Sard conjectures and measures contraction properties in sub-Riemannian geometry

Ludovic Rifford

Université Nice Sophia Antipolis & CIMPA

Conference: Subriemannian Geometry and Beyond February 19-23, 2018 - Jyväskylä (Finland)

Setting

Throughout all the talk, M is a smooth connected manifold of dimension n equipped with a **sub-Riemannian structure of** rank m in M given by a pair (Δ, g) where:

∆ is a totally nonholonomic distribution of rank
 m ≤ n on M which is defined locally by

$$\Delta(x) = \operatorname{Span}\left\{X^1(x), \dots, X^m(x)\right\} \subset T_x M,$$

where X^1, \ldots, X^m is a family of *m* linearly independent smooth vector fields satisfying the **Hörmander** condition.

• g_x is a scalar product over $\Delta(x)$.

The sub-Riemannian geodesic distance on M is denoted by d_{SR} and the metric space (M, d_{SR}) is always assumed to be complete.

Some open problems in SR geometry

• The Sard Conjecture.

• The minimizing Sard Conjecture.

• Validity of Measure Contractions Properties.

The End-Point mapping

Assume that Δ is globally spanned by k smooth vector fields X^1, \ldots, X^k , that is $\Delta(x) = \text{Span} \{X^1(x), \ldots, X^k(x)\}$ for all $x \in M$. For every $x \in M$ and every $u \in L^2([0, 1]; \mathbb{R}^k)$, denote by $\gamma_{x,u} : [0, 1] \to M$ the solution to the Cauchy problem

 $\dot{\gamma}(t) = \sum_{i=1}^{\kappa} u_i(t) X^i(\gamma(t)) \text{ for a.e. } t \in [0,1], \quad \gamma(0) = x.$

The End-Point mapping

Assume that Δ is globally spanned by k smooth vector fields X^1, \ldots, X^k , that is $\Delta(x) = \text{Span} \{X^1(x), \ldots, X^k(x)\}$ for all $x \in M$. For every $x \in M$ and every $u \in L^2([0,1]; \mathbb{R}^k)$, denote by $\gamma_{x,u} : [0,1] \to M$ the solution to the Cauchy problem

$$\dot{\gamma}(t) = \sum_{i=1}^{\kappa} u_i(t) X^i(\gamma(t)) ext{ for a.e. } t \in [0,1], \quad \gamma(0) = x.$$

Definition

Given a point $x \in M$, the **End-Point mapping**

$$E^{x,1}$$
 : $L^2 \in ([0,1]; \mathbb{R}^k) \longrightarrow M$

is defined by

$$E^{ imes,1}(u) := \gamma_{ imes,u}(1) \qquad orall u \in L^2 \in ([0,1]; \mathbb{R}^k).$$

Singular horizontal paths and Examples

Definition

An horizontal path is called **singular** if it is, through the correspondence $\gamma \leftrightarrow u$, a critical point of the End-Point mapping $E^{x,1}: L^2 \to M$ (with $x = \gamma(0)$).

Singular horizontal paths and Examples

Definition

An horizontal path is called **singular** if it is, through the correspondence $\gamma \leftrightarrow u$, a critical point of the End-Point mapping $E^{x,1}: L^2 \to M$ (with $x = \gamma(0)$).

Example 1: Riemannian case Let $\Delta(x) = T_x M$, any path in $W^{1,2}$ is horizontal. There are no singular curves.

Definition

An horizontal path is called **singular** if it is, through the correspondence $\gamma \leftrightarrow u$, a critical point of the End-Point mapping $E^{x,1}: L^2 \to M$ (with $x = \gamma(0)$).

Example 1: Riemannian case Let $\Delta(x) = T_x M$, any path in $W^{1,2}$ is horizontal. There are no singular curves.

Example 2: Heisenberg, fat distributions In \mathbb{R}^3 , Δ given by $X^1 = \partial_x, X^2 = \partial_y + x\partial_z$ does not admin nontrivial singular horizontal paths.

Examples

Example 3: Martinet distributions In \mathbb{R}^3 , let $\Delta = \text{Vect}\{X^1, X^2\}$ with X^1, X^2 given by

$$X^1 = \partial_{x_1}$$
 and $X^2 = \partial_{x_2} + x_1^2 \partial_{x_3}$.

The singular horizontal paths are the horizontal paths which are contained in the set $\{x_1 = 0\}$.

Examples

Example 3: Martinet distributions In \mathbb{R}^3 , let $\Delta = \text{Vect}\{X^1, X^2\}$ with X^1, X^2 given by

 $X^1 = \partial_{x_1}$ and $X^2 = \partial_{x_2} + x_1^2 \partial_{x_3}$.

The singular horizontal paths are the horizontal paths which are contained in the set $\{x_1 = 0\}$.

Example 4: Rank-2 distributions in dimension 3 In this case, the singular horizontal paths are those horizontal paths which are contained in the Martinet surface

$$\Sigma_{\Delta} = \Big\{ x \in M \, | \, \Delta(x) + [\Delta, \Delta](x) \neq T_x M \Big\}.$$

Examples

Example 3: Martinet distributions In \mathbb{R}^3 , let $\Delta = \text{Vect}\{X^1, X^2\}$ with X^1, X^2 given by

 $X^1 = \partial_{x_1}$ and $X^2 = \partial_{x_2} + x_1^2 \partial_{x_3}$.

The singular horizontal paths are the horizontal paths which are contained in the set $\{x_1 = 0\}$.

Example 4: Rank-2 distributions in dimension 3 In this case, the singular horizontal paths are those horizontal paths which are contained in the Martinet surface

$$\Sigma_{\Delta} = \Big\{ x \in M \, | \, \Delta(x) + [\Delta, \Delta](x) \neq T_x M \Big\}.$$

Example 5: Rank-2 distributions in dimension 4 In this case, at least for a generic germ, the singular horizontal paths are given by the orbits of a smooth vector field in Δ .

The Sard Conjecture

Let (Δ,g) be a SR structure on M and $x\in M$ be fixed. Set

$$\mathcal{S}^{ imes}_{\Delta} = \Big\{ \gamma(1) | \gamma: [0,1]
ightarrow \textit{M}, \gamma(0) = x, \gamma ext{ hor., sing.} \Big\}.$$

Conjecture (Sard Conjecture)

The set $\mathcal{S}^{\times}_{\Delta}$ has Lebesgue measure zero.

The Sard Conjecture

Let (Δ,g) be a SR structure on M and $x\in M$ be fixed. Set

$$\mathcal{S}^{ imes}_{\Delta} = \Big\{ \gamma(1) | \gamma: [0,1] o M, \gamma(0) = x, \gamma ext{ hor., sing.} \Big\}.$$

Conjecture (Sard Conjecture)

The set $\mathcal{S}^{\times}_{\Delta}$ has Lebesgue measure zero.

Remark

By the Brown-Morse-Sard Theorem (1935-42), we know that if $f : \mathbb{R}^n \to \mathbb{R}^m$ is a function of class C^k with

$$k \geq \max\{1, n-m+1\},\$$

then the set $f(C_f)$ of critical values of f has Lebesgue measure zero.

Infinite dimension (Bates-Moreira, 2001)

The Sard Theorem is false in infinite dimension. Let $f: \ell^2 \to \mathbb{R}$ be defined by

$$f\left(\sum_{n=1}^{\infty} x_n e_n\right) = \sum_{n=1}^{\infty} \left(3 \cdot 2^{-n/3} x_n^2 - 2x_n^3\right).$$

The function f is polynomial $(f^{(4)} \equiv 0)$ with critical set

$$C_f = \left\{ \sum_{n=1}^{\infty} x_n \, e_n \, | \, x_n \in \left\{ 0, 2^{-n/3} \right\} \right\},\,$$

Infinite dimension (Bates-Moreira, 2001)

The Sard Theorem is false in infinite dimension. Let $f : \ell^2 \to \mathbb{R}$ be defined by

$$f\left(\sum_{n=1}^{\infty} x_n e_n\right) = \sum_{n=1}^{\infty} \left(3 \cdot 2^{-n/3} x_n^2 - 2x_n^3\right).$$

The function f is polynomial $(f^{(4)} \equiv 0)$ with critical set

$$C_{f} = \left\{ \sum_{n=1}^{\infty} x_{n} e_{n} \, | \, x_{n} \in \left\{ 0, 2^{-n/3} \right\} \right\},$$

and critical values

$$f(C_f) = \left\{ \sum_{n=1}^{\infty} \delta_n 2^{-n} \, | \, \delta_n \in \{0,1\} \right\} = [0,1].$$

The case of Martinet surfaces

Let M be a smooth manifold of dimension 3 and Δ be a totally nonholonomic distribution of rank 2 on M. We define the **Martinet surface** by

$$\Sigma_{\Delta} = \left\{ x \in M \, | \, \Delta(x) + [\Delta, \Delta](x) \neq T_x M
ight\}$$

If Δ is generic, Σ_{Δ} is a surface in M. If Δ is analytic then Σ_{Δ} is analytic of dimension ≤ 2 . If Δ is smooth, Σ_{Δ} is countably 2-rectifiable.

The case of Martinet surfaces

Let M be a smooth manifold of dimension 3 and Δ be a totally nonholonomic distribution of rank 2 on M. We define the **Martinet surface** by

$$\Sigma_{\Delta} = \left\{ x \in M \, | \, \Delta(x) + [\Delta, \Delta](x) \neq T_x M
ight\}$$

If Δ is generic, Σ_{Δ} is a surface in M. If Δ is analytic then Σ_{Δ} is analytic of dimension ≤ 2 . If Δ is smooth, Σ_{Δ} is countably 2-rectifiable.

Proposition

The singular horizontal paths are the orbits of the trace of Δ on $\Sigma_{\Delta}.$

The case of Martinet surfaces

Let M be a smooth manifold of dimension 3 and Δ be a totally nonholonomic distribution of rank 2 on M. We define the **Martinet surface** by

$$\Sigma_{\Delta} = \left\{ x \in M \, | \, \Delta(x) + [\Delta, \Delta](x) \neq T_x M
ight\}$$

If Δ is generic, Σ_{Δ} is a surface in M. If Δ is analytic then Σ_{Δ} is analytic of dimension ≤ 2 . If Δ is smooth, Σ_{Δ} is countably 2-rectifiable.

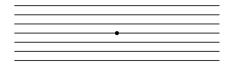
Proposition

The singular horizontal paths are the orbits of the trace of Δ on Σ_{Δ} .

As a consequence, the Sard conjecture holds!!! In fact, we expect a stronger result...

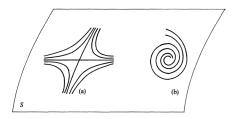
The Sard Conjecture on Martinet surfaces

Transverse case



The Sard Conjecture on Martinet surfaces

Generic tangent case (Zelenko-Zhitomirskii, 1995)



The Sard Conjecture on Martinet surfaces

Let *M* be of dimension 3 and Δ of rank 2.

$$\mathcal{S}^{\mathsf{x}}_{\Delta} = \Big\{ \gamma(1) | \gamma : [0,1] \to M, \gamma(0) = \mathsf{x}, \gamma \text{ hor., sing.} \Big\}.$$

Conjecture (Strong Sard Conjecture)

The set $\mathcal{S}^{\times}_{\Delta}$ has vanishing \mathcal{H}^2 -measure.

Theorem (Belotto-R, 2016)

The above conjecture holds true under one of the following assumptions:

- The Martinet surface is smooth;
- All datas are analytic and

 $\Delta(x)\cap \mathit{T}_x \mathit{Sing}(\Sigma_\Delta) = \mathit{T}_x \mathit{Sing}(\Sigma_\Delta) \quad \forall x\in \mathit{Sing}(\Sigma_\Delta) \,.$

• Control of the divergence of vector fields which generates the trace of Δ over Σ_Δ of the form

 $|\operatorname{div} \mathcal{Z}| \leq C |\mathcal{Z}|$.

• Control of the divergence of vector fields which generates the trace of Δ over Σ_Δ of the form

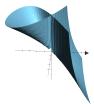
 $|\operatorname{div} \mathcal{Z}| \leq C |\mathcal{Z}|$.

• Resolution of singularities.

An example

In \mathbb{R}^3 ,

$$X = \partial_y$$
 and $Y = \partial_x + \left[\frac{y^3}{3} - x^2y(x+z)\right] \partial_z$.



Martinet Surface:
$$\Sigma_{\Delta} = \left\{ y^2 - x^2(x+z) = 0 \right\}.$$

The minimizing Sard Conjecture

Let (Δ, g) be a SR structure on M and $x \in M$ fixed.

$$\begin{split} \mathcal{S}^{x}_{\Delta,\min^{g}} &= \\ \Big\{ \gamma(1) | \gamma : [0,1] \to \mathcal{M}, \gamma(0) = x, \gamma \text{ hor., sing., min.} \Big\}. \end{split}$$

Conjecture (SR or Minimizing Sard Conjecture)

The set $\mathcal{S}_{\Delta,\min}^{\times}$ has Lebesgue measure zero.

The minimizing Sard Conjecture

Let (Δ, g) be a SR structure on M and $x \in M$ fixed.

$$\begin{split} \mathcal{S}^{x}_{\Delta,\min^{g}} &= \\ \Big\{ \gamma(1) | \gamma : [0,1] \to \mathcal{M}, \gamma(0) = x, \gamma \text{ hor., sing., min.} \Big\}. \end{split}$$

Conjecture (SR or Minimizing Sard Conjecture)

The set $\mathcal{S}_{\Delta,\min^g}^{\times}$ has Lebesgue measure zero.

Remark

We know since the 90's that there are examples of sub-Riemannian structures with (strictly) singular minimizing curves (cf. Montgomery '94, Liu-Sussmann '95).

The minimizing Sard Conjecture: State of the art

Theorem (Agrachev, 2009)

The set $\mathcal{S}^{\times}_{\Delta,\min^{g}}$ is closed with empty interior.

Proposition

The Sard minimizing Conjecture holds true in the following cases:

 Medium-fat distributions, that is for every x ∈ M and all smooth section X of Δ with X(x) ≠ 0,

$$T_X M = \Delta(x) + [\Delta, \Delta](x) + [X, [\Delta, \Delta]](x).$$

The minimizing Sard Conjecture: State of the art

Theorem (Agrachev, 2009)

The set $\mathcal{S}^{\times}_{\Delta,\min^{g}}$ is closed with empty interior.

Proposition

The Sard minimizing Conjecture holds true in the following cases:

 Medium-fat distributions, that is for every x ∈ M and all smooth section X of Δ with X(x) ≠ 0,

$$T_X M = \Delta(x) + [\Delta, \Delta](x) + [X, [\Delta, \Delta]](x).$$

• Generic distributions of rank $m \ge 3$.

Minimizing Sard Conjecture vs. regularity of d_{SR}

Following Agrachev, we introduce the following definition:

Definition

We call **smooth point** of the function $y \mapsto d_{SR}(x, y)$ any $y \in M$ for which there is $p \in T_x^*M$ which is not a critical point of \exp_x and such that the projection of the normal extremal starting at (x, p) is the unique minimizing geodesic from x to y.

Minimizing Sard Conjecture vs. regularity of d_{SR}

Following Agrachev, we introduce the following definition:

Definition

We call **smooth point** of the function $y \mapsto d_{SR}(x, y)$ any $y \in M$ for which there is $p \in T_x^*M$ which is not a critical point of \exp_x and such that the projection of the normal extremal starting at (x, p) is the unique minimizing geodesic from x to y.

Proposition

Let $x \in M$ be fixed, the following properties are equivalent:

- The Minimizing Sard conjecture is satisfied at x.
- The function $y \mapsto d_{SR}(x, y)$ is differentiable almost everywhere in M.
- The set of smooth points O_x is an open set with full measure in M (d_{SR}(x, ·) is smooth on O_x).

Geodesic interpolation

Let (Δ, g) be a SR structure on M and $x \in M$ such that there is a measurable set $\mathcal{C}(x) \subset M$ with Lebesgue measure zero and a measurable map $\gamma_x : (M \setminus \mathcal{C}(x)) \times [0, 1] \longrightarrow M$ such that for every $y \in M \setminus \mathcal{C}(x)$, the curve

 $s \in [0,1] \longmapsto \gamma_x(s,y)$

is the unique minimizing horizontal path from x to y.

Definition

Let $A \subset M$ be a measurable set, for every $s \in [0, 1]$, the *s*-interpolation of A from x is defined by

$$egin{aligned} \mathcal{A}_{m{s}} &:= \left\{ \gamma_{x}(m{s}, y) \,|\, y \in \mathcal{A} \setminus \mathcal{C}(x)
ight\} \qquad orall m{s} \in [0, 1]. \end{aligned}$$

Measure Contraction Properties

Let μ a measure absolutely continuous with respect to \mathcal{L}^n and $K \in \mathbb{R}, N > 1$ be fixed. The measure contraction property MCP(K, N) at x consists in comparing the contraction of volumes along minimizing geodesics from x with respect to the classical model space of Riemannian geometry of curvature K in dimension N.

Measure Contraction Properties

Let μ a measure absolutely continuous with respect to \mathcal{L}^n and $K \in \mathbb{R}, N > 1$ be fixed. The measure contraction property MCP(K, N) at x consists in comparing the contraction of volumes along minimizing geodesics from x with respect to the classical model space of Riemannian geometry of curvature K in dimension N.

Definition

The property MCP(K, N) holds at x if for every measurable set $A \subset M \setminus C(x)$ (provided that $A \subset B_{SR}(x, \pi\sqrt{N-1/K})$ if K > 0) with $0 < \mu(A) < \infty$,

$$\mu\left(\mathsf{A}_{\mathsf{s}}\right) \geq \int_{\mathsf{A}} \mathsf{s} \left[\frac{\mathsf{s}_{\mathsf{K}}\left(\mathsf{sd}_{\mathsf{SR}}(\mathsf{x}, \mathsf{z})/\sqrt{\mathsf{N}-1}\right)}{\mathsf{s}_{\mathsf{K}}\left(\mathsf{d}_{\mathsf{SR}}(\mathsf{x}, \mathsf{z})/\sqrt{\mathsf{N}-1}\right)} \right]^{\mathsf{N}-1} d\mathsf{s}$$

for all $s \in [0, 1]$.

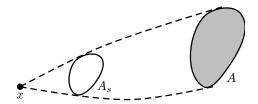
MCP(0, N)

In particular, we have:

Definition

The sub-Riemannian structure (Δ, g) equipped with μ satisfies MCP(0, N) at x if for every measurable set $A \subset M \setminus C(x)$ with $0 < \mu(A) < \infty$,

$$\mu(A_s) \ge s^N \mu(A) \qquad \forall s \in [0,1].$$



Recall that a distribution Δ is two-step if

$$[\Delta, \Delta](x) = T_x M \qquad \forall x \in M.$$

Theorem (Badreddine-R, 2017)

Every two-step sub-Riemannian structure on a compact manifold equipped with a smooth measure satisfies MCP(0, N)for some N > 0. Recall that a distribution Δ is two-step if

$$[\Delta, \Delta](x) = T_x M \qquad \forall x \in M.$$

Theorem (Badreddine-R, 2017)

Every two-step sub-Riemannian structure on a compact manifold equipped with a smooth measure satisfies MCP(0, N)for some N > 0.

Theorem (Badreddine-R, 2017)

Every medium-fat Carnot group with the Haar measure satisfies MCP(0, N) for some N > 0.

• Let $f := d_{SR}(x, \cdot)^2/2$ and $\nabla^h f$ its horizontal gradient. The control of $\mu(A_s)$ from below, $\mu(A_s) \ge s^N \mu(A)$, is equivalent to a control on the divergence of $\nabla^h f$ from above:

$$\operatorname{\mathsf{div}}^\muig(
abla^h fig)\leq N$$

• Let $f := d_{SR}(x, \cdot)^2/2$ and $\nabla^h f$ its horizontal gradient. The control of $\mu(A_s)$ from below, $\mu(A_s) \ge s^N \mu(A)$, is equivalent to a control on the divergence of $\nabla^h f$ from above:

$$\operatorname{\mathsf{div}}^{\mu}\left(
abla^{h}f
ight) \leq N$$

• The function f is nearly horizontally semiconcave.

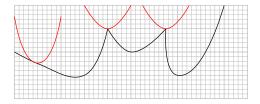
• Let $f := d_{SR}(x, \cdot)^2/2$ and $\nabla^h f$ its horizontal gradient. The control of $\mu(A_s)$ from below, $\mu(A_s) \ge s^N \mu(A)$, is equivalent to a control on the divergence of $\nabla^h f$ from above:

$$\operatorname{\mathsf{div}}^{\mu}\left(
abla^{h}f
ight) \leq N$$

- The function f is nearly horizontally semiconcave.
- *f* is globally Lipschitz (Agrachev-Lee, 2009).

Recall that a function $f : U \to \mathbb{R}$ is *C*-semiconcave in an open set $U \subset \mathbb{R}^n$ if for every $x \in U$ there is a function $\psi : U \to \mathbb{R}$ of class C^2 with $\|\psi\|_{C^2} \leq C$ such that

$$f(y) \leq \psi(y) \quad \forall y \in U.$$



Nearly horizontally semiconcave functions

Definition

A function $f: U \to \mathbb{R}$ in an open set $U \subset M$ is said to be *C*-nearly horizontally semiconcave with respect to (Δ, g) if for every $y \in U$, there are an open neighborhood V^y of 0 in \mathbb{R}^m , a function $\varphi^y: V^y \subset \mathbb{R}^m \to U$ of class C^2 and a function $\psi^y: V^y \subset \mathbb{R}^m \to \mathbb{R}$ of class C^2 such that

$$arphi^{\mathbf{y}}(\mathbf{0}) = \mathbf{y}, \ \psi^{\mathbf{y}}(\mathbf{0}) = f(\mathbf{y}), \ f\left(arphi^{\mathbf{y}}(\mathbf{v})
ight) \leq \psi^{\mathbf{y}}(\mathbf{v}) \quad \forall \mathbf{v} \in V^{\mathbf{y}}$$

$$egin{array}{ll} \left\{ d_0 arphi^y(e_1), \ldots, d_0 arphi^y(e_m)
ight\} ext{ is orthonormal in } \Delta(y), \ & ext{ and } & \left\| arphi^y
ight\|_{\mathcal{C}^2}, \left\| \psi^y
ight\|_{\mathcal{C}^2} \leq \mathcal{C}. \end{array}$$

End of the proof

Proposition (Badreddine-R, 2017)

If *M* is compact and Δ is two-step then there is C > 0 such that all functions $f^{x} = d_{SR}(x, \cdot)^{2}/2$ are *C*-nearly horizontally semiconcave in *M*.

Proposition (Badreddine-R, 2017)

If *M* is compact and Δ is two-step then there is C > 0 such that all functions $f^{\times} = d_{SR}(x, \cdot)^2/2$ are *C*-nearly horizontally semiconcave in *M*.

Lemma

There is B > 0 such that for every $x \in M$ the following property holds: there is locally a orthonormal family of smooth vector fields X^1, \ldots, X^m which parametrize Δ such that $\|X^i\|_{C^1} \leq B$ for $i = 1, \ldots, m$ and

$$X^i \cdot (X^i \cdot f^x) \leq B |\nabla_z f^x| + B \quad \forall i = 1, \dots, m.$$

Proposition (Badreddine-R, 2017)

If *M* is compact and Δ is two-step then there is C > 0 such that all functions $f^{\times} = d_{SR}(x, \cdot)^2/2$ are *C*-nearly horizontally semiconcave in *M*.

Lemma

There is B > 0 such that for every $x \in M$ the following property holds: there is locally a orthonormal family of smooth vector fields X^1, \ldots, X^m which parametrize Δ such that $\|X^i\|_{C^1} \leq B$ for $i = 1, \ldots, m$ and

$$X^i \cdot (X^i \cdot f^x) \leq B |\nabla_z f^x| + B \quad \forall i = 1, \dots, m.$$

 $\stackrel{\sim}{\longrightarrow} \text{We note that } \operatorname{div}_{y}^{\mu} \left(\nabla^{h} f^{x} \right) = \\ \sum_{i=1}^{m} \left(X^{i} \cdot f^{x} \right) (y) \operatorname{div}_{y}^{\mu} \left(X^{i} \right) + \sum_{i=1}^{m} \left[X^{i} \cdot \left(X^{i} \cdot f \right) \right] (y).$

Thank you for your attention !!