /2, τ̄ ] (i.e., replacing 0 by τ̄/2)9. Moreover, by choosing τ̄ even
smaller, we can assume that the Hamiltonian trajectory

(

x̄(·), p̄(·)
)

is defined from [0, 3τ̄ ] to

Bn(0, 2)× Rn, satisfies x̄(3τ̄) =
(

3τ̄ , 0n−1

)

, and moreover the following hold10:

Lemma 5.1. The following properties are satisfied:

8As in Sections 3 and 4, we identify T ∗(Rn) with Rn × Rn.
9Observe that, thanks to the uniform convexity of H̄ in the p variable, (5.1) implies that condition (A4) holds

with a strict inequality at (τ̄ , 0n−1), and then by continuity it also holds in some uniform neighborhood.
10Properties (i)-(iv) in Lemma 5.1 are immediate to check. (v) follows observing that, if τ̄ is small enough,

then the Poincaré map Pt from Π0
1/2

to Pt(Π0
1/2

) ⊂
`

Π0+te1

´

is bi-Lipschitz for any t ∈ [0, 3τ̄ ], with bi-Lipschitz

constant bounded by 2.
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(i) the Poincaré time mapping Tτ̄ : Π0
1/2 → R satisfying Tτ̄

(

x̄(0)
)

= τ̄ and

φH̄Tτ̄ (z0)

(

z0,∇ū(z0)
)

∈ Πτ̄
1 ∀ z0 ∈ Π0

1/2,

is well-defined, Lipschitz, and valued in
(

τ̄ /2, 3τ̄/2
)

;

(ii) the Poincaré mapping P defined by

P : Π0
1/2 → Πτ̄

1

z0 7−→ P(z0) := π∗
(

φH̄Tτ̄ (z0)

(

z0,∇ū(z0)
)

)

is 2-Lipschitz;

(iii) The Poincaré time mapping T3τ̄ : Π0
1/2 → R satisfying T3τ̄

(

x̄(3τ̄)
)

= 3τ̄ and

φH̄T3τ̄ (z),
(

z,∇ū(z)
)

∈ Π3τ̄
1 ∀ z ∈ Π0

1/2,

is well-defined, Lipschitz, and valued in
(

5τ̄ /2, 7τ̄/2
)

;

(iv) ∀ z0 = (0, ẑ0) ∈ Π0
1/4, ∀ r ∈ (0, 1/8), the inclusion

C
(

(

z0,∇ū(z0)
)

; Tτ̄ (z
0); r

)

⊂ [0, τ̄ ] ×Bn−1(0n−1, 1/2)

holds (here the “cylinder” C
(

(

z0,∇ū(z0)
)

; Tτ̄ (z0); r
)

is defined analogously to (3.11));

(v) ∀ z0 = (0, ẑ0) ∈ Π0
1/4, ∀ z = (0, ẑ) ∈ Π0

1, ∀ t ∈
(

0, T3τ̄ (z)
)

, ∀ r ∈ (0, 1/8):

π∗
(

φH̄t
(

z,∇ū(z)
)

)

∈ C
(

(

z0,∇ū(z0)
)

; T3τ̄ (z
0); r

)

=⇒ z ∈ Bn
(

z0, 4r/3
)

.

Denote by Kū the C1,1-norm of ū on Bn(0, 2), and recall that ū is solution of (5.2). Thanks
to the above discussion and combining Propositions 3.1 and 4.1, we can easily show that the
following holds:

Proposition 5.2. With the same notation as above, there are δ̄, r̄, ǭ ∈ (0, 1/4) and K > 0 such
that the following property holds: For any r ∈ (0, r̄), ǫ̂ ∈ (0, ǭ), z0 ∈ Π0

1, z
f ∈ Πτ̄

1 , and σ ∈ R

satisfying

|z0| < δ̄ (5.4)

and

∣

∣zf − P(z0)
∣

∣ < rǫ̂, |σ| < r2ǫ̂, (5.5)

there exist a time T f > 0 and a potential V : Rn → R of class Ck such that:

(i) Supp(V ) ⊂ C
(

(

z0,∇ū(z0)
)

; Tτ̄ (z0); r
)

;

(ii) ‖V ‖C2 <
(

K
√

1 +K2
ū

)

ǫ̂;

(iii)
∣

∣T f − τ(x0, p0)
∣

∣ <
(

K
√

1 +K2
ū

)

rǫ̂;

(iv) φH̄V

T f

(

z0,∇ū(z0)
)

=
(

zf ,∇ū(zf)
)

;
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Figure 2: By using first Proposition 3.1 on [0, τ̄ /2] we can add a first potential to connect the trajec-

tories, and then, by Proposition 4.1 on [τ̄/2, τ̄ ], we can add a second potential to fit the action without

changing the starting and final point of the trajectory.

(v) AV

(

(z0,∇ū(z0));T f
)

= A
(

(z0,∇ū(z0)); τ(z0,∇ū(z0))
)

+
〈

∇ū
(

P(z0)
)

, zf − P(z0)
〉

+ σ.

Proof. Let us observe that, given zf satisfying (5.5), the vectors pf := ∇ū(zf) and p0 :=
∇ū(P(z0)) satisfy

∣

∣pf − p0
∣

∣ < K̄ūrǫ̂,

so that
∣

∣

∣

(

zf , pf
)

−
(

P(z0), p0
)

∣

∣

∣
<

√

1 + K̄2
ūrǫ̂. (5.6)

Now, if Φ
τ̄/2
τ̄ : Πτ̄

1/2 → Π
τ̄/2
1 denotes the Poincaré map going “backward” from Πτ̄ to Πτ̄/2, we

can observe that if τ̄ is sufficiently small (the smallness being independent of r and ǫ̂) then

∣

∣

∣Φ
τ̄/2
τ̄

(

zf , pf
)

− Φ
τ̄/2
τ̄

(

P(z0), p0
)

∣

∣

∣ < 2

√

1 + K̄2
ūrǫ̂.

Hence, since the trajectory given by (5.3) satisfy (A1)-(A3) over the interval [0, τ̄/2], we can

apply Proposition 3.1 on [0, τ̄/2] to connect (z0,∇ū(z0)) to Φ
τ̄/2
τ̄

(

zf , pf
)

in a time T f1 ∼ τ̄/2
with a “default” of action bounded by Kr2ǫ̂2. Then, assuming ǭ sufficiently small, since the
trajectory given by (5.3) satisfy (A1)-(A4) over the interval [τ̄ /2, τ̄ ] we apply Proposition 4.1
on [τ̄ /2, τ̄ ] to “compensate” the default of action so that (v) above holds. Moreover it is easily
seen that also all the other properties are satisfied. We leave the details to the reader.

The above lemma will be the key tool to “close” a piece of trajectory of the Aubry set and
to control the action so that (P2) is satisfied. But once this construction will be performed
(see Subsections 5.3 and 5.4 below), we will still need to modify the potential and our critical
solution in order to obtain (P1). This will be done in Subsection 5.5 below. However, in order to
be able to perform the construction of this new subsolution, we need a few preliminary results
on solutions to Hamilton-Jacobi equations which we discuss below.
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First of all, let us observe that in the construction of θȳ, τ̄ , H̄ made above we assumed
that the Hamiltonian trajectory

(

x̄(·), p̄(·)
)

is defined from [0, 3τ̄ ] to Bn(0, 2)×Rn and satisfies

x̄(3τ̄) =
(

3τ̄ , 0n−1

)

. By taking τ̄ > 0 sufficiently small, we can further assume that the following
holds (see [19]):

Lemma 5.3. Set H[0,3τ̄ ] := {z = (z1, ẑ) ∈ Rn | z1 ∈ [0, 3τ̄ ]}. For every potential W : Rn → R

of class C2 with
∥

∥W
∥

∥

C2 < 1 and Supp(W ) ⊂ Bn(0, 1), there exists a unique solution w :
Bn(0, 1) ∩H[0,3τ̄ ] → R of the Dirichlet problem

{

H̄
(

z,∇w(z)
)

+W (z) = 0 in Bn(0, 1) ∩H[0,3τ̄ ],
w = ū on Π0

2.
(5.7)

Moreover this solution can be constructed by the method of characteristics, and is of class C1,1

on Bn(0, 1) ∩H[0,3τ̄ ].

To be more precise, given z0 ∈ Π0
2, let

(

z(·), q(·)
)

: [0, tz0) → Bn(0, 1) ∩H[0,3τ̄ ] × R
n be the

(maximal) solution of the Hamiltonian system

{

ż(s) = ∇qH̄W

(

z(s), q(s)
)

= ∇qH̄W

(

z(s), q(s)
)

q̇(s) = −∇zH̄W

(

z(s), q(s)
)

= −∇zH̄
(

z(s), q(s)
)

−∇W
(

z(s)
) (5.8)

starting at
(

z0,∇ū(z0)
)

. (Here tz0 > 0 is the first time such that z(s) touches the boundary of
Bn(0, 1)∩H[0,3τ̄].) Then we assume that the solution w : Bn(0, 1)∩H[0,3τ̄] → R to the Dirichlet
problem (5.7) is of class C1,1 and is given by the method of characteristics, i.e., it satisfies

w
(

z(t)
)

− ū
(

z0
)

=

∫ t

0

〈

q(s), ż(s)
〉

ds =

∫ t

0

L̄
(

z(s), ż(s)
)

−W
(

z(s)
)

ds, ∇w(z(t) = q(t).

(We refer the reader to [11, 19] for more details on the method of characteristics.) Let us recall
that the linearized Hamiltonian system along the trajectory

(

z(·), q(·)
)

is given by

{

δ̇z(t) = ∂2H̄
∂z∂q

(

z(t), q(t)
)

δz(t) + ∂2H̄
∂q2

(

z(t), q(t)
)

δq(t)

δ̇q(t) = −∂2H̄
∂z2

(

z(t), q(t)
)

δz(t) − ∂2H̄
∂q∂z

(

z(t), q(t)
)

δq(t) − Hess W
(

z(t)
)

.
(5.9)

Moreover, ū is twice differentiable at a point z0 = z(0) ∈ Π0
2 if and only if it is twice differentiable

at z(t) for some t > 0. From this fact and the Lipschitz regularity of the flow, it is not difficult
to deduce that ū is twice differentiable a.e. (with respect to the (n− 1)-dimensional Lebesgue
measure) on Π0

2.
For every z0 = z(0) such that ū is two times differentiable at z0 and any t ≥ 0, let R(t) :=

(

R1(t), R2(t)
)

: Rn → Rn × Rn denote the linear mapping such that R(t)
(

δz(0)
)

is the unique

solution of (5.9) starting at
(

δz(0),Hess ū
(

z(0)
)

δz(0)
)

. Then it can be easily checked that w
is two times differentiable along z(t) and that its Hessian at z(t) is given by

Hess w
(

z(t)
)

= R2(t)R1(t)
−1 ∀ t ∈ [0, tz(0)). (5.10)

Since H̄ is at least C2 and R1(0) = In, we can assume without loss of generality that the matrix
R1(t) is invertible and satisfies (ū is two times differentiable almost everywhere with an upper
bound on its Hessians):

∥

∥R1(t) − In
∥

∥ ≤
1

4
∀ t ∈ [0, tz(0)). (5.11)

As we observed above, this preliminary discussion will be useful in Subsection 5.5.
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In the next subsections we are going to show that there is a continuous nondecreasing
function ω̄ : [0,+∞) → [0,+∞), with ω̄(0) = 0, such that the following property holds:
For every ǫ > 0 there exists a potential V̄ : Rn → R of class Ck, with ‖V̄ ‖C2 < ω̄(ǫ) and
Supp(V̄ ) ⊂ Bn(0, 2), such that the Ck potential V : M → R defined by

V (x) =

{

0 if x /∈ Uȳ
V̄
(

θȳ(x)
)

if x ∈ Uȳ
(5.12)

satisfies c[HV ] = 0, and A(HV ) is a periodic orbit.

5.3 Closing the Aubry set

Define the function Ψ : [0,+∞) ×M →M by

Ψ(t, z) := π∗
(

φHt (z, du(z))
)

∀ z ∈M.

By assumption, Ψ is well-defined, Lipschitz on V (here, V is as in the statement of the theorem),
and C1 at the point (t, x̄) for any t ≥ 011.

Let Ux̄ ⊂ V be a small neighborhood of x̄ such that Ux̄∩Uȳ = ∅ (here Uȳ is the neighborhood
of ȳ = γ̄(t̄), t̄ > 0, defined in the previous subsection). We can suppose that there exists a
smooth diffeomorphism

θx̄ : Ux̄ → Bn(0, 1)

such that
θx̄(x̄) = 0n and dθx̄(x̄)

(

˙̄γ(t̄)
)

= en1 .

Let δ̄ > 0 be as in Proposition 5.2, and set

Sx̄ := θ−1
x̄

(

Π0
δ̄/2

)

, Sȳ := θ−1
ȳ

(

Π0
δ̄/2

)

,

and let T be the countable discrete set defined by

T :=
{

t̄i | i ≥ 1
}

=
{

t > 0 | γ̄(t) = Ψ(t, x̄) ∈ Sȳ

}

. (5.13)

(Observe that ȳ = Ψ(t̄, x̄) is recurrent, since so is x̄.) For every integer i ≥ 1, there are δi ∈
(0, δ̄/2) and a Lipschitz Poincaré time mapping Tt̄i : Π0

δi
→ (0,+∞) such that Tt̄i(0n−1) = t̄i

and
Ψ
(

Tt̄i(w), θ−1
x̄ (w)

)

∈ Sȳ ∀w ∈ Π0
δi
. (5.14)

We observe that, since u is C2 at any point of O+(x̄) (as observed after the statement of
Theorem 2.1), the maps Tt̄i are C1 at the point 0n−1. Then the Poincaré mappings

Φi : Π0
δi

−→ Π0
δ̄/2

w 7−→ θȳ
(

Ψ
(

Tt̄i(w), θ−1
x̄ (w)

))

,

are well-defined, Lipschitz, and C1 at the point 0n−1. Moreover, for every i ≥ 1 the map Φi is

11The definition of being “C1 at one point” is analogous to the definition of “C2 at one point” given right
before Theorem 2.1. More precisely, let Dom(DΨ) ⊂ V be the set of points where Ψ is differentiable (which is
of full measure). Then its generalized differential at a point (t, x) ∈ [0,+∞) × V is defined as

DΨ(t, x) := conv

„

n

lim
k→∞

DΨ(tt, xk) | (tk , xk) → (t, x), (tk , xk) ∈ Dom(DΨ)
o

«

,

and we say that “Ψ is C1 at a point (t, x)” if DΨ(t, x) is a singleton. We note that the assumption of u being
C2 at x̄ (and so at any point of O+(x̄), as observe after the statement of Theorem 2.1) implies that Ψ is C1 at
(t, x̄) for any t ≥ 0.
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Figure 3: The point ȳi corresponds to the ith-intersection of the curve γ̄(t) = Ψ(t, x̄), t > 0, with the

hypersurface Sȳ. Observe also that ȳ does not belong to Sȳ, since by definition θȳ(ȳ) = (τ̄ , 0n−1), while

θȳ(Sȳ) = Π0

δ̄/2
.

a bi-Lipschitz homeomorphism from Π0
δi

⊂ Rn−1 onto an open neighborhood (in Rn−1) of

w̄i := θȳ
(

ȳi
)

, ȳi := Ψ
(

Tt̄i(0n−1), x̄
)

= Ψ
(

t̄i, x̄
)

. (5.15)

Set Pi := DΦi(0n−1) the generalized differential of Φi at w = 0n−1, and define12

Ei :=
{

w ∈ R
n−1 | |Pi(w)| ≤ ‖Pi‖

}

.

The following lemma is a simple consequence of the C1 regularity of Φi at 0n−1:

Lemma 5.4. For every integer i ≥ 1 there exists ri ∈ (0, δi) such that, for any w,w′ ∈
Bn−1(0n−1, ri), we have

∀µ > 0 : w′ ∈ w + µEi =⇒ Φi(w
′) ∈ Bn−1

(

Φi(w), 2µ
)

,

∀ ν > 0 : w′ /∈ w + 2νEi =⇒ Φi(w
′) /∈ Bn−1

(

Φi(w), ν
)

.

Proof of Lemma 5.4. Since Φi is C1 at 0n−1, it is simple to check that then any element of
DΦi(w) has to converge to Pi as w → 0n−1. In particular, we can find ri ∈ (0, δi) such that

∥

∥L− Pi
∥

∥ ≤
1

‖P−1
i ‖

∀w ∈ Bn−1(0n−1, ri), L ∈ DΦi(w).

Fix w,w′ in Bn−1(0n−1, ri) and µ > 0 such that w′ ∈ w + µEi. By the Mean Value Inequality
applied to the function [0, 1] ∋ s 7→ Φi

(

w + s(w′ − w)
)

we infer that

∣

∣Φi(w
′) − Φi(w)

∣

∣ ≤ max
v∈[w,w′],L∈DΦi(v)

‖L‖|w′ − w|

≤ ‖Pi‖|w
′ − w| +

1

‖P−1
i ‖

∣

∣P−1
i ◦ Pi(w

′ − w)
∣

∣

≤ 2µ.

Taking ri smaller if necessary, we leave the reader to show that the second property is satisfied
as well.

12Note that, since x̄ ∈ A(H), the curve γ̄ minimizes the action with fixed endpoints on any time interval. In
particular there are no conjugate points along O+(x̄), and Pi is always invertible.
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Now, given ǫ ∈ (0, 1) fixed, set

N̂ :=

⌊

32K
√

1 +K2
ū

ǫ

⌋

+ 1, (5.16)

and let ρ̂ ≥ 3 and η > 0 be the numbers provided by Mai Lemma D.1 appied to the family
of ellipsoids {Ei} defined above. Hence, thanks to Lemma 5.4 and the fact that the points
w̄1, . . . , w̄η ∈ Π0

δ̄/2
are all distinct (since the curve γ̄ is not periodic), we deduce that if 0 < r̄ <

min{r1, . . . , rη}/ρ̂ is sufficiently small, then the following properties hold (recall that V denotes
the open neighborhood of O+(x̄) where u satisfies assertions (i) and (ii) in the statement of the
theorem):

(p1) For any w ∈ Π0
ρ̂r̄ and t ∈

[

0, Tt̄η (w)
]

, Ψ
(

t, θ−1
x̄ (w)

)

∈ V .

(p2) For any w,w′ ∈ Π0
ρ̂r̄, any i ∈ {1, . . . , η},

∀µ > 0 : w′ ∈ w + µEi =⇒ Φi(w
′) ∈ Bn−1

(

Φi(w), 2µ
)

,

∀ ν > 0 : w′ /∈ w + 2νEi =⇒ Φi(w
′) /∈ Bn−1

(

Φi(w), ν
)

.

(p3) The sets Ci defined by

Ci :=
⋃

z0∈Φi(Bn−1(0n−1,ρ̂r̄))

C
(

(

z0,∇ū(z0)
)

; T3τ̄ (z
0); ρ̂r̄

)

(5.17)

are disjoint for i = 1, . . . , η − 1.

(p4) For every i ∈ {1, . . . , η}, Φi
(

Bn−1
(

0, ρ̂r̄
))

⊂ Bn−1
(

0, δ̄
)

.

Let r̄ > 0 small enough to be chosen later. Since x̄ is recurrent and dθx̄(x̄)
(

˙̄γ(t̄)
)

= en1 , there
exist a time Tr̄ > 0 such that

θx̄
(

Ψ(Tr̄, x̄)
)

∈ Π0
r̄ .

Let us consider the set of nonnegative times

T ′ :=
{

t ∈ [0, Tr̄] | γ̄(t) ∈ Sx̄

}

,

that is,

T ′ =
{

0 = t′1 < t′2 < . . . < t′J = Tr̄

}

for some integer J ≥ 1 (actually, for r̄ small, J ≫ η). Set

W :=
{

w0 := θx̄(x̄), w1 := θx̄
(

γ̄(t′1)
)

, . . . , wJ := θx̄
(

γ̄(t′J)
)

}

⊂ Π0 ≃ R
n−1. (5.18)

Then, by Mai Lemma D.1 applied to the ordered set W , there exist η points ŵ1, . . . , ŵη ∈ Π0,
and radii r̂1, . . . , r̂η > 0, such that the following properties are satisfied:

(p5) There exist j, l ∈ {0, . . . , J} with j > l such that ŵ1 = wj and ŵη = wl.

(p6) ∀ i ∈ {1, . . . , η − 1}, Ei
(

ŵi, r̂i
)

⊂ Π0
ρ̂r̄.

(p7) ∀ i ∈ {1, . . . , η − 1}, Ei
(

ŵi, r̂i
)

∩
(

W \ {wj, wl}
)

= ∅.

(p8) ∀ i ∈ {1, . . . , η − 1}, ŵi+1 ∈ Ei
(

ŵi, r̂i/N̂
)

.
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Figure 4: An illustration of Mai Lemma: there exist two points wj , wl, which can be connected using

a sequence of η − 1 small ellipsoids Ei

`

ŵi, r̂i/N̂
´

, so that none of the points wk (k 6= j, l) belongs to

Ei

`

ŵi, r̂i

´

for i = 1, . . . , η − 1 (in the figure above, we just drew two of the ellipsoids Ei

`

ŵi, r̂i

´

).

Fix i ∈ {1, . . . , η − 1}, and observe that by (p6)
∣

∣ŵi
∣

∣,
∣

∣ŵi+1

∣

∣ < ρ̂r̄. Thus, thanks to (p4) and
recalling the definition of P in Lemma 5.1(ii), we can set

z0
i := Φi(ŵi), zi := P(z0

i ), z̃0
i := Φi(ŵi+1), z̃i := P(z̃0

i )

(see Figure 5 below). Moreover, we also set z0
η := Φη(ŵη). By Lemma 5.1(ii) and properties

(p2), (p4) and (p8) above, we have
∣

∣z0
i

∣

∣ < δ̄ and

∣

∣zi − z̃i
∣

∣ ≤ 2
∣

∣z0
i − z̃0

i

∣

∣ <
4r̂i

N̂
<

(

r̂i
8

)(

ǫ

K
√

1 +K2
ū

)

. (5.19)

Therefore, thanks to Proposition 5.213, for every σi ∈ R (to be chosen later) such that

|σi| <

(

r̂2i
64

)(

ǫ

K
√

1 +K2
ū

)

(5.20)

there exist a time T fi > 0, together with a potential V̄i : R
n → R of class Ck, such that

(p9) Supp(V̄i) ⊂ C
(

(

z0
i ,∇ū(z

0
i )
)

; Tτ̄ (z0
i ); r̂i/8

)

.

(p10) ‖V̄i‖C2 < ǫ.

(p11)
∣

∣T fi − Tτ̄ (z0
i )| < r̂iǫ/8.

(p12) φ
H̄V̄i

T f
i

(

z0
i ,∇ū(z

0
i )
)

=
(

z̃i,∇ū(z̃i)
)

.

(p13) AV̄i

(

(z0
i ,∇ū(z

0
i ));T

f
i

)

= A
(

(z0
i ,∇ū(z

0
i )); Tτ̄ (z

0
i )
)

+
〈

∇ū(zi), z̃i − zi
〉

+ σi.

13Without loss of generality, we can assume that ǫ

K
√

1+K2
ū

< ǫ̂, with ǫ̂ given by Proposition 5.2.
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Figure 5: The point z0
i (resp. z̃0

i ) is obtained by considering the i-th intersection of the curve t 7→

Φ(t, ŵi) (resp. t 7→ Φ(t, ŵi+1)) with the hypersurface Sȳ. Then, we use Proposition 5.2 to connect z0
i

to z̃i, see also Figure 2 in Subsection 5.2.

Let us now define the Ck potential V̄ : Rn → R as follows: notice that, for every i = 1, . . . , η−1,

the open set C
(

(

z0
i ,∇ū(z

0
i )
)

; Tτ̄ (z0
i ); r̂i/8

)

is contained in the set Ci defined in (5.17). Hence,

thanks to (p3), all the supports Supp(V̄i) are disjoints. Define V̄ : R
n → R by

V̄ (z) :=

{

V̄i(z) if z ∈ Supp(V̄i) for some i ∈ {1, . . . , η − 1},
0 otherwise,

and define V : M → R as in (5.12). Let ΨV (t, yj) denote the projection onto M of the
Hamiltonian trajectory of HV starting at

(

yj , du(yj)
)

:=
(

θ−1
x̄ (wj), du

(

θ−1
x̄ (wj)

)

)

=
(

γ̄(t′j), du
(

γ̄(t′j)
))

,

i.e.,
ΨV (t, yj) := π∗

(

φHV

t

(

yj , du(yj)
))

.

By construction, there is a sequence of positive times

0 < t̃1 < t̃1 + T f1 < t̃2 < t̃2 + T f2 < . . . < t̃η−1 < t̃η−1 + T fη−1 < t̃η (5.21)

such that the corresponding states
(

θȳ
(

ΨV (t, yj)
)

,∇ū
(

θȳ
(

ΨV (t, yj)
))

)

in Bn(0, 2) × Rn are respectively given by

(

z0
1 ,∇ū(z

0
1)
)

,
(

z̃1,∇ū(z̃1)
)

,
(

z0
2 ,∇ū(z

0
2)
)

,
(

z̃2,∇ū(z̃2)
)

,

. . . ,
(

z0
η−1,∇ū(z

0
η−1)

)

,
(

z̃η−1,∇ū(z̃η−1)
)

,
(

z0
η,∇ū(z

0
η)
)

. (5.22)
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Recalling the definition of the times t̄i, see (5.13), note that

z0
η = Φη(ŵη) = Φη(wl) = Φη

(

θx̄(γ̄(t
′
l))
)

= θȳ
(

γ̄(t′l + t̄η)
)

.

Claim 1: t′l + t̄η ≤ t′j .
Indeed, if not, since t′l < t′j (see (p5)) there would exist h ∈ (0, t̄η) such that t′l + t̄η = t′j + h,
so that

z0
η = θȳ

(

γ̄(t′j + h)
)

= θȳ
(

Ψ(h,wj)
)

.

Let us observe that wj = γ̄(t′j) ∈ Π0
r̄ ⊂ Π0

δi
for all i = 1, . . . , η. Hence, since h ∈ (0, t̄η), by

the definition of the Poincaré time mappings Tt̄i (see (5.14)) there exists i ∈ {1, . . . , η} such
that h = Tt̄i(wj). But since z0

η = Φη(wl), this implies that z0
η belongs to the intersection

Φi
(

Πρ̂r̄

)

∩ Φη
(

Πρ̂r̄

)

, which contradicts (p3).

Claim 2: The curve
t ∈
[

t′l + t̄η, t
′
j

]

7−→ γ̄(t)

never intersects the support of the potential V .
Indeed, if not, by (p9) there would exist t ∈

[

t′l + t̄η, t
′
j

]

and i ∈ {1, . . . , η − 1} such that

θȳ
(

γ̄(t)
)

∈ Supp(Vi) ⊂ C
(

(

z0
i ,∇ū(z

0
i )
)

; Tτ̄ (z
0
i ); r̂i/8

)

⊂ C
(

(

z0
i ,∇ū(z

0
i )
)

; T3τ̄ (z
0
i ); r̂i/4

)

By Lemma 5.1(v), this implies that there is t′ ∈
[

t′l + t̄η, t
′
j

]

such that θȳ
(

γ̄(t′)
)

belongs to

Bn−1
(

z0
i , r̂i/2

)

= Bn−1
(

Φi(ŵi), r̂i/2
)

, which together with (p2) gives

w := Φ−1
i

(

θȳ
(

γ̄(t′)
))

∈ Ei
(

ŵi, r̂i
)

∩W. (5.23)

On the other hand, by the definition of W (see (5.18)) there exists j̄ ∈ {1, . . . , J} such
that w = θx̄

(

γ̄(t′
j̄
)
)

. This means that t′ = t′
j̄

+ t̄i. Now, since t̄i < t̄η, we deduce that

t′l + t̄η ≤ t′ = t′
j̄
+ t̄i, so that j̄ 6= l. On the other hand, since t̄1 > 0 we have t′

j̄
< t′ ≤ t′j , so

that j̄ 6= j. Hence w = θx̄
(

γ̄(t′
j̄
)
)

for some j̄ 6∈ {j, l}, which together with (5.23) contradicts (p7).

Thanks to Claims 1 and 2 above, we obtain that the Hamiltonian trajectory

[0,+∞) ∋ t 7→
(

x(t), p(t)
)

:= φHV

t (yj , du(yj))

goes from
(

yj , du(yj)
)

=
(

γ̄(t′j), du
(

γ̄(t′j)
))

to
(

γ̄(t′l + tη), du
(

γ̄(t′l + tη)
))

on [0, t̃η], and then it

goes back to
(

yj, du(yj)
)

on
[

t̃η, t̃η+ t′j− t
′
l− t̄η

]

. Hence it is closed. The aim of the next section
is to show that we can add a small potential to HV so that this closed trajectory actually
belongs to the projected Aubry set.

5.4 Control of the action

In the previous section, given r̄ > 0 small enough, we constructed a Ck potential V : M → R

and a Ck curve γ̃ :
[

0, tf
]

→M , tf := t̃η + t′j − t′l − t̄η, made of two curves

γ1 : [0, t̃η] −→M and γ2 : [t̃η, t̃η + t′j − t′l − t̄η] −→M

given by

γ1(t) := π
(

φHV

t

(

yj, du(yj)
)

)

for t ∈ [0, t̃η], γ2(t) := γ̄
(

t+ t′l + t̄η − t̃η
)

for t ∈ [t̃η, tf ],

and satisfying

γ1(0) = yj, γ1(t̃η) = γ2(t̃η) = θ−1
ȳ (z0

η) = γ̄(t′l + t̄η), γ2(tf ) = yj .
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Our aim is to show that, if r̄ > 0 is small enough, then the real numbers σi in (p13) can be
chosen in such a way that (5.20) holds and

AV

(

γ̃; [0, tf ]
)

:=

∫ t̃η

0

LV
(

γ1(t), γ̇1(t)
)

dt+

∫ tf

t̃η

LV
(

γ2(t), γ̇2(t)
)

dt = 0. (5.24)

Since γ2 is contained in the projected Aubry set A(H) and does not intersect the support of V
(see Claim 2 above), we have

AV

(

γ2; [t̃η, tf ]
)

= A
(

γ2; [t̃η, tf ]
)

= u
(

γ2(tf )
)

− u
(

γ2(t̃η)
)

= u(yj) − u
(

θ−1
ȳ (z0

η)
)

. (5.25)

(Here we are using that u is a critical viscosity subsolution.) Let us now evaluate the quantity

∆ :=

∫ t̃η

0

LV
(

γ1(t), γ̇1(t)
)

dt−
(

u
(

θ−1
ȳ (z0

η)
)

− u(yj)
)

= AV

(

γ̃; [0, tf ]
)

. (5.26)

Recalling (5.21) and (5.22) we have (recall that ū = u ◦ θ−1
ȳ )

∆ =

[

∫ t̃1

0

LV
(

γ1(t), γ̇1(t)
)

dt−
(

u
(

θ−1
ȳ (z0

1)
)

− u(yj)
)

]

+

η−1
∑

i=1

[

∫ t̃i+T
f
i

t̃i

LV
(

γ1(t), γ̇1(t)
)

dt−
(

ū(z̃i) − ū(z0
i )
)

]

+

η−1
∑

i=1

[

∫ t̃i+1

t̃i+Ti

LV
(

γ1(t), γ̇1(t)
)

dt−
(

ū(z0
i+1) − ū(z̃i)

)

]

.

By construction, the curve [0, t̃1] ∋ t 7→ γ1(t) ∈ M does not intersect the support of V . This
shows that the first term appearing in the right hand side of the above formula equals

∆0 :=

∫ t̃1

0

L
(

γ1(t), γ̇1(t)
)

dt−
(

u
(

γ1(t̃1)
)

− u
(

γ1(0)
)

)

.

Since t ∈ [0, t1] 7→
(

γ1(t), du(γ1(t)
)

belongs to the Aubry set Ã(H) and u is a critical subsolu-
tion, we deduce that ∆0 = 0. On the other hand, for each i ∈ {1, . . . , η− 1}, the piece of curve
γ1|[t̃i+T f

i ,t̃i+1]
does not intersect the support of V . This shows that the last terms of the above

formula equal

∆i :=

∫ t̃i+1

t̃i+T
f
i

L
(

γ1(t), γ̇1(t)
)

dt−
(

ū(z0
i+1) − ū(z̃i)

)

,

and since u is a critical solution along γ1 ⊂ A(H) we deduce that ∆i = 0 as well. Finally,
thanks to (p13), for every i = 1, . . . , η − 1 we have

δi :=

∫ t̃i+T
f
i

t̃i

LV
(

γ1(t), γ̇1(t)
)

dt−
(

ū(z̃i) − ū(z0
i )
)

= AV̄i

(

(z0
i ,∇ū(z

0
i ));T

f
i

)

−
(

ū(z̃i) − ū(z0
i )
)

= A
(

(z0
i ,∇ū(z

0
i )); Tτ̄ (z

0
i )
)

+
〈

∇ū(zi), z̃i − zi
〉

+ σi −
(

ū(z̃i) − ū(z0
i )
)

=
[

A
(

(z0
i ,∇ū(z

0
i )); Tτ̄ (z

0
i )
)

−
(

ū(zi) − ū(z0
i )
)]

+
[

〈

∇ū(zi), z̃i − zi
〉

−
(

ū(z̃i) − ū(zi)
)]

+ σi

= 0 +
[

〈

∇ū(zi), z̃i − zi
〉

−
(

ū(z̃i) − ū(zi)
)]

+ σi,
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where for the last equality we used (p1) and the fact that ū is a critical solution on Bn(0, 2).
By (5.19) we deduce that δi = αi + σi, with

∣

∣αi
∣

∣ ≤ Ku|z̃i − zi|
2 ≤ Kū

(

r̂2i
64

)

(

ǫ

K
√

1 +K2
ū

)2

. (5.27)

(Recall that Kū denotes the C1,1-norm of ū on Bn(0, 2).) Define the σi’s by

σi := −αi ∀ i = 1, . . . , η − 1. (5.28)

(This is an admissible choice for ǫ sufficiently small, see (5.20).) Then

δi = 0 ∀ i = 1, . . . , η − 1, (5.29)

and we conclude that

∆ = ∆0 +

η−1
∑

i=1

(

δi + ∆i

)

= 0,

as desired.

5.5 Construction of a critical subsolution

The constructions performed in Subsections 5.3 and 5.4 show that, given ǫ ∈ (0, 1), for every
r̄ > 0 sufficiently small, there exist a potential V̄ : Rn → R of class Ck with

∥

∥V̄
∥

∥

C2 < ǫ, Supp(V̄ ) ⊂ ∪η−1
i=1 C

(

(

z0
i ,∇ū(z

0
i )
)

; Tτ̄ (z
0
i ); r̂i/8

)

, r̂1, . . . , r̂η−1 ≤ r̄,

and a periodic curve γ :
[

0, tf
]

→ M , such that property (P2) is satisfied (see Subsection 5.1),
where V : M → R is the Ck potential given by (5.12). Moreover, by (p6) and the Lipschitz
regularity of the functions Φ1, . . . ,Φη−1, we have (recall that w̄i = Φi(0n−1), see (5.15))

∣

∣z0
i − w̄i

∣

∣ ≤ K̄r̄ ∀ i = 1, . . . , η − 1, (5.30)

for some constant K̄ > 0 independent of r̄.
Now, it remains to construct a function v : M → R for which (P1) is satisfied. In fact,

we have still to slightly modify the potential V . Given ǫ ∈ (0, 1), we are going to show
how to build Ṽ : Bn(0, 2) → R of class Ck with

∥

∥Ṽ
∥

∥

C2 controlled by ǫ and Supp(Ṽ ) ⊂

∪η−1
i=1 C

(

(

z0
i ,∇ū(z

0
i )
)

; T3τ̄ (z
0
i ); r̂i/4

)

, and a function ũ : Bn(0, 2) → R of class C1,1, so that the

following properties are satisfied:

(P1′) HV ′

(

x, dv′(x)
)

≤ 0 ∀x ∈M .

(P2′)
∫ tf
0 LV ′(γ(t), γ̇(t)) dt = 0.

Here v′, V ′ : M → R are the functions defined by

v′(x) :=

{

u(x) if x /∈ Uȳ
ũ
(

θȳ(x)
)

if x ∈ Uȳ,

and

V ′(x) :=

{

0 if x /∈ Uȳ
V (x) + Ṽ

(

θȳ(x)
)

if x ∈ Uȳ.

This will conclude the proof of Theorem 2.1.
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In order to construct the function ũ, we will use the results described in Subsection 5.2: let
ǫ ∈ (0, 1) and i ∈ {1, . . . , η − 1} be fixed. We denote by Z̃0

i (·) :
[

0, T3τ̄ (z̃
0
i )
]

→ Bn(0, 2) the
projection of the solution of the Hamiltonian system

{

ż(t) = ∇qH̄
(

z(t), q(t)
)

q̇(t) = −∇zH̄
(

z(t), q(t)
)

,
(5.31)

associated with H̄ and starting at
(

z0
i ,∇ū(z

0
i )
)

. Let us recall that, by the proof of Claim 2 in
Subsection 5.3, the cylinder

C′
i := C

(

(

z0
i ,∇ū(z

0
i )
)

; T3τ̄ (z
0
i ); r̂i/4

)

=
{

Z̃0
i (t) + (0, ẑ) | t ∈

[

0, T3τ̄ (z̃
0
i )
]

, |ẑ| < r̂i/4
}

,

never intersects the curve
[

t′l + tη, t
′
j

]

∋ t 7−→ γ(t).
Denote by ūi : C′

i → R the unique solution to the Dirichlet problem

{

H̄V̄i

(

z,∇ūi(z)
)

= 0 in C′
i,

ūi = ū on C′
i ∩ Π0,

(5.32)

with V̄i the potential constructed in Subsection 5.3 (see Lemma 5.3). The function ūi is of
class C1,1 on C′

i. In addition, since ū is a C1,1 critical solution of (5.2) and V̄i vanishes outside

C
(

(

z0
i ,∇ū(z

0
i )
)

; T3τ̄ (z
0
i ), r̂i/8

)

by property (p9) in Subsection 5.3, using Lemma 5.1(v) it is

easily seen that ūi coincides with ū in the annulus

Ai := C′
i \ C

(

(

z0
i ,∇ū(z

0
i )
)

; T3τ̄ (z
0
i ); r̂i/6

)

.

By the discussion after Lemma 5.3, any solution
(

z(·), q(·)
)

: [0,+∞) → Rn × Rn of the
Hamiltonian system

{

ż(t) = ∇qH̄V̄i

(

z(t), q(t)
)

= ∇qH̄
(

z(t), q(t)
)

q̇(t) = −∇zH̄V̄i

(

z(t), v(t)) = −∇zH̄
(

z(t), q(t)
)

−∇V̄i(z(t)),
(5.33)

starting at
(

z0,∇ū(z0)
)

with z0 ∈ Π0
1, satisfies

ūi
(

z(t)
)

− ū(z0) =

∫ t

0

〈

q(s), ż(s)
〉

ds =

∫ t

0

L̄
(

z(s), ż(s)
)

− V̄i
(

z(s)
)

ds (5.34)

and

∇ūi
(

z(t)
)

= q(t) (5.35)

for all t ≥ 0 such that z(t) ∈ Bn(0, 1)∩H[0,3τ̄]. Now, denote by Z0
i (·) :

[

0, T ei
]

→ C′
i the solution

(of class Ck) of the Hamiltonian system (5.33) starting at
(

z0
i ,∇ū(z

0
i )
)

, where T ei ∈ (5τ̄ /2, 7τ̄/2)
is the “exit time” for Z0

i (·) with respect to C′
i, i.e., Z0

i (T
e
i ) ∈ ∂C′

i ∩ Π3τ̄ (see Lemma 5.1(iii)).
Note that, thanks to (5.34), (5.35), properties (p9) and (p12) in Subsection 5.3, and (5.29), the
following hold:

(π1) ūi(z) = ū(z) for every z ∈ Ai.

(π2) Z0
i (t) = Z̃0

i

(

Tτ̄
(

z0
i

)

+
(

t− T fi
)

)

for every t ∈
[

T fi , T
e
i

]

.

(π3) ūi
(

Z0
i (t)

)

= ū(Z0
i (t)) and ∇ūi

(

Z0
i (t)

)

= ∇ū(Z0
i (t)) for every t ∈

[

T fi , T
e
i

]

.

Furthermore, given ǫ > 0, we can choose r̄ sufficiently small so that the following holds:
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Lemma 5.5. There exists a continuous nondecreasing function ω0 : [0,+∞) → [0,+∞), satis-
fying ω0(0) = 0 and independent of i ∈ {1, . . . , η − 1} and ǫ > 0, such that

∥

∥ūi − ū
∥

∥

C1,1(C′

i)
≤ ω0(ǫ). (5.36)

Proof of Lemma 5.5. For any z0 ∈ Π0
1 ∩ Bn−1(z0

i , r̂i/4), denote by
(

z̄( · , z0), q̄( · , z0)
)

(resp.
(

z̄i( · , z0), q̄i( · , z0)
)

) the solution of (5.31) (resp. (5.33)) starting at
(

z0,∇ū(z0)
)

. Since both

ū and ūi are given by characteristics inside Bn(0, 1)∩H[0,3τ̄] and
∣

∣∇V̄i(z)
∣

∣ < ǫ for every z ∈ C′
i,

Gronwall’s Lemma yields a uniform constant K1 > 0 such that

∣

∣

(

z̄(t, z0),∇ū
(

z̄(t, z0)
))

−
(

z̄i(t, z
0),∇ūi(z̄i(t, z

0))
)∣

∣

=
∣

∣

(

z̄(t, z0), q̄(t, z0)
)

−
(

z̄i(t, z
0), q̄i(t, z

0)
)∣

∣ ≤ K1ǫ, (5.37)

for every z0 ∈ Π0
1 ∩ Bn−1(z0

i , r̂i/4) and t ≥ 0 such that z̄(t, z0) and z̄i(t, z
0) both belong to

Bn(0, 1) ∩H[0,3τ̄ ]. Recalling that Kū denotes the C1,1-norm of ū, we deduce that

∣

∣∇ū
(

z̄i(t, z
0)
)

−∇ūi
(

z̄i(t, z
0)
)∣

∣ ≤
∣

∣∇ū
(

z̄i(t, z
0)
)

−∇ū
(

z̄(t, z0)
)∣

∣

+
∣

∣∇ū
(

z̄(t, z0)
)

−∇ūi
(

z̄i(t, z
0)
)∣

∣

≤
(

Kū + 1
)

K1ǫ.

Since every point z ∈ C′
i can be written as z̄i(t, z

0) for some z0 ∈ Π0
1∩B

n−1(z0
i , r̂i/4) and t ≥ 0,

the above bound on ∇(ū− ūi) together with (π1) implies

‖ū− ūi‖C1(C′

i)
≤ K2ǫ

for some uniform constant K2 > 0. It remains to estimate the difference between Hess ū and
Hess ūi at any point C′

i where they both exist. To this aim, we recall that the Hessians of ū
and ūi can be recovered from the linearized Hamiltonian systems associated with H̄ and H̄V̄i

(see (5.10)).
Fix z0 ∈ Π1

0 ∩ Bn−1(z0
i , r̂i/4) such that ū is twice differentiable at z0 (this is a set of full

measure on Π1
0, as observed after (5.9)). Given h ∈ Rn with |h| = 1, and let
(

δz̄( · , z0, h), δq̄( · , z0, h)
) (

resp.
(

δz̄i( · , z
0, h), δq̄i( · , z

0, h)
))

denote a solution of the linearized system (5.9) along the trajectory
(

z̄( · , z0), q̄( · , z0)
)

(resp.
(

z̄i( · , z0), q̄i( · , z0)
)

) with W = 0 (resp. with W = V̄i), and starting at
(

h,Hess ū(z0)h
)

. Since
∥

∥V̄i
∥

∥

C2 < ǫ and H̄ is of class at least C2, the linearized systems associated with W = 0 and

W = V̄i are close to each other: by Gronwall’s Lemma there exists a nondecreasing continuous
function ω1 : [0,+∞) → [0,+∞), with ω1(0) = 0 and independent of i ∈ {1, . . . , η − 1} and
ǫ > 0, such that14

∣

∣

(

δz̄(t, z0, h), δq̄(t, z0, h)
)

−
(

δz̄i(t, z
0, h), δq̄i(t, z

0, h)
)∣

∣ ≤ ω1(ǫ),

as long as both z̄(t, z0) and z̄i(t, z
0) belong to Bn(0, 1) ∩H[0,3τ̄ ].

Denoting by
(

R̄1( · , z0), R̄2( · , z0)
)

and
(

(R̄i)1( · , z0), (R̄i)2( · , z0)
)

the matrices associated
with the two linearized systems under consideration (see the discussion after Lemma 5.3) and
recalling (5.11), we deduce that there is a nondecreasing continuous function ω2 : [0,+∞) →
[0,+∞), with ω2(0) = 0 and independent of i ∈ {1, . . . , η − 1} and ǫ > 0, such that

∥

∥Hess ū
(

z̄(t, z0)
)

− Hess ūi
(

z̄i(t, z
0)
)∥

∥

=
∥

∥R̄2(t, z
0)R̄1(t, z

0)−1 − (R̄i)2(t, z
0)(R̄i)1(t, z

0)−1
∥

∥ < ω2(ǫ),

14The function ω1 depends on ǫ and on a uniform modulus of continuity for ∂2H̄
∂z2 , ∂2H̄

∂z∂v
, and ∂2H̄

∂v2 on Bn(0, 2)×
˘

∇ū
`

Bn(0, 2)
´¯

.
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as long as both z̄(t, z0) and z̄i(t, z
0) belong to Bn(0, 1) ∩ H[0,3τ̄ ]. We now recall that u is C2

along O+(x̄), which implies that Hess ū exists and is continuous along t 7→ z̄(t, w̄i) (see (5.15)).
Hence, if K2 denotes a uniform Lipschitz constant for the flow (t, z0) 7→ z̄(t, z0), by (5.30) we
deduce that for any z ∈ C′

i there exists a time tz such that
∣

∣z − z̄(tz , w̄i)
∣

∣ ≤ 2K2K̄r̄ (5.38)

(recall that r̂i ≤ r̄). In particular, since for any z0 ∈ Π1
0∩B

n−1(z0
i , r̂i/4) both curves t 7→ z̄(t, z0)

and t 7→ z̄i(t, z
0) remain inside C′

i (at least as long as they belong to Bn(0, 1)∩H[0,3τ̄ ]), by the
triangle inequality we deduce that

∥

∥Hess ū
(

z̄i(t, z
0)
)

− Hess ū
(

z̄(t, z0)
)∥

∥

≤ 2ωi3(2K2K̄r̄) +
∥

∥Hess ū
(

z̄(tz̄i(t,z0), w̄i
)

− Hess ū
(

z̄(tz̄(t,z0), w̄i
)∥

∥ , (5.39)

where ωi3 is a nondecreasing modulus of continuity for Hess ū along t 7→ z̄(t, w̄i) (at least as
long as the curve remain inside Bn(0, 1) ∩H[0,3τ̄ ])

15, and tz is as in (5.38).
We now observe that, thanks to (5.37), there exists a uniform constant K3 > 0 such that

|tz̄i(t,z0)−tz̄(t,z0)| ≤ K3ǫ. Moreover, the last term in the right hand side of (5.39) can be written
in terms of the linearized system only. Hence, there exists a nondecreasing continuous function
ω4 : [0,+∞) → [0,+∞), with ω4(0) = 0 and independent of i ∈ {1, . . . , η − 1} and ǫ > 0, such
that

∥

∥Hess ū
(

z̄(tz̄i(t,z0), w̄i
)

− Hess ū
(

z̄(tz̄(t,z0), w̄i
)∥

∥ ≤ ω4(K3ǫ).

Thus, by combining the above estimates together and choosing r̄ sufficiently small (the smallness
may depend on ǫ), we get

∥

∥Hess ū
(

z̄i(t, z
0)
)

− Hess ūi
(

z̄i(t, z
0)
)∥

∥ ≤
∥

∥Hess ū
(

z̄i(t, z
0)
)

− Hess ū
(

z̄(t, z0)
)∥

∥

+
∥

∥Hess ū
(

z̄(t, z0)
)

− Hess ūi
(

z̄i(t, z
0)
)∥

∥

≤ ωi3
(

4K2K̄r̄
)

+ ω4(K3ǫ) + ω2(ǫ)

≤ 2 [ω4(K3ǫ) + ω2(ǫ)] .

Since a.e. z ∈ C′
i can be written as z̄i(t, z

0) for some t ≥ 0 and z0 ∈ Π0
1 ∩ Bn−1(z0

i , r̂i/4)
belonging to a set of full measure (which is independent of t), we conclude easily.

Thanks to (π1)-(π3) and the lemma above, we will see that, by adding a suitable potential
supported inside the cylinder C′

i ∩
{

(t, ẑ) | t ∈
[

τ̄ , 3τ̄
]}

, we can “glue” together ūi and ū so that
they coincide outside C′

i and the new function is a critical subsolution. Moreover the potential
that we add will vanish together with its gradient along Z0

i , so that the curve t 7→ Z0
i (t) will

still be an extremal curve for the new Hamiltonian.
More precisely, we claim that there exist a continuous nondecreasing function ω : [0,+∞) →

[0,+∞), satisfying ω(0) = 0 and independent of both i ∈ {1, . . . , η − 1} and ǫ > 0, a function
ũi : C′

i → R of class C1,1, and a potential Ṽi : C′
i → R of class Ck, such that the following

properties are satisfied:

(π4) H̄V̄i

(

z,∇ũi(z)) + Ṽi(z) ≤ 0 for every z ∈ C′
i.

(π5) Supp
(

Ṽi
)

⊂ C′
i ∩
{

(t, ẑ) | t ∈
[

τ̄ , 3τ̄
]}

.

(π6)
∥

∥Ṽi
∥

∥

C2(C′

i)
≤ ω(ǫ).

(π7) ũi
(

Z0
i (t)

)

= ūi
(

Z0
i (t)

)

= ū
(

Z0
i (t)

)

and ∇ũi
(

Z0
i (t)

)

= ∇ūi
(

Z0
i (t)

)

= ∇ū
(

Z0
i (t)

)

for all

t ∈
[

T fi , T
e
i

]

.

15Observe that ωi
3

may depend on ǫ, since the C2 regularity of u along the orbit O+(x̄) is a priori not uniform.
However this is not a problem since, once ǫ has been fixed, we can choose r̄ as small as desired.
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(π8) Ṽi(Z
0
i (t)) = ∇Ṽi(Z0

i (t)) = 0 for all t ∈
[

T fi , T
e
i

]

.

(π9) ũi(z) = ūi(z) = ū(z) for every z ∈ Ai.

(π10) ũi(z) = ūi(z) for every z =
(

z1, ẑ
)

∈ C′
i with z1 ∈

[

0, 3τ̄/2
]

.

(π11) ũi(z) = ū(z) for every z =
(

zi, ẑ
)

∈ C′
i with z1 ∈

[

5τ̄ /2, 3τ̄
]

.

To construct such a potential, let us consider Θ : Bn(0, 2) → [0, 1] a smooth function such
that

{

Θ(z) = Θ(z1) = 1 if z1 ∈
[

0, 3τ̄/2
]

,
Θ(z) = Θ(z1) = 0 if z1 ∈

[

5τ̄/2, 3τ̄
]

,

and define ũi : C′
i → R by

ũi(z) := Θ(z)ūi(z) +
(

1 − Θ(z)
)

ū(z) ∀ z ∈ C′
i.

zi
0~

zi
0

zi
~

zi

Supp (Vi )

Π0 Πτ/2
_

Πτ
_

Π3τ/2
_

Π5τ/2
_

Π3τ
_

ui = u~ _
ui = ui
~ _

Supp (Vi )

_

~

ui = ui = u~ _ _
ui = u~ _

ri/4
^

zi(t)
0

ri/4
^

}
‘i

}
Figure 6: The function ũi is obtained by interpolating (using a cut-off function) between ū

(the viscosity solution for H̄) and ūi (the viscosity solution for H̄V̄i
) inside the “cylinder” C′

i :=

C
``

z0
i ,∇ū(z0

i )
´

; T3τ̄ (z0
i ); r̂i/4

´

. Then, by adding a new potential Ṽi, small in C2 topology and sup-

ported inside C′
i ∩ {z = (z1, ẑ) | z1 ∈ [τ̄ , 3τ̄ ]}, we can ensure that H̄V̄i+Ṽi

(z,∇ũi(z)) ≤ 0 on the whole

ball Bn(0, 2). Since the cylinders C′
i are disjoint, we can repeat this construction for i = 1, . . . , η − 1 to

find ũ : Bn(0, 2) → R and Ṽ : Bn(0, 2) → R so that (P1′) and (P2′) hold.

By construction, ũi is of class C1,1 on the cylinder C′
i. Moreover, for every z ∈ C′

i we have

∇ũi(z) =
(

ūi(z) − ū(z)
)

∇Θ(z) + Θ(z)∇ūi(z) +
(

1 − Θ(z)
)

∇ū(z) ∀ z ∈ C′
i.

By (π1), (π3) and the definition of Θ, assertions (π7) and (π9)-(π11) are satisfied. Moreover,
since

Supp
(

V̄i
)

⊂ C′
i ∩
{

z =
(

z1, ẑ
)

| z1 ∈
[

0, τ̄
]

}

,

both ū, ūi are solutions of the Hamilton-Jacobi equation associated with H̄ on the cylinder

C′′
i := C′

i ∩
{

z =
(

z1, ẑ
)

| z1 ∈
[

τ̄ , 3τ̄
]

}

,
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so
H̄
(

z,∇ũi(z)
)

≤ 0 on C′
i ∩
{

z =
(

z1, ẑ
)

| z1 ∈
[

τ̄ , 3τ̄/2
]

∪
[

5τ̄/2, 3τ̄
]

}

.

Moreover, by the convexity of H̄ in the p variable,

H̄
(

z,Θ(z)∇ūi(z) +
(

1 − Θ(z)
)

∇ū(z)
)

≤ 0 ∀z ∈ C′′
i ,

which gives

H̄
(

z,∇ũi(z)
)

≤ K ′ |ūi(z) − ū(z)| on C′
i ∩
{

z =
(

z1, ẑ
)

| z1 ∈
[

3τ̄/2, 5τ̄/2
]

}

,

for some uniform constant K ′ > 0 depending only on ∂H̄
∂p and ∇Φ. Recalling (π3) and (5.36),

we deduce the existence of a uniform constant K ′′ > 0 such that
∣

∣ūi(z) − ū(z)
∣

∣ ≤ K ′′ ω0(ǫ) dist
(

z,Γi
)2

on C′
i ∩
{

z =
(

z1, ẑ
)

| z1 ∈
[

3τ̄ /2, 5τ̄/2
]

}

,

where Γi :=
{

Z0
i (t) | t ∈

[

T fi , T
e
i

]

}

and dist
(

· ,Γi
)

denotes the distance function to the curve

Γi. Again by (5.36) and (π1), there is a uniform constant K ′′′ > 0 such that

∣

∣ūi(z) − ū(z)
∣

∣ ≤ K ′′′ ω0(ǫ) dist
(

z, ∂latC
′′
i

)2
,

where ∂latC′′
i denotes the “lateral boundary” of C′′

i , i.e.,

∂latC
′′
i :=

{

z̄i(t) +
(

0, ẑ
)

| t ∈
[

τ̄ , 3τ̄
]

, |ẑ| = r̂i/4
}

.

All in all, we have proved

H̄
(

z,∇ũi(z)
)

≤

{

0 on C′
i ∩
{

z1 ∈
[

τ̄ , 3τ̄ /2
]

∪
[

5τ̄/2, 3τ̄
]}

,

ω0(ǫ) min
{

K ′′dist
(

z,Γi
)2
,K ′′′dist

(

z, ∂latC′′
i

)2
}

on C′
i ∩
{

z1 ∈
[

3τ̄/2, 5τ̄/2
}

.

Thanks to this estimate and recalling that Z0
i is of class Ck, we easily deduce the existence of

a nondecreasing function ω : [0,+∞) → [0,+∞) with ω(0) = 0, and a potential Ṽi : C′
i → R of

class Ck, satisfying (π4)-(π6) and (π8).

Repeating this construction for i = 1, . . . , η − 1, since the sets C′
i are disjoint we obtain a

function ũ : Rn → R of class C1,1, together with a potential Ṽ : Rn → R of class Ck with
‖Ṽ ‖C2 < ω̄(ǫ) and Supp(Ṽ ) ⊂ ∪η−1

i=1 C
′
i (so that Supp

(

V̄
)

never interstects γ, see Claim 2 in
Subsection 5.3), such that both properties (P1′) and (P2′) are satisfied. This concludes the
proof of Theorem 2.1.

6 Proof of Theorem 2.4

We use the same notation as in the proof of Theorem 2.1.

6.1 Preliminary step

Recall that dim M = 2, H : T ∗M → R is a Tonelli Lagrangian of class Ck with k ≥ 2,
L : TM → R is its associated Lagrangian, and ǫ > 0 is fixed. As is the proof of Theorem 2.1,
we can assume that c[H ] = 0 and that Ã(H) does not contain an equilibrium point or a periodic
orbit. Fix x̄ as in the statement of the theorem. By assumption, there is a critical subsolution
u : M → R and an open neighborhood V of O+

(

x̄
)

such that u is at least Ck+1 on V . Define
V0 : V → R by

V0(x) := −H
(

x, du(x)
)

∀x ∈ V .
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By the assumptions on u, the potential V0 is of class Ck, nonnegative, and u is a critical solution
of

H
(

x, du(x)
)

+ V0(x) = 0 ∀x ∈ V . (6.1)

Hence, by the proof of Theorem 2.1 (applied to the Hamiltonian H+V0 inside V), given r̄, ǫ > 0
small enough, there exist an open set U := Uȳ ⊂ V (here Uȳ is as in Subsection 5.2), a potential
Vǫ : M → R of class Ck, a function v : M → R of class C1,1, and a closed curve γ : [0, tf ] →M
such that the following properties are satisfied:

(π̃1)
∥

∥Vǫ
∥

∥

C2 < ǫ/2.

(π̃2) Supp (Vǫ) ⊂ U .

(π̃3) H
(

x, dv(x)
)

+ V0(x) = 0 for every x ∈M \ U .

(π̃4) H
(

x, dv(x)
)

+ V0(x) + Vǫ(x) ≤ 0 for every U .

(π̃5)
∫ tf
0
L
(

γ(t), γ̇(t)
)

− V0

(

γ(t)
)

− Vǫ
(

γ(t)
)

dt = 0.

Moreover, recalling the construction of the curve γ, it is easily seen that there is some constant
K > 0 such that the closed curve γ is made of two curves

γ1 : [0, t̃η] −→ M and γ2 : [t̃η, tf ] −→M

(see Subsection 5.4) which satisfy16

(π̃6) For every t ∈ [t̃η, tf ], γ(t) = γ2(t) ∈ A(H);

(π̃7) dist
(

γ1(t), Γ̄1

)

≤ Kr̄ for all t ∈ [0, t̃η].

Here Γ̄1 := γ̄
(

[0, t̄η
])

, where t̄η denotes the positive time such that γ̄(t̄η) = ȳη, see (5.15).
Furthermore, we notice that the number r̄ > 0, appearing in assertion (π̃7) above, can be
chosen as small as we wish.

6.2 Modification of the potential and conclusion

In the previous subsection we found a potential W := V0 + Vǫ of class Ck associated with a
closed curve γ : [0, tf ] → M which corresponds to the Aubry set for the Hamiltonian H +W
inside V . Now, the strategy is to construct a new potential V1 : M → R of class Ck such that
the following properties are satisfied:

(π̃8)
∥

∥V1

∥

∥

C2 < ǫ/2.

(π̃9) V1(x) ≤ V0(x) for every x ∈ V .

(π̃10) V1(x) = 0 for every x ∈M \ V .

(π̃11) V1

(

γ(t)
)

= V0

(

γ(t)
)

for every t ∈ [0, tf ].

16The existence of the constant K > 0 is a consequence of the following facts:

- the function (t, x) 7→ Ψ(t, x) = π∗
`

φH
t (x, du(x))

´

is well-defined and of class C1 in a neighborhood of
[0,+∞) × {x̄};

- the curve γ1 is contained in the image by Ψ of a bounded interval (since, once ǫ > 0 is fixed, the number
η is fixed and given by Mai Lemma) times a small ball (see (p6) in Subsection 5.3).

However, let us remark that, for our purposes, instead of (vii) it would suffice to know that dist
`

γ1(t), Γ̄1

´

→ 0
as r → 0, which is clearly true.
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Assuming that we are able to perform such a construction, we will define the potential V :
M → R by

V := V1 + Vǫ.

Observe that V is Ck, and by (π̃1) and (π̃8) it satisfies ‖V ‖C2 < ǫ. Moreover, by (π̃2)-(π̃4) and
(π̃9) we have

H
(

x, dv(x)
)

+ V (x) ≤ H
(

x, dv(x)
)

+ V0(x) + Vǫ(x) ≤ 0 ∀x ∈ V ,

while the nonnegativity of V0 together with (π̃2), (π̃3) and (π̃10) yields

H
(

x, dv(x)
)

+ V (x) = H
(

x, dv(x)
)

= −V0(x) ≤ 0 ∀x ∈M \ V .

Finally, by (π̃5) and (π̃11),

∫ tf

0

L
(

γ(t), γ̇(t)
)

− V
(

γ(t)
)

dt =

∫ tf

0

L
(

γ(t), γ̇(t)
)

− V0

(

γ(t)
)

− Vǫ
(

γ(t)
)

dt = 0.

This shows that γ : [0, tf ] →M is contained in the Aubry set for the new Hamiltonian HV , and
we conclude the proof of Theorem 2.4 by adding a smooth potential W , small in C2-topology,
which vanishes on γ and is strictly positive outside (see Subsection 5.1). Hence we are left with
the construction of V1, that we perform in the next subsection.

6.3 Construction of the potential

Let us recall that the function V0 : V → R is of class Ck with k ≥ 2, is nonnegative, and
vanishes on A(H). Hence we immediately deduce that

V0 = dV0 = 0 on A(H).

Since x̄ = γ̄(0) is a recurrent point of A(H) and M is two-dimensional, it is easy to show the
existence of a continuous nondecreasing function ω : [0,+∞) → [0,+∞), with ω(0) = 0, such
that

∥

∥d2V0(x)
∥

∥

x
< ω

(

dist
(

x, Γ̄1

))

∀x ∈ V (6.2)

(see also Remark 6.2 below), where Γ̄1 ⊂ A(H) has been defined after (π̃7). Then, the existence
of a potential V1 : M → R of class Ck, satisfying properties (π̃8)-(π̃11) above, follows from (π̃7)
and from the following general lemma (whose proof is postponed to Appendix E.3) applied to
N = M , C = Γ̄1, O = V , g = V0 and A = γ1|[0,t̃η].

Lemma 6.1. Let N be a smooth compact Riemannian manifold without boundary of dimension
n ≥ 2, O ⊂ N be open, and C ⊂ O compact. Let g : O → R be a nonnegative function of class
Ck with k ≥ 2 satisfying

g = dg = 0 on C,
∥

∥d2g(x)
∥

∥

x
< ω

(

dist
(

x,C
))

∀x ∈ O (6.3)

for some continuous nondecreasing function ω : [0,+∞) → [0,+∞) with ω(0) = 0. Then, for
every ǫ′ > 0 there is r > 0 such that the following holds: Let A be a closed set satisfying

dist(x,C) ≤ r ∀x ∈ A. (6.4)

Then there exists a function h : N → R of class Ck such that:

(a) 0 ≤ h(x) ≤ g(x) for every x ∈ O.

(b) Supp (h) ⊂ O.
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(c)
∥

∥h
∥

∥

C2 < ǫ′.

(d) h(x) = g(x) for every x ∈ A.

Remark 6.2. Let us point out that the whole argument given above, together with Lemma
6.1, holds true in arbitrary dimension, with the exception of (6.2). Indeed, the fact that x̄
is recurrent implies that, for every t ∈ [0, t̄η], there are points of A(H) which are arbitrarily
close to γ̄(t) and “transversal” to γ̄. In two dimension this implies that d2V0 = 0 on Γ̄1, from
which (6.2) follows by continuity. On the hand, in higher dimension we can only deduce that
d2V0 is small in the “directions tangent to A(H)”. This fact creates much more difficulties,
since in order to establish the analogue of Lemma 6.1 we will need to know that the connecting
trajectories can be chosen to belong to “the tangent space to A(H)”. This delicate construction
is performed in [27].

7 Final comments

In [12], Contreras and Iturriaga proved the following: let H : T ∗M → R be a Hamiltonian of
class Ck, k ≥ 3, whose Aubry set is an equilibrium point (resp. a periodic orbit). Then, there
is a smooth potential V : M → R, with ‖V ‖Ck as small as desired, such that the Aubry set of
HV is a hyperbolic equilibrium (resp. a hyperbolic periodic orbit). In view of our results we
obtain:

Theorem 7.1. Let H : T ∗M → R be a Tonelli Hamiltonian of class Ck with k ≥ 3, and
fix ǫ > 0. Assume that there are a recurrent point x̄ ∈ A(H), a critical viscosity subsolution
u : M → R, and an open neighborhood V of O+

(

x̄
)

such that one of the following properties is
satisfied:

(i) u is of class at least C1 on V, Hessgu(x̄) is a singleton, and H
(

x, du(x)
)

= c[H ] for all
x ∈ V.

(ii) dimM = 2 and u is of class Ck+1 on V.

Then, there exists a potential V : M → R of class Ck, with ‖V ‖C2 < ǫ, such that c[HV ] = c[H ]
and the Aubry set of HV is either a hyperbolic equilibrium or a hyperbolic periodic orbit.

In [6] Bernard proved that if the Aubry set of a Tonelli Hamiltonian H : T ∗M → R of class
Ck, with k ≥ 2, is a finite union of hyperbolic periodic orbits or equilibria, then at least one
critical viscosity solution is of class Ck in a neighborhood of A(H). Furthermore, Contreras
and Iturriaga showed in [12] that if V is a potential of class C2 such that Ã(HV ) is a hyperbolic
equilibrium or a hyperbolic periodic orbit, then there exists ǫ > 0 such that the same property
holds for every W : M → R with ‖W‖C2 < ǫ. Thus, thanks to Theorem 2.1, we can more or
less consider that the Mañé Conjecture in C2 topology for Hamiltonians of class at least C3 is
equivalent to the:

Mañé regularity Conjecture for viscosity solutions. For every Tonelli Hamiltonian
H : T ∗M → R of class Ck, with k ≥ 3, there is a set D ⊂ C3(M) which is dense in C2(M)
(with respect to the C2 topology) such that the following holds: For every V ∈ D, there are a
recurrent point x̄ ∈ A(H), a critical viscosity subsolution u : M → R, and an open neighbor-
hood V of O+

(

x̄
)

such that u is of class C2 on V and satisfies H
(

x, du(x)
)

= c[H ] for all x ∈ V .

By the extension to arbitrary dimension of Theorem 7.1(ii) performed in [27], the Mañé
Conjecture in C2 topology is also equivalent to an analogous version of the “Mañé regularity
Conjecture” above, replacing smooth critical solution by smooth critical subsolution (see [27,
Section 1]).
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Let us note that, by a recent result of Fathi [22], the existence of a critical viscosity subso-
lution of class Ck in a neighborhood of the projected Aubry set is equivalent to the existence of
a global critical subsolution of class Ck on M . We stress that the main assumption in Theorem
2.4 is only concerned with the regularity of a critical viscosity subsolution in a neighborhood of
a positive orbit (which is not a closed set), which is a much weaker hypothesis than the existence
of a critical viscosity subsolution which is of class Ck in a neighborhood of the projected Aubry
set. For instance, on a 2-torus, such an assumption is not in contradiction with Denjoy-type
obstructions for the existence of regular critical subsolutions [20, Theorem 8.1].

A Conventions and standing notation

• M is a smooth compact manifold without boundary of dimension n ≥ 2.

• We denote by TM the tangent bundle and by π : TM →M the canonical projection. A
point in TM is denoted by (x, v), with x ∈M and v ∈ TxM = π−1(x). In the same way,
a point of the cotangent bundle T ∗M is denoted by (x, p), with x ∈ M and p ∈ T ∗

xM a
linear form on the vector space TxM . The canonical projection on T ∗M is denoted by
π∗ : T ∗M →M . For every p ∈ T ∗

xM , 〈p, v〉 denotes the evaluation of p at v ∈ TxM .

• We suppose that g is a fixed smooth Riemannian metric on M . For v ∈ TxM , the norm
‖v‖x is gx(v, v)

1/2. We also denote by ‖ · ‖x the dual norm on T ∗M .

• For every integer k ≥ 1, we denote by · or 〈·, ·〉 the Euclidean scalar product, and by | · |
the Euclidean norm on Rk. We denote by Bk the open unit ball and by B̄k the closed
unit ball in Rk. For every x ∈ Rk and r > 0, we set Bk(x, r) :=

{

x′ ∈ Rk | |x′ − x| < r
}

and Sk(x, r) :=
{

x′ ∈ Rk | |x′ − x| = r
}

. Sometimes, for sake of simplicity, we denote the
ball Bk(x, r) (resp. the sphere Sk(x, r)) by B(x, r) (resp. S(x, r)), or simply Br (resp.
Sr) when x = 0. Given a linear mapping P : R

k → R
k, we denote by ‖P‖ its norm with

respect to | · |, that is ‖P‖ := max{|P (x)| | x ∈ B̄k}.

• For every k, l ≥ 1, Mk,l(R) denotes the vector space of real matrices with k rows and l
columns. If k = l, we simply set Mk(R) = Mk,l(R). Furthermore, 0k,l denotes the zero
matrix in Mk,l(R), 0k the zero vector in Rk, and ek1 , . . . , e

k
k the canonical basis in Rk. If

there is no possible confusion, we denote the latter by e1, . . . , ek. For every M ∈Mk,l(R),
M∗ denotes the transpose matrix in Ml,k(R).

• For every k ≥ 0, we denote by Ck(M) the space of functions of class Ck from M to
R. Given a function F ∈ Ck(M), we denote by diF its derivative of order i for every
i = 1, . . . , k, and we denote by ‖F‖Ck its Ck-norm (computed with respect to the metric
g).

• Most of the time we work in local charts. If F : Ω → Rl is of class C1 on the open set
Ω ⊂ Rk, dF (y) or ∂F

∂y (y) denotes its Jacobian matrix (which belongs to Ml,k(R)) at y ∈ Ω.

If F is real valued (i.e., l = 1), we denote by ∇F (y) = dF (y) ∈ Rk its gradient and by
Hess F (y) = d2F (y) its Hessian at y. If a C1 function F depends on several variables
(y1, . . . , ym), ∂F

∂yi

(

y1, . . . , ym
)

denotes the partial derivative of F with respect to the yi

variable evaluated at the point
(

y1, . . . , ym
)

.

• Given a Hamiltonian H : T ∗M → R of class Ck (with k ≥ 2) satisfying (H1) and (H2)
(see Subsection 1.2), we denote by φHt the Hamiltonian flow on T ∗M . We recall that the
Lagrangian L : TM → R associated with H is defined by

L(x, v) := max
p∈T∗

xM
{〈p, v〉 −H(x, p)} .
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Therefore the Fenchel inequality is always satisfied 〈p, v〉 ≤ L(x, v) +H(x, p). Moreover,
we have equality in the Fenchel inequality if and only if

(x, p) = L(x, v),

where L : TM → T ∗M denotes the Legendre transform defined as

L(x, v) :=

(

x,
∂L

∂v
(x, v)

)

∀ (x, v) ∈ TM.

Under our assumption L is a diffeomorphism of class at least Ck−1. We denote by φLt the
Euler-Lagrange flow of L on TM , it is of class Ck−1 and conjugated with the Hamiltonian
flow φHt .

• Given a topological space X , we denote by Cc(X) the vector space of compactly sup-
ported continuous function on X . The set P(X) denotes the space of measures on X . It
corresponds to the dual space Cc(X)∗ . The weak-∗ topology over P(X) is the topology
of simple convergence, that is

µk → µ ⇐⇒

∫

X

f dµk →

∫

X

f dµ, ∀ f ∈ C0(X).

We recall that the support of a measure µ is defined as the (closed) set of points x ∈ X
such that the µ-measure of every neighborhood of x is positive.

B Controllability of nonlinear control systems

B.1 Preliminaries

Given N,m ≥ 1, let us a consider a nonlinear control system in RN of the form

ξ̇ = F0(ξ) +

m
∑

i=1

uiFi(ξ) for a.e. t, (B.1)

where the state ξ(t) belongs to RN , t 7→ ξ(t) is an absolutely continuous curve, the control
u(t) = (u1(t), . . . , um(t)) belongs to Rm, and the functions F0, F1, . . . , Fm : Ω ⊂ RN → RN are
C1-vector fields defined on an open set Ω. Given ξ̄ ∈ Ω and ū ∈ L1

(

[0,+∞); Rm
)

, the Cauchy
problem

{

ξ̇(t) = F0(ξ(t)) +
∑m

i=1 ūi(t)Fi(ξ(t)) for a.e. t,
ξ(0) = ξ̄,

(B.2)

possesses a unique maximal solution ξξ̄,ū(·) ⊂ Ω defined on a maximal interval of the form

[0, Tξ̄,ū), with Tξ̄,ū ∈ [0,+∞]. Given ξ̄ ∈ Ω and T̄ > 0, we denote by Uξ̄,T̄ the set of controls

u ∈ L1
(

[0,+∞); Rm
)

such that T̄ < Tξ̄,u. The set Uξ̄,T̄ is an open (possibly empty) subset of

L1
(

[0,+∞); Rm
)

.
Fix G : Ω → R

k a function of class C1, and ū a smooth control in Uξ̄,T̄ . Our aim is to give
sufficient conditions on F0, F1, . . . , Fm, and G, for partial controllability of the control system
(B.1) with respect to G. Roughly speaking, this amounts to showing that, for any neighborhood
V ⊂ Uξ̄,T̄ of ū in L1

(

[0, T̄ ]; Rm
)

, the set
{

G
(

ξξ̄,u(T̄ )
)

| u ∈ V
}

is a neighborhood of G
(

ξξ̄,ū(T̄ )
)

. Most of the results presented below cannot be found in
classical references of control theory. However, we encourage the reader to have a look at the
book [14] (see also the forthcoming book [45]) for more details about the material discussed in
the next subsections.
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B.2 Singular controls

Assume that the set is Uξ̄,T̄ is nonempty. The End-Point mapping associated with ξ̄ in time T̄
is defined as

E ξ̄,T̄ : Uξ̄,T̄ −→ Ω
u 7−→ ξξ̄,u(T̄ ).

Since F0, F1, . . . , Fm are of class C1, the map E ξ̄,T̄ is C1 on its domain, and its differential at
ū ∈ Uξ̄,T̄ is given by the linear operator

dE ξ̄,T̄ (ū) : L1
(

[0, T̄ ]; Rm
)

−→ RN

v 7−→ ζ(T̄ ),

where ζ(·) is the unique solution to the Cauchy problem

{

ζ̇(t) = A(t)ζ(t) +B(t)v(t) for a.e. t ∈ [0, T̄ ],
ζ(0) = 0,

(B.3)

and the matrices A(t) ∈MN(R) and B(t) ∈MN,m(R) are defined by

A(t) := dF0

(

ξ̄(t)
)

+

m
∑

i=1

ūi(t)dFi
(

ξ̄(t)
)

, (B.4)

B(t) :=
(

F1

(

ξ̄(t)
)

, . . . , Fm
(

ξ̄(t)
))

, (B.5)

with ξ̄(t) := ξξ̄,ū(t). In other terms, the differential of E ξ̄,T̄ at ū corresponds to the End-Point

mapping associated with the system obtained by linearizing (B.1) along
(

ξ̄, ū
)

with initial

condition 0 at time t = 0. We can also represent dE ξ̄,T̄ (ū) as

〈

dE ξ̄,T̄ (ū), v
〉

:= S(T̄ )

∫ T̄

0

S(t)−1B(t)v(t) dt ∀ v ∈ L1([0, T̄ ]; Rm), (B.6)

where S(·) is the solution to the Cauchy problem

{

Ṡ(t) = A(t)S(t),
S(0) = In.

(B.7)

A control ū ∈ Uξ̄,T̄ is said to be singular with respect to E ξ̄,T̄ if dE ξ̄,T̄ (ū) is not surjective.

Otherwise, ū is said to be nonsingular or regular (with respect to E ξ̄,T̄ ). The concept of
singular control plays a crucial role for regularity issues (see for example [10]). Let us define
the pre-Hamiltonian H0 : RN × RN × Rm → R by

H0(ξ, p, u) :=
〈

p, F0(ξ)
〉

+

m
∑

i=1

ui
〈

p, Fi(ξ)
〉

.

Adopting Hamiltonian formalism, we have the following well-known characterization of singular
controls:

Proposition B.1. A control ū ∈ Uξ̄,T̄ is singular with respect to E ξ̄,T̄ if and only if there exists

an absolutely continuous arc p : [0, T̄ ] → RN \ {0} such that

{

˙̄ξ(t) = ∇pH0

(

ξ̄(t), p(t), ū(t)
)

ṗ(t) = −∇ξH0

(

ξ̄(t), p(t), ū(t)
) (B.8)
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for a.e. t ∈ [0, T̄ ], and

∇uH0

(

ξ̄(t), p(t), ū(t)
)

= 0 ∀ t ∈ [0, T ]. (B.9)

In fact, if ū ∈ Uξ̄,T̄ is singular with respect to E ξ̄,T̄ , then for every p̄ ∈
(

Im
(

dE ξ̄,T
))⊥

\ {0} ⊂

Rn \ {0}, there is an absolutely continuous arc p : [0, T̄ ] → RN \ {0}, with p(T̄ ) = p̄, which
satisfies (B.8) and (B.9).

Proof. If dE ξ̄,T̄ (ū) is not surjective, then there exists p̄ ∈ RN \ {0} such that, for any v ∈
L1
(

[0, T̄ ]; Rm
)

,
〈

dE ξ̄,T̄ (ū), v
〉

· p̄ = 0.

By (B.6), this can be written as

∫ T̄

0

p̄∗S(T̄ )S(t)−1B(t)v(t) dt = 0 ∀ v ∈ L1
(

[0, T̄ ]; Rm
)

.

Taking v(t) :=
(

p̄∗S(T̄ )S(t)−1B(t)
)∗

(v(t) is continuous on [0, T̄ ], so it belongs to L1
(

[0, T̄ ]; Rm
)

),
we deduce that

∫ T̄

0

∣

∣

∣

(

p̄∗S(T̄ )S(t)−1B(t)
)∗
∣

∣

∣

2

dt = 0,

which implies
p̄∗S(T̄ )S(t)−1B(t) = 0 ∀ t ∈ [0, T ]. (B.10)

Set, for each t ∈ [0, T̄ ],

p(t) :=
(

S(t)−1
)∗
S(T̄ )∗p̄. (B.11)

By construction the arc p : [0, T̄ ] → RN is absolutely continuous, and by (B.10) it satisfies
(B.9). Moreover, since p 6= 0 and S(t) is invertible for all t ∈ [0, T̄ ], p(t) never vanishes. Finally,
noticing that d

dt

(

S(s)−1
)∗

= −A(t)∗
(

S(t)−1
)∗

for a.e. t ∈ [0, T̄ ] (see (B.7)), recalling the
definition of A(t) we conclude that p satisfies (B.8).

Conversely, let us assume that there exists some absolutely continuous arc p : [0, T̄ ] →
R
N \ {0} which satisfies (B.8) and (B.9). By the discussion above this means

ṗ(t) = −A(t)∗p(t) for a.e. t ∈ [0, T̄ ],

and
p(t)∗B(t) = 0 ∀ t ∈ [0, T̄ ].

Setting p̄ := p(T̄ ) 6= 0, for any t ∈ [0, T̄ ] we have

p(t) =
(

S(t)−1
)∗
S(T̄ )∗p̄,

so that
p̄∗S(T̄ )S(t)−1B(t) = 0.

This implies
〈

dE ξ̄,T̄ (ū), v
〉

· p̄ = 0 ∀ v ∈ L1
(

[0, T̄ ]; Rm
)

and concludes the proof.

Let us remark that, given a control ū ∈ Uξ̄,T̄ and the associated trajectory ξ̄ = ξξ̄,ū : [0, T̄ ] →

RN , we have






∇ξH0

(

ξ̄(t), p(t), ū(t)
)

= A(t)∗p(t),
∇pH0

(

ξ̄(t), p(t), ū(t)
)

= F0

(

ξ̄(t)
)

+B(t)ū(t),
∇uH0

(

ξ̄(t), p(t), ū(t)
)

= B(t)∗p(t),

for any t ∈ [0, T̄ ] and any continuous curve t 7→ p(t) ∈ RN . Consequently, a control ū ∈ Uξ̄,T̄ is

singular if and only if there exists an absolutely continuous arc p : [0, T̄ ] → RN \ {0} such that
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• (B.8) is satisfied a.e. on [0, T̄ ],

• p(t) is orthogonal to each vector F1

(

ξ̄(t)
)

, . . . , Fm
(

ξ̄(t)
)

on [0, T̄ ].

B.3 Application to partial controllability I

The characterization of singular controls given by Proposition B.1 allows to give sufficient
conditions for partial controllability of nonlinear systems. First, given G : Ω → Rk a function
of class C1, we provide a result which gives a sufficient condition for the map G ◦ E ξ̄,T̄ to be
a submersion at ū. Then, in the next section we explain how it implies partial controllability.
Although all the following results hold for controls which are only L1, in order to avoid technical
issues which would come from the fact that some identities hold only almost everywhere, we
will assume that the controls are continuous. This is enough for the applications we have in
mind.

We recall that, given X,Y two smooth vector fields on RN , their Lie bracket [X,Y ] at a
point ξ ∈ RN is defined as

[X,Y ](ξ) := dY (ξ)
(

X(ξ)
)

− dX(ξ)
(

Y (ξ)
)

.

Moreover, we recall that S(t) is given by (B.7).

Theorem B.2. Let ū ∈ Uξ̄,T̄ ∩C([0, T ]; Rm), assume that G is a submersion at ξ̄(T̄ ) = E ξ̄,T̄ (ū),
and that there exists t̄ ∈ [0, T̄ ] such that

Span
{

[

F0, Fi
](

ξ̄(t̄)
)

+
[

m
∑

j=1

ūi(t̄)Fj , Fi

]

(

ξ̄(t̄)
)

| i = 1, . . . ,m
}

+ Span
{

Fi
(

ξ̄(t̄)
)

| i = 1, . . . ,m
)

}

+ S(t̄)S(T̄ )−1Ker
(

dG
(

ξ̄(T̄ )
))

= R
N (B.12)

Then the differential of the mapping G ◦ E ξ̄,T̄ : Uξ̄,T̄ → Rk at ū is onto.

Proof of Theorem B.2. Since by assumption G is a submersion at ξ̄(T̄ ) = E ξ̄,T̄ (ū), it suffices to
show that, if (B.12) is satisfied, then

Im
(

dE ξ̄,T̄ (ū)
)

+ Ker
(

dG
(

ξ̄(T̄ )
))

= R
N . (B.13)

We argue by contradiction. If (B.13) does not hold, there exists a vector p̄ ∈ RN \ {0} such
that

p̄ ⊥
{

Im
(

dE ξ̄,T̄ (ū)
)

+ Ker
(

dG
(

ξ̄(T̄ )
))

}

.

Then, by Proposition B.1 there exists an absolutely continuous arc p : [0, T̄ ] → RN \ {0} with
p(T̄ ) = p̄ which satisfies (B.8) and (B.9). In particular, by (B.9) we know that

〈

p(t), Fi
(

ξ̄(t)
)〉

= 0 ∀ t ∈ [0, T̄ ], i = 1, . . . ,m.
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Fix i ∈ {1, . . . ,m}. Differentiating the above equality and using (B.8) yields

0 =
d

dt

〈

p(t), Fi
(

ξ̄(t)
)

〉

=
〈

ṗ(t), Fi
(

ξ̄(t)
)

〉

+
〈

p(t), dFi
(

ξ̄(t)
)

( ˙̄ξ(t))
〉

= −
〈

dF0

(

ξ̄(t)
)∗
p(t) +

m
∑

j=1

ūj(t)dFj
(

ξ̄(t)
)∗
p(t), Fi

(

ξ̄(t)
)

〉

+
〈

p(t), dFi
(

ξ̄(t)
)(

F0

(

ξ̄(t)
))

+

m
∑

j=1

ūj(t)dFi
(

ξ̄(t)
)(

Fj
(

ξ̄(t)
))

〉

= −
〈

p(t), dF0

(

ξ̄(t)
)(

Fi
(

ξ̄(s)
))

〉

+
〈

p(t), dFi
(

ξ̄(t)
)(

F0

(

ξ̄(t)
))

〉

+

m
∑

j=1

ūj(t)
(

−
〈

p(t), dFj
(

ξ̄(t)
)(

Fi
(

ξ̄(t)
))〉

+
〈

p(t), dFi
(

ξ̄(t)
)(

Fj
(

ξ̄(t)
))〉

)

=
〈

p(t), [F0, Fi]
(

ξ̄(t)
)〉

+

m
∑

j=1

ūj(t)
〈

p(t), [Fj , Fi]
(

ξ̄(t)
)

〉

=
〈

p(t), [F0, Fi]
(

ξ̄(t)
)

+
[

m
∑

j=1

ūj(t)Fj , Fi

]

(

ξ̄(t)
)

〉

∀ t ∈ [0, T̄ ].

Finally, since p̄ ⊥ Ker
(

dG
(

ξ̄(T̄ )
))

and the arc p : [0, T̄ ] → RN is given by

p(t) =
(

S(t)−1
)∗
S(T̄ )∗p̄,

we obtain
p(t) ⊥ S(t)−1S(T̄ )−1Ker

(

dG
(

ξ̄(T̄ )
))

∀ t ∈ [0, T̄ ].

This contradicts (B.12) and concludes the proof.

Notice that, assuming ū ≡ 0 and that (B.12) is satisfied at final time, yields:

Corollary B.3. If ū ≡ 0 ∈ Uξ̄,T̄ , G is a submersion at ξ̄(T̄ ) = E ξ̄,T̄ (ū), and

Span
{

Fi
(

ξ̄(T̄ )
)

,
[

F0, Fi
](

ξ̄(T̄ )
)

| i = 1, . . . ,m
}

+ Ker
(

dG
(

ξ̄(T̄ )
))

= R
N , (B.14)

then the differential of the mapping G ◦ E ξ̄,T̄ : Uξ̄,T̄ → R
k at ū ≡ 0 is onto.

B.4 Application to partial controllability II

Let us now explain how a simple application of the Inverse Function Theorem yields partial
controllability.

Theorem B.4. Let ū ∈ Uξ̄,T̄ ∩C([0, T ]; Rm), assume that G is a submersion at ξ̄(T̄ ) = E ξ̄,T̄ (ū),
and that there exists t̄ ∈ [0, T̄ ] such that (B.12) is satisfied. Then there are Λ, ν > 0, k controls
u1, . . . , uk in L1

(

[0, T̄ ]; Rm
)

, and a C1 mapping

U = (U1, . . . , Uk) : Bk
(

G
(

ξ̄(T̄ )
)

, ν
)

−→ Bk(0,Λ)

such that
(

G ◦ E ξ̄,T̄
)

(

ū+

k
∑

i=1

Ui(z)u
i

)

= z ∀ z ∈ Bk
(

G
(

ξ̄(T̄ )
)

, ν
)

.
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Proof of Theorem B.4. From Theorem B.2, we know that the mapping G := G ◦E ξ̄,T̄ : Uξ̄,T̄ →

Rk is a C1 submersion at ū. Thus, there are k controls u1, . . . , uk in L1
(

[0, T̄ ]; Rm
)

such that

Span
{〈

dG(ū), ui
〉

| i = 1, . . . , k
}

= R
k. (B.15)

Let Λ > 0 be such that, for every λ ∈ Bk(0,Λ), the control
∑k

i=1 λiu
i belongs to Uξ̄,T̄ . Define

F : Bk(0,Λ) → Rk by

F (λ) := G
(

ū+

k
∑

i=1

λiu
i
)

∀λ = (λ1, . . . , λk) ∈ Bk(0,Λ).

The function F is well-defined, of class C1 on Bk(0,Λ), and satisfies F
(

0k
)

= G(ū) = G
(

ξ̄(T̄ )
)

.
Its differential at λ = 0k is given by

〈

dF
(

0k
)

, λ
〉

=

k
∑

i=0

λi
〈

dG(ū), ui
〉

∀λ ∈ R
k,

hence it is invertible by (B.15). Set z̄ := F
(

0N
)

= G(ū) = G
(

ξ̄(T̄ )
)

∈ Rk. We apply the
the Inverse Function Theorem (see Theorem C.1 below) to deduce that there are ν > 0 and a
function of class C1

U = (U1, . . . , Uk) : Bk
(

z̄, ν
)

−→ Bk(0,Λ)

such that

G
(

ū+
k
∑

i=1

Ui(z)u
i
)

= z ∀ z ∈ Bk
(

z̄, ν
)

.

This concludes the proof.

B.5 Application to partial controllability III

The conclusion of Theorem B.4 holds as well for any initial state ξ and time T sufficiently close
to ξ̄, T̄ . For sake of simplicity we only treat the case ū ≡ 0 (which, however, is enough for our
purposes).

Theorem B.5. If ū ≡ 0 ∈ Uξ̄,T̄ , G is a submersion at ξ̄(T̄ ) = E ξ̄,T̄ (ū) and (B.14) is satisfied,

then there are δ ∈ (0, T̄ /2), KU ,Λ, ν > 0, and k controls u1, . . . , uk : [0,+∞) → Rm of class
C∞, such that

Supp(ui) ⊂ [δ, T̄ − δ] ∀ i = 1, . . . , k, (B.16)

and the following property holds: For any ξ ∈ R
N and T > 0 satisfying

∣

∣ξ − ξ̄
∣

∣,
∣

∣T − T̄
∣

∣ < δ, (B.17)

there exists a C1 mapping

U ξ,T = (U ξ,T1 , . . . , U ξ,Tk ) : Bk
(

G
(

Eξ,T (ū)
)

, ν
)

−→ Bk(0,Λ)

whose Lipschitz constant is bounded by KU , such that U ξ,T
(

G
(

Eξ,T (ū)
))

= 0k and

(

G ◦ Eξ,T
)

( k
∑

i=1

U ξ,Ti (z)ui
)

= z ∀ z ∈ Bk
(

G
(

Eξ,T (ū)
)

, ν
)

.

57



Proof of Theorem B.5. Since the set of controls u in L1
(

[0, T̄ ]; Rm
)

which are smooth and

strictly supported in [0, T̄ ] is dense in L1
(

[0, T̄ ]; Rm
)

, thanks to Corollary B.3 and the ar-
gument used in the proof of Theorem B.4, there are δ > 0 and k smooth controls u1, . . . , uk in
L1
(

[0, T̄ ]; Rm
)

satisfying (B.16) such that

Span
{

〈

d
(

G ◦ E ξ̄,T̄
)

(ū), ui
〉

| i = 1, . . . , k
}

= R
k.

Extend the controls u1, . . . , uk on [0,+∞) by setting ui(t) = 0 for any t ∈ [T̄ ,∞). By continuity
of the mapping (ξ, T ) 7→ d

(

G ◦ Eξ,T
)

, up to choosing δ > 0 smaller, we can assume that

Span
{

〈

d
(

G ◦ Eξ,T
)

(ū), ui
〉

| i = 1, . . . , k
}

= R
k,

for every pair ξ, T satisfying (B.17). Let Λ > 0 be a constant to be fixed later, and for any ξ, T
satisfying (B.17) define the C1 function F ξ,T : Bk(0,Λ) → Rk by

F ξ,T (λ) :=
(

G ◦ Eξ,T
)

(

k
∑

i=1

λiu
i
)

∀λ = (λ1, . . . , λk) ∈ Bk(0,Λ).

Since dF ξ̄,T̄ (0n) is invertible and the function (ξ, T, λ) 7→ dF ξ,T (λ) is continuous in a neigh-
borhood of

(

ξ̄, T̄ , 0n
)

∈ RN × R × Rn, we can still restrict δ and take Λ > 0 small enough so
that assumptions (i) and (ii) of Theorem C.1 below are satisfied for any F = F ξ,T with ξ, T
satisfying (B.17). Then Theorem C.1 concludes the proof.

C Quantitative Inverse Function Theorem

For sake of completeness, we state below the quantitative version of the Inverse Function The-
orem that we used in Appendix B. We refer the reader to [1, 45] for a proof.

Theorem C.1. Let Λ > 0 and F : Bn(0,Λ) → R
n be a function of class C1 which satisfies the

following properties:

(i) dF (λ) is nonsingular for any λ ∈ Bn(0,Λ);

(ii) ‖DF (λ′) −DF (λ)‖ ≤
(

2
∥

∥dF (0)−1
∥

∥

)−1

for any λ, λ′ ∈ Bn(0,Λ).

Then there is a C1 function

F−1 : Bn
(

F (0), 5Λ
∥

∥dF (0)−1
∥

∥

−1
)

−→ Bn(0,Λ)

such that F ◦ F−1 = Id on Bn
(

F (0), 5Λ
∥

∥dF (0)−1
∥

∥

−1
)

and F−1 ◦ F = Id on Bn(0,Λ). More-

over, F−1 is
(

2
∥

∥dF (0)−1
∥

∥

)

-Lipschitz.

D The Mai Lemma

The Mai Lemma, which was introduced in [34] to give a new and simpler proof of the closing
lemma in C1 topology, is one of the main tools in the proof of our results. Let us state it.

Let {Ei}i∈N be a countable family of ellipsoids in R
k, that is, a countable family of compact

sets in Rk associated with a countable family of invertible linear mappings Pi : Rk → Rk such
that

Ei =
{

v ∈ R
k | |Pi(v)| ≤ ‖Pi‖

}

.
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For every y ∈ Rk, r > 0 and i ∈ N, we call Ei-ellipsoid centered at y with radius r the set
defined by

Ei(y, r) :=
{

y + rv | v ∈ Ei

}

=
{

y′ | |Pi(y
′ − y)| ≤ r‖Pi‖

}

.

We note that such an ellipsoid contains the open ball B(y, r). The Mai Lemma can be stated
as follows:

Lemma D.1 (Mai Lemma). Let N̂ ≥ 2 be an integer. There exist a real number ρ̂ ≥ 3 and
an integer η > 0, which depend on the family {Ei} and on N̂ only, such that the following
holds: For every r > 0 and every finite set Y = {y1, . . . , yJ} ⊂ R

k such that Y ∩ Br contains
at least two points, there exist η points ŷ1, . . . , ŷη in Rk and η positive real numbers r̂1, . . . , r̂η
satisfying:

(i) there exist j, l ∈ {1, . . . , J}, with j > l, such that ŷ1 = yj and ŷη = yl;

(ii) ∀ i ∈ {1, . . . , η − 1}, Ei
(

ŷi, r̂i
)

⊂ Bρ̂r;

(iii) ∀ i ∈ {1, . . . , η − 1}, Ei
(

ŷi, r̂i
)

∩
(

Y \ {yj, yl}
)

= ∅;

(iv) ∀ i ∈ {1, . . . , η − 1}, ŷi+1 ∈ Ei
(

ŷi, r̂i/N̂
)

.

We refer the reader to [34] or the monograph [2] for a proof of the above result.

E Proofs of Lemmas 3.3, 4.3 and 6.1

E.1 Proof of Lemma 3.3

Let φ : [0,+∞) → [0, 1] be a function of class C∞ satisfying the following properties:

(a) φ(s) = 1 for s ∈ [0, 1/3];

(b) φ(s) = 0 for s ≥ 2/3;

(c) |φ′(s)|, |φ′′(s)| ≤ 20 for any s ∈ [0,+∞).

Extend the function ṽ on R by ṽ(t) := 0 for t ≤ 0 and t ≥ τ̄ , and define the function W :
[0, τ̄ ] × Rn−1 → R by

W (t, ẑ) = φ

(

|ẑ|

r

)

[

∫ t

0

ṽ1(s) ds+

n−1
∑

i=1

∫ ẑi

0

ṽi+1(t+ s) ds

]

∀ (t, ẑ) ∈ [0, τ̄ ] × R
n−1.

Since ṽ is Ck−1 and φ is smooth, it is easy to check that W is of class Ck. (Actually, this
is obvious in view of the formulas (E.1) and (E.2) below.) Using (b), (3.38), (3.39), and the
fact that r ≤ δ/3, we check easily that assertion (i) holds. Moreover, thanks to (b) again and
recalling the definition of Ṽ1, we have

‖W‖∞ ≤ ‖φ‖∞

[

‖Ṽ1‖∞ + r

n−1
∑

i=1

∥

∥ṽi+1

∥

∥

∞

]

.

We now observe that the first partial derivatives of W at
(

t, ẑ
)

are given by



















∂W
∂t

(

t, ẑ
)

= φ
(

|ẑ|
r

) [

ṽ1(t) +
∑n−1

i=1

∫ ẑi

0
˙̃vi+1(t+ s) ds

]

,

∂W
∂ẑi

(

t, ẑ
)

= ẑi

r|ẑ|φ
′
(

|ẑ|
r

) [

∫ t

0
ṽ1(s) ds+

∑n−1
i=1

∫ ẑi

0
ṽi+1(t+ s) ds

]

+φ
(

|ẑ|
r

)

ṽi+1(t+ ẑi),

(E.1)
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which combined with (a) yields (iii). Observe that ∂W
∂t

(

t, ẑ
)

can also be written as

∂W

∂t

(

t, ẑ
)

= φ

(

|ẑ|

r

)[

ṽ1(t) +

n−1
∑

i=1

(

ṽi+1(t+ ẑi) − ṽi+1(t)
)

]

, (E.2)

and moreover
∣

∣

∣

∣

∣

∫ ẑi

0

ṽi+1(t+ s) ds

∣

∣

∣

∣

∣

≤ |ẑi| ‖ṽi+i‖∞ ≤ r ‖ṽi+i‖∞ for |ẑi| ≤ r.

These estimates, together with (E.1), (b), and (c), imply

‖∇W‖∞ ≤ K

[

1

r
‖ṽ1‖∞ + ‖ṽ‖∞

]

where K is a universal constant depending on the dimension n only. Let us now compute the
second derivatives of W . For every (t, ẑ) we have























































∂2W
∂t2

(

t, ẑ
)

= φ
(

|ẑ|
r

) [

˙̃v1(t) +
∑n−1

i=1

(

˙̃vi+1(t+ ẑi) − ˙̃vi+1(t)
)]

,

∂2W
∂ẑi∂t

(

t, ẑ
)

= ẑi

r|ẑi|
φ′
(

|ẑ|
r

) [

ṽ1(t) +
∑n−1

i=1

(

ṽi+1(t+ ẑi) − ṽi+1(t)
)]

+φ
(

|ẑ|
r

) [

∑n−1
i=1

˙̃vi+1(t+ ẑi)
]

,

∂2W
∂ẑi∂ẑj

(

t, ẑ
)

=
ẑi ẑj

r2|ẑ|2φ
′′
(

|ẑ|
r

) [

∫ t

0
ṽ1(s) ds+

∑n−1
i=1

∫ ẑi

0
ṽi+1(t+ s) ds

]

+
(

δij
1
r|ẑ| −

ẑi ẑj

r|ẑ|3

)

φ′
(

|ẑ|
r

) [

∫ t

0
ṽ1(s) ds+

∑n−1
i=1

∫ ẑi

0
ṽi+1(t+ s) ds

]

+ 1
r|ẑ|φ

′
(

|ẑ|
r

)

[

ẑiṽj+1(t+ ẑj) + ẑj ṽi+1(t+ ẑi)
]

+ δijφ
(

|ẑ|
r

)

˙̃vi+1(t+ ẑi),

where δij = 1 if i = j, δij = 0 if i 6= j. Since by (a) φ′
(

|ẑ|
r

)

= 0 if |ẑ| ≤ r/3, and by (b)

φ
(

|ẑ|
r

)

= φ′
(

|ẑ|
r

)

= φ′′
(

|ẑ|
r

)

= 0 if |ẑ| ≥ 2r/3, the validity of (ii) follows easily.

E.2 Proof of Lemma 4.3

Let us compute the Lie brackets [F0, Fi] at ξ̄τ̄ =
(

x̄τ̄ , q̄τ̄ := ˆ̄pτ̄ , 0, 0
)

for every i = 1, . . . , n.

Recalling that ∂H̄
∂p1

(

x̄τ̄ , p̄τ̄
)

= 1 and that ∂ϕ
∂h

(

x̄τ̄ , q̄τ̄ , 0) ∂H̄∂p1

(

x̄τ̄ , p̄τ̄
)

= −1, we observe that the

first n components of [F0, F1] at ξ̄τ̄ are given by

−
∂2H̄

∂p2

(

x̄τ̄ , p̄τ̄
)∂ψ

∂h

(

(x̄τ̄ , q̄τ̄ , 0
)

=
∂

∂p1
∇pH̄

(

x̄τ̄ , p̄τ̄
)

,

while its last component at ξ̄τ̄ is given by

−
∂

∂h

(

〈

ψ
(

x̄τ̄ , q̄τ̄ , h),∇pH̄
(

x̄τ̄ , ψ
(

x̄τ̄ , q̄τ̄ , h
))〉

)

|h=0

= −
∂

∂h

(

ϕ
(

x̄τ̄ , q̄τ̄ , h)
∂H̄

∂p1

(

x̄τ̄ , ψ
(

x̄τ̄ , q̄τ̄ , h
))

)

|h=0
−

∂

∂h

(

〈

q̄τ̄ ,∇p̂H̄
(

x̄τ̄ , ψ
(

x̄τ̄ , q̄τ̄ , h
)〉

)

|h=0

= −
∂ϕ

∂h

(

x̄τ̄ , q̄τ̄ , 0)
∂H̄

∂p1

(

x̄τ̄ , p̄τ̄
)

− ϕ
(

x̄τ̄ , q̄τ̄ , 0)
∂2H̄

∂p2
1

(

x̄τ̄ , p̄τ̄
)∂ϕ

∂h

(

x̄τ̄ , q̄τ̄ , 0)

−

〈

q̄τ̄ ,
∂

∂p1
∇p̂H̄

(

x̄τ̄ , p̄τ̄
)

〉

∂ϕ

∂h

(

x̄τ̄ , q̄τ̄ , 0) = 1 +

〈

p̄τ̄ ,
∂

∂p1
∇pH̄

(

x̄τ̄ , p̄τ̄
)

〉

.
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Moreover, since ∂H̄
∂pi

(

x̄τ̄ , p̄τ̄
)

= 0 for i = 2, . . . , n, as in the proof of Proposition 3.1 the first n

components of [F0, Fi] at ξ̄τ̄ for i = 2, . . . , n are given by

∂2H̄

∂p2

(

x̄τ̄ , p̄τ̄
) ∂ψ

∂qi−1

(

(x̄τ̄ , q̄τ̄ , 0
)

=
∂

∂pi
∇pH̄

(

x̄τ̄ , p̄τ̄
)

,

where for the last equality we used that ∂ψ
∂qi−1

(

x̄τ̄ , q̄τ̄
)

= eni (see (4.11)). Therefore the first

n components of the bracket [F0, Fi] at ξ̄τ̄ , for i = 2, . . . , n, correspond to the i-th column of

the Hessian of H̄ in the p variable at
(

x̄τ̄ , p̄τ̄
)

. Finally, using again that ∂H̄
∂pi

(

x̄τ̄ , p̄τ̄
)

= 0 for

i = 2, . . . , n, the last component of [F0, Fi] at ξ̄τ̄ is given by

〈

p̄τ̄ ,
∂

∂pi
∇pH̄

(

x̄τ̄ , p̄τ̄
)

〉

∀ i = 2, . . . , n.

All in all, the (2n+1)× (2n) matrix
(

F1

(

ξ̄τ̄
)

, . . . , Fn
(

ξ̄τ̄
)

, [F0, F1]
(

ξ̄τ̄
)

, . . . , [F0, Fn]
(

ξ̄τ̄
)

)

equals

















































0 . . . . . . . . . 0 ∂2H̄
∂p2

1

∂2H̄
∂p1∂p2

. . . . . . ∂2H̄
∂p1∂pn

0 . . . . . . . . . 0 ∂2H̄
∂p2∂p1

∂2H̄
∂p2

2

. . . . . . ∂2H̄
∂p2∂pn

...
...

...
. . .

...

0 . . . . . . . . . 0 ∂2H̄
∂pn−1∂p1

∂2H̄
∂pn−1∂p2

. . . . . . ∂2H̄
∂pn−1∂pn

0 . . . . . . . . . 0 ∂2H̄
∂pn∂p1

∂2H̄
∂pn∂p2

. . . . . . ∂2H̄
∂p2n

0 −1 0 . . . 0 ∗ ∗ ∗ ∗ ∗

0 0
. . . 0 ∗ ∗ ∗ ∗ ∗

...
...

. . .
... ∗ ∗ ∗ ∗ ∗

0 0 . . . 0 −1 ∗ ∗ ∗ ∗ ∗
1 0 . . . 0 0 ∗ ∗ ∗ ∗ ∗
0 . . . . . . . . . 0 1 + 〈p̄τ̄ , ∂

∂p1
∇pH̄〉 〈p̄τ̄ , ∂

∂p2
∇pH̄〉 . . . . . . 〈p̄τ̄ , ∂

∂pn
∇pH̄〉

















































,

where all the partial derivatives of H̄ are evaluated at
(

x̄τ̄ , p̄τ̄
)

. Since Ker
(

dG
(

ξ̄τ̄
))

= Re2n+1
1 ,

we deduce that the assumption (B.14) is satisfied if and only if the matrix

N :=













1 + 〈p̄τ̄ , ∂
∂p1

∇pH̄〉 〈p̄τ̄ , ∂
∂p2

∇pH̄〉 . . . . . . 〈p̄τ̄ , ∂
∂pn

∇pH̄〉
∂2H̄
∂p2∂p1

∂2H̄
∂p2

2

. . . . . . ∂2H̄
∂p2∂pn

∂2H̄
∂pn−1∂p1

∂2H̄
∂pn−1∂p2

. . . . . . ∂2H̄
∂pn−1∂pn

∂2H̄
∂pn∂p1

∂2H̄
∂pn∂p2

. . . . . . ∂2H̄
∂p2n













is invertible. But we observe that

det(N) = det













1 0 . . . . . . 0
∂2H̄
∂p2∂p1

∂2H̄
∂p2

2

. . . . . . ∂2H̄
∂p2∂pn

∂2H̄
∂pn−1∂p1

∂2H̄
∂pn−1∂p2

. . . . . . ∂2H̄
∂pn−1∂pn

∂2H̄
∂pn∂p1

∂2H̄
∂pn∂p2

. . . . . . ∂2H̄
∂p2n













+ p̄τ̄1 det

(

∂2H̄

∂p2

)

= det

(

∂2H̄

∂p̂2

)

+ p̄τ̄1 det

(

∂2H̄

∂p2

)

,

which shows that (B.14) is satisfied if and only if assumption (A4) holds.
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E.3 Proof of Lemma 6.1

Since the construction is local, up to using a partition of unity we can assume for simplicity
that N = Rn.

Fix r > 0 such that {x | dist(x,C) ≥ 21r} is compactly supported inside O. We claim
that there exist a universal constant K0, depending only on the dimension n, and a function
ψ : Rn → [0, 1] of class C∞ such that

1. ψ = 1 on {x | dist(x,C) ≤ r};

2. ψ = 0 on {x | dist(x,C) ≥ 21r};

3. ‖∇ψ‖∞ ≤ K0

r , ‖Hess ψ‖∞ ≤ K0

r2 .

Assume that the claim is proved, and set h := ψg. Obviously h satisfies (a), (b), and (d).
Moreover, thanks to (6.3) a Taylor expansion gives

0 ≤ g(x) ≤ 50r2ω(10r), ‖∇g(x)‖ ≤ 10r ω(10r) on {x | dist(x,C) ≥ 10r}.

Hence
0 ≤ h ≤ 50r2ω(10r),

‖∇h‖∞ ≤
C0

r
50r2ω(10r) + 10r ω(10r) ≤ (50C0 + 10) r ω(10r),

‖Hess h‖∞ ≤
C0

r2
50r2ω(10r) + 2

C0

r
10r ω(10r) + ω(10 r) ≤ (70C0 + 1)ω(10r),

and (c) follows by choosing r sufficiently small.
We are left with proving the claim. For every x ∈ O, let us consider the family of balls

{B(x, r)}x∈O. By Vitaly’s Covering Theorem [15, Subsection 1.5.1] there exists a disjoint
subfamily {B(xj , r)}j∈N such that

O ⊂
⋃

j∈N

B(xj , 5r). (E.3)

We claim that {B(xj , 10r)}j∈N has the finite overlapping property, i.e., there exists a con-
stant N(n), depending only on the dimension, such that any point y ∈ Rn belongs to at most
N(n) balls. Indeed, assume that y ∈ B(xj , 10r). Then B(xj , r) ∈ B(y, 11r). But since the balls
{B(xj , r)}j∈N are disjoint we have

∑

{j:y∈B(xj ,10r)}

|B(xj , r)| ≤ |B(y, 11r)|,

i.e.,
#{j : y ∈ B(xj , 10r)} ≤ 11n.

Hence the finite overlapping property holds with N(n) := 11n.
Let now µ : R → [0, 1] be a function of class C∞ with µ(u) = 1 for u ≤ 1 and µ(u) = 0 for

u ≥ 2. For every j ∈ N, set

uj(x) := µ

(

|x− xj |

5r

)

.

Observe that:

(i) uj = 1 inside B(xj , 5r);

(ii) uj = 0 outside B(xj , 10r).
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Define
σr :=

∑

{d(xj,C)≤11r}

uj, σ :=
∑

j∈N

uj .

By (ii) we have σ = σr inside {x | dist(x,C) ≤ r} and Supp (σr) ⊂ {x | dist(x,C) ≤ 21r}.
Moreover (i) and (E.3) ensure that σ ≥ 1 inside O. Finally the finite overlapping property
implies that 0 ≤ σr ≤ σ ≤ N(n), ‖∇σr‖ + ‖∇σ‖ ≤ N(n)Kr , ‖Hess σr‖ + ‖Hess σ‖ ≤ N(n)Kr2 ,
where K is a constant depending only on µ.

Thanks to these properties, the claim is proved by setting ψ := σr/σ.
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