Recent progress in sub-Riemannian geometry

Ludovic Rifford

Université Nice Sophia Antipolis & CIMPA

Dynamical Aspects in Variational Analysis
Palaiseau. 13 December 2018

Outline

Outline

- I. Introduction to sub-Riemannian geometry
- II. A few open problems
- III. A few partial results

Part I

I. Introduction to sub-Riemannian geometry

Sub-Riemannian structures

Let M be a smooth connected manifold of dimension n.

Definition

A sub-Riemannian structure of rank m in M is given by a pair (Δ, g) where:

• Δ is a **totally nonholonomic distribution** of rank $m \leq n$ on M which is defined locally by

$$\Delta(x) = \mathsf{Span}\Big\{X^1(x), \dots, X^m(x)\Big\} \subset \mathcal{T}_x M,$$

where X^1, \ldots, X^m is a family of m linearly independent smooth vector fields satisfying the **Hörmander** condition.

• g_x is a scalar product over $\Delta(x)$.

The Hörmander condition

We say that a family of smooth vector fields X^1, \ldots, X^m , satisfies the **Hörmander condition** if

$$Lie \left\{ X^1, \dots, X^m \right\} (x) = T_x M \qquad \forall x,$$

where $\text{Lie}\{X^1,\ldots,X^m\}$ denotes the Lie algebra generated by X^1,\ldots,X^m , *i.e.* the smallest subspace of smooth vector fields that contains all the X^1,\ldots,X^m and which is stable under Lie brackets.

Reminder

Given smooth vector fields X, Y in \mathbb{R}^n , the Lie bracket [X, Y] at $x \in \mathbb{R}^n$ is defined by

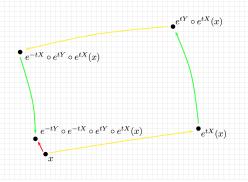
$$[X, Y](x) = DY(x)X(x) - DX(x)Y(x).$$

Lie Bracket: Dynamic Viewpoint

Exercise

There holds

$$[X,Y](x) = \lim_{t\downarrow 0} \frac{\left(e^{-tY}\circ e^{-tX}\circ e^{tY}\circ e^{tX}\right)(x) - x}{t^2}.$$



The Chow-Rashevsky Theorem

Definition

We call **horizontal path** any $\gamma \in W^{1,2}([0,1];M)$ such that

$$\dot{\gamma}(t) \in \Delta(\gamma(t))$$
 a.e. $t \in [0,1]$.

The following result is the cornerstone of the sub-Riemannian geometry. (Recall that M is assumed to be connected.)

Theorem (Chow-Rashevsky, 1938)

Let Δ be a totally nonholonomic distribution on M, then every pair of points can be joined by an horizontal path.

Since the distribution is equipped with a metric, we can measure the lengths of horizontal paths and consequently we can associate a metric with the sub-Riemannian structure.

Examples of sub-Riemannian structures

Example (Riemannian case)

Every Riemannian manifold (M, g) gives rise to a sub-Riemannian structure with $\Delta = TM$.

Example (Heisenberg)

In \mathbb{R}^3 , $\Delta = Span\{X^1, X^2\}$ with

$$X^1 = \partial_x$$
, $X^2 = \partial_y + x\partial_z$ et $g = dx^2 + dy^2$.



Examples of sub-Riemannian structures

Example (Martinet)

In \mathbb{R}^3 , $\Delta = Span\{X^1, X^2\}$ with

$$X^1 = \partial_x, \quad X^2 = \partial_y + x^2 \partial_z.$$

Since $[X^1,X^2]=2x\partial_z$ and $[X^1,[X^1,X^2]]=2\partial_z$, only one bracket is sufficient to generate \mathbb{R}^3 if $x\neq 0$, however we needs two brackets if x=0.

Example (Rank 2 distribution in dimension 4)

In \mathbb{R}^4 , $\Delta = Span\{X^1, X^2\}$ with

$$X^1 = \partial_x$$
, $X^2 = \partial_y + x\partial_z + z\partial_w$

satisfies $Vect\{X^1, X^2, [X^1, X^2], [[X^1, X^2], X^2]\} = \mathbb{R}^4$.

The sub-Riemannian distance

The **length** of an horizontal path γ is defined by

$$\mathsf{length}^{\mathsf{g}}(\gamma) := \int_0^{\mathsf{T}} |\dot{\gamma}(t)|_{\gamma(t)}^{\mathsf{g}} \; dt.$$

Definition

Given $x, y \in M$, the **sub-Riemannian distance** between x and y is defined by

$$d_{SR}(x,y) := \inf \Big\{ \operatorname{length}^g(\gamma) \, | \, \gamma \, \operatorname{hor.}, \gamma(0) = x, \gamma(1) = y \Big\}.$$

Proposition

The manifold M equipped with the distance d_{SR} is a metric space whose topology coincides the one of M (as a manifold).

Sub-Riemannian geodesics

Definition

Given $x, y \in M$, we call **minimizing horizontal path** between x and y any horizontal path $\gamma : [0,1] \to M$ joining x to y satisfying $d_{SR}(x,y) = \operatorname{length}^g(\gamma)$.

The **energy** of the horizontal path $\gamma:[0,1]\to M$ is given by

$$\operatorname{\mathsf{ener}}^{\operatorname{\mathsf{g}}}(\gamma) := \int_0^1 \left(|\dot{\gamma}(t)|_{\gamma(t)}^{\operatorname{\mathsf{g}}}
ight)^2 \, dt.$$

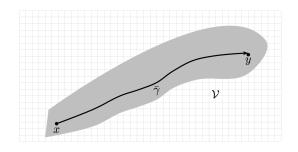
Definition

We call **minimizing geodesic** between x and y any horizontal path $\gamma:[0,1]\to M$ joining x to y such that

$$d_{SR}(x, y)^2 = ener^g(\gamma).$$

Let $x,y\in M$ and $\bar{\gamma}$ be a **minimizing geodesic** between x and y be fixed. The SR structure admits an orthonormal parametrization along $\bar{\gamma}$, which means that there exists a neighborhood $\mathcal V$ of $\bar{\gamma}([0,1])$ and an orthonomal family of m vector fields X^1,\ldots,X^m such that

$$\Delta(z) = \operatorname{Span}\left\{X^1(z), \dots, X^m(z)\right\} \quad \forall z \in \mathcal{V}.$$



There exists a control $\bar{u} \in L^2([0,1];\mathbb{R}^m)$ such that

$$\dot{ar{\gamma}}(t) = \sum_{i=1}^m ar{m{u}}_i(t) \, X^iig(ar{\gamma}(t)ig)$$
 a.e. $t \in [0,1]$.

Moreover, any control $u \in \mathcal{U} \subset L^2([0,1];\mathbb{R}^m)$ (u sufficiently close to \bar{u}) gives rise to a trajectory γ_u solution of

$$\dot{\gamma}_u = \sum_{i=1}^m u^i X^i (\gamma_u) \quad \text{sur } [0, T], \quad \gamma_u(0) = x.$$

Furthermore, for every horizontal path $\gamma:[0,1]\to\mathcal{V}$ there exists a unique control $u\in L^2\big([0,1];\mathbb{R}^m\big)$ for which the above equation is satisfied.

Consider the **End-Point mapping**

$$E^{\times,1}:L^2([0,1];\mathbb{R}^m)\longrightarrow M$$

defined by

$$E^{x,1}(\mathbf{u}) := \gamma_{\mathbf{u}}(1),$$

and set $C(u) = ||u||_{L^2}^2$, then \bar{u} is a solution to the following **optimization problem with constraints**:

$$\bar{u}$$
 minimize $C(u)$ among all $u \in \mathcal{U}$ s.t. $E^{x,1}(u) = y$.

(Since the family X^1, \ldots, X^m is orthonormal, we have

$$ener^g(\gamma_u) = C(u) \quad \forall u \in \mathcal{U}.$$

Proposition (Lagrange Multipliers)

There exist $p \in T_y^*M \simeq (\mathbb{R}^n)^*$ and $\lambda_0 \in \{0,1\}$ with $(\lambda_0,p) \neq (0,0)$ such that

$$p \cdot d_{\overline{u}}E^{x,1} = \lambda_0 d_{\overline{u}}C.$$

As a matter of fact, the function given by

$$\Phi(u) := \left(C(u), E^{\times,1}(u)\right)$$

cannot be a submersion at \bar{u} . Otherwise $D_{\bar{u}}\Phi$ would be surjective and so open at \bar{u} , which means that the image of Φ would contain some points of the form $(C(\bar{u}) - \delta, y)$ with $\delta > 0$ small.

 \rightarrow Two cases may appear: $\lambda_0 = 1$ or $\lambda_0 = 0$.

First case :
$$\lambda_0 = 1$$

This is the good case, the Riemannian-like case. The minimizing geodesic can be shown to be solution of a "geodesic equation". In fact, it is the projection of a **normal extremal**. It is smooth, there is a "geodesic flow"...

Second case :
$$\lambda_0 = 0$$

In this case, we have

$$p \cdot D_{\overline{u}}E^{x,1} = 0$$
 with $p \neq 0$,

which means that \bar{u} is **singular** as a critical point of the mapping $E^{x,1}$.

 \rightsquigarrow As shown by R. Montgomery, the case $\lambda_0=0$ cannot be ruled out.

Singular horizontal paths and Examples

Definition

An horizontal path is called **singular** if it is, through the correspondence $\gamma \leftrightarrow u$, a critical point of the End-Point mapping $E^{\times,1}:L^2\to M$.

Example 1: Riemannian case

Let $\Delta(x) = T_x M$, any path in $W^{1,2}$ is horizontal. There are no singular curves.

Example 2: Heisenberg, fat distributions In \mathbb{R}^3 , Δ given by $X^1 = \partial_x, X^2 = \partial_y + x \partial_z$ does not admin nontrivial singular horizontal paths.

Examples

Example 3: Martinet-like distributions

In \mathbb{R}^3 , let $\Delta = \mathsf{Vect}\{X^1, X^2\}$ with X^1, X^2 of the form

$$X^1 = \partial_{x_1} \quad \text{and} \quad X^2 = \left(1 + x_1 \phi(x)\right) \partial_{x_2} + x_1^2 \partial_{x_3},$$

where ϕ is a smooth function and let g be a metric over Δ .

Theorem (Montgomery)

There exists $\bar{\epsilon} > 0$ such that for every $\epsilon \in (0, \bar{\epsilon})$, the singular horizontal path

$$\gamma(t) = (0, t, 0) \quad \forall t \in [0, \epsilon],$$

is minimizing (w.r.t. g) among all horizontal paths joining 0 to $(0, \epsilon, 0)$. Moreover, if $\{X^1, X^2\}$ is orthonormal w.r.t. g and $\phi(0) \neq 0$, then γ is not the projection of a normal extremal $(\lambda_0 = 1)$.

Summary

Given a sub-Riemannian structure (Δ, g) on M and a minimizing geodesic γ from x to y, two cases may happen:

- The geodesic γ is the projection of a normal extremal so it is smooth..
- The geodesic γ is a singular curve and could be non-smooth..

Questions:

When? How many? How?

Part II

II. A few open problems

A few open problems

Let (Δ, g) be a SR structure on M and $x \in M$ be fixed.

How many?

$$\mathcal{S}_{\Delta, \mathit{ming}}^{\mathsf{x}} = \{ \gamma(1) | \gamma : [0, 1] \to \mathit{M}, \gamma(0) = \mathsf{x}, \gamma \text{ hor., sing., min.} \}.$$

$$\mathcal{S}_{\Delta}^{\mathsf{x}} = \{ \gamma(1) | \gamma : [0, 1] \to \mathit{M}, \gamma(0) = \mathsf{x}, \gamma \text{ hor., sing.} \}.$$

Conjecture (Sard Conjectures)

The sets $\mathcal{S}^{x}_{\Delta.min^g}$ and \mathcal{S}^{x}_{Δ} have Lebesgue measure zero.

How?

Conjecture (Regularity Conjecture)

Minimizing geodesics are of class C^1 or smooth.

Part II

III. A few partial results

Characterization of singular curves

Let (Δ, g) be a SR structure on M and $x \in M$ be fixed. Set

$$\Delta^{\perp} := \left\{ (x, p) \in T^*M \mid p \perp \Delta(x) \right\} \subset T^*M$$

and (we assume here that Δ is generated by m vector fields X^1,\ldots,X^m) define

$$\vec{\Delta}(x,p) := \operatorname{\mathsf{Span}} \left\{ \vec{h}^1(x,p), \ldots, \vec{h}^m(x,p) \right\} \quad \forall (x,p) \in \mathcal{T}^*M,$$

where $h^i(x, p) = p \cdot X^i(x)$ and \vec{h}^i is the associated Hamiltonian vector field in T^*M .

Proposition

An horizontal path $\gamma:[0,1]\to M$ is singular if and only if it is the projection of a path $\psi:[0,1]\to\Delta^\perp\setminus\{0\}$ which is horizontal w.r.t. $\vec\Delta$.

The case of Martinet surfaces

Let M be a smooth manifold of dimension 3 and Δ be a totally nonholonomic distribution of rank 2 on M. We define the **Martinet surface** by

$$\Sigma_{\Delta} = \{ x \in M \mid \Delta(x) + [\Delta, \Delta](x) \neq T_x M \}$$

If Δ is generic, Σ_{Δ} is a surface in M. If Δ is analytic then Σ_{Δ} is analytic of dimension ≤ 2 .

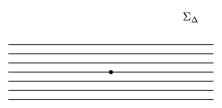
Proposition

The singular horizontal paths are the orbits of the trace of Δ on Σ_{Δ} .

 \rightsquigarrow Let us fix x on Σ_{Δ} and see how its orbit look like.

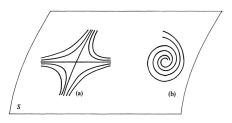
The Sard Conjecture on Martinet surfaces

Transverse case



The Sard Conjecture on Martinet surfaces

Generic tangent case (Zelenko-Zhitomirskii, 1995)



The strong Sard Conjecture on Martinet surfaces

Let M be of dimension 3, Δ of rank 2 and g be fixed:

$$\mathcal{S}_{\Delta,g}^{x,L} = \{\gamma(1) | \gamma \in \mathcal{S}_{\Delta}^{x} \text{ and }, \mathsf{length}^{g}(\gamma) \leq L \}$$
.

Conjecture (Strong Sard Conjecture)

The set $\mathcal{S}_{\Delta}^{\mathsf{x},\mathsf{L}}$ has finite \mathcal{H}^1 -measure.

Theorem (Belotto-Figalli-Parusinski-R, 2018)

Assume that M and Δ are analytic and that g is smooth and complete. Then any singular horizontal curve is a semianalytic curve in M. Moreover, for every $x \in M$ and every $L \geq 0$, the set $\mathcal{S}_{\Delta,g}^{x,L}$ is a finite union of singular horizontal curves, so it is a semianalytic curve.

Proof

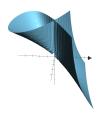
Ingredients of the proof

- Resolution of singularities.
- The vector field which generates the trace of $\tilde{\Delta}$ over $\tilde{\Sigma}$ (after resolution) has singularities of type saddle.
- A result of Speissegger (following Ilyashenko) on the regularity of Poincaré transitions mappings.

An example

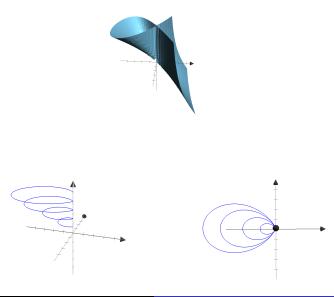
In \mathbb{R}^3 ,

$$X=\partial_y \quad {
m and} \quad Y=\partial_x+\left[rac{y^3}{3}-x^2y(x+z)
ight]\,\partial_z.$$



Martinet Surface:
$$\Sigma_{\Delta} = \left\{ y^2 - x^2(x+z) = 0 \right\}$$
.

An example



The Sard Conjecture on Martinet surfaces

As a consequence, thanks to a striking result by Hakavuori and Le Donne, we have:

Theorem (Belotto-Figalli-Parusinski-R, 2018)

Assume that M and Δ are analytic and that g is smooth and complete and let $\gamma:[0,1]\to M$ be a singular minimizing geodesic. Then γ is of class C^1 on [0,1]. Furthermore, $\gamma([0,1])$ is semianalytic, and therefore it consists of finitely many points and finitely many analytic arcs.

Thank you for your attention !!