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Transport maps

Let M be a smooth manifold and µ0 and µ1 be probability
measures on M . We call transport map from µ0 to µ1 any
measurable map T : M → M such that T]µ0 = µ1, that is

µ1(B) = µ0

(
T−1(B)

)
, ∀B measurable ⊂ M .

µ0 µ1

T
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The Monge Optimal Transport Problem

Let c : M ×M → R be a cost and µ0, µ1 two probabilities
measures on M , find a transport map T : M → M from µ0 to
µ1 which minimizes the transportation cost∫

M

c(x ,T (x))dµ0(x).

Existence ?

Uniqueness ?

Regularity ?
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Example 1: Atomic measures

Let x , y1, y2 ∈ M with y1 6= y2. Then there is no transport
map from

µ0 = δx to µ1 =
1

2
δy1 +

1

2
δy2.

b

x

1

b

y1

1/2

b

y2

1/2

µ0 µ1

Ludovic Rifford Optimal Transport and Control



Example 2: The original Monge problem in R
Given two probability measures µ0, µ1 in R, we are concerned
with transport maps T : R→ R from µ0 to µ1 which
minimize the transportation cost∫

R
|T (x)− x | dµ0(x).

µ0 µ1

T

b

0
b

1
b

2
b

0
b

1
b

2

T (x) = x + 1 and T (x) = 2− x

both optimal with the same transportation cost.
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Example 3: The quadratic Monge problem in Rn

Given two probability measures µ0, µ1 in Rn, we are concerned
with transport maps T : Rn → Rn from µ0 to µ1 which
minimize the transportation cost∫

Rn

|T (x)− x |2 dµ0(x).

Theorem (Brenier ’91)

If µ0 is compactly supported and absolutely continuous with
respect to the Lebesgue measure, there exists a unique optimal
transport map with respect to the quadratic cost. In fact,
there is a convex function ψ : M → R such that

T (x) = ∇ψ(x) µ0 a.e. x ∈ Rn.
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Example 4: The McCann Theorem

Let (M , g) be a smooth compact Riemannian manifold
equipped with its geodesic distance dg .
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Example 4: The McCann Theorem

Let (M , g) be a smooth compact Riemannian manifold
equipped with its geodesic distance dg . Given two probability
measures µ0, µ1 on M , we are concerned with transport maps
T : M → M which minimize the transportation cost∫

M

dg (x ,T (x))2dµ0(x).

Theorem (McCann ’01)

If µ0 is absolutely continuous w.r.t. Lebesgue, there exists a
unique optimal transport map from µ0 to µ1. In fact, there is
a c-convex function ϕ : M → R satisfying

T (x) = expx (∇ϕ(x)) µ0 a.e. x ∈ Rn.
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Example 5: A Monge problem with obstacle

Let C be a smooth convex body in Rn and d the geodesic
distance on Ω := Rn \ C .

µ0 µ1

b

b

Given two probability measures µ0, µ1 in Rn, we are concerned
with transport maps T : Rn → Rn from µ0 to µ1 which
minimize the transportation cost

∫
Rn d(x ,T (x)2dµ0(x).

Theorem (Cardaliaguet-Jimenez ’11)

Existence (but not uniqueness in general).

Ludovic Rifford Optimal Transport and Control



Optimal Transport and Control

The purpose of this talk is to study optimal transport
problems with costs coming from optimal control
problems. Two types of costs:

LQR costs

Quadratic sub-Riemannian distances.
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The Kantorovitch Optimal Transport Problem

Given M , a cost c : M ×M → R and two probability measures
µ0, µ1 on M , we want to find a probability measure γ on
M ×M having marginals µ0 and µ1, i.e.

(π1)]γ = µ0 and (π2)]γ = µ1,

(where π1 : M ×M → M and π2 : M ×M → M are the
canonical projections), which minimizes the transportation
cost given by ∫

M×M

c(x , y)dγ(x , y).

When the transport condition (π1)]γ = µ, (π2)]γ = ν is
satisfied, we say that γ is a transport plan, and if γ
minimizes also the cost we call it an optimal transport plan.

Ludovic Rifford Optimal Transport and Control



Kantorovitch allows splitting

M

M

µ0

µ1

γ

B

µ0(B) = γ(B ×M)
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Monge vs. Kantorovitch

Let M be a smooth manifold, c : M ×M → R be a cost
function, and µ0, µ1 two probability measures on M .

Monge’s Problem

Minimize ∫
M

c(x ,T (x))dµ0(x)

among all transport maps T , that is T]µ0 = µ1.

Kantorovitch’s Problem

Minimize ∫
M

c(x , y)dγ(x , y)

among all transport plans γ, that is (π1)]γ = µ0, (π2)]γ = µ1.
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Reminder: The Brenier-McCann Theorem

Theorem (Brenier ’91)

If µ0 is compactly supported and absolutely continuous with
respect to the Lebesgue measure, there exists a unique optimal
transport map with respect to the quadratic cost. In fact,
there is a convex function ψ : M → R such that

T (x) = ∇ψ(x) µ0 a.e. x ∈ Rn.

Theorem (McCann ’01)

If µ0 is absolutely continuous w.r.t. Lebesgue, there exists a
unique optimal transport map from µ0 to µ1. In fact, there is
a c-convex function ϕ : M → R satisfying

T (x) = expx (∇ϕ(x)) µ0 a.e. x ∈ Rn.
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Kantorovitch’s Duality

Theorem

There are two continuous function ψ1, ψ2 : M → R satisfying

ψ1(x) = max
y∈M
{ψ2(y)− c(x , y)} ∀x ∈ M ,

ψ2(y) = min
x∈M
{ψ1(x) + c(x , y)} ∀y ∈ M .

such that the following holds: a transport plan γ is optimal if
and only if one has

ψ2(x)− ψ1(y) = c(x , y) for γ a.e. (x , y) ∈ M ×M .

As a consequence, to obtain that an optimal transport plan
corresponds to a Monge’s optimal transport map, we have to
show that γ is concentrated on a graph.
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Proof of Brenier-McCann’s Theorem I

Returning to the Riemannian setting, let ψ1, ψ2 : M → R be a
pair of Kantorovitch potentials given by the previous result.

The function x 7→ dg (x , y)2 is locally Lipschitz on M .

The function ψ1 is locally Lipschitz on M . As a
consequence, by Rademacher’s Theorem, it is
differentiable µ0-a.e.

Let x̄ ∈ supp(µ0) be such that ψ1 is differentiable at x̄ .
Let ȳ be such that

ψ1(x̄) = ψ2(ȳ)− dg (x̄ , ȳ)2.

Then we have,

dg (x , ȳ)2 ≥ ψ2(ȳ)− ψ1(x) ∀x ∈ M .
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Proof of Brenier-McCann’s Theorem II

M

d2
g

b

x̄

ψ2(ȳ)− ψ1

Any Lipschitz curve c : [0, 1]→ M with c(1) = ȳ satisfies∫ 1

0

|ċ(t)|2c(t) dt ≥ dg (c(0), ȳ)2 ≥ ψ2(ȳ)− ψ1(c(0)),

with equality if c is the minimizing geodesic from x̄ to ȳ .
=⇒ ȳ = expx̄ (∇ψ1(x̄)) .
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Strategy of proof

TWO ISSUES

(Regularity) Show that ψ1 is differentiable µ-a.e.

(Twist) Deduce that, if ψ1 is differentiable at x̄ , then
there is a unique ȳ such that

ψ1(x̄) = ψ2(ȳ)− c(x̄ , ȳ).
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LQR costs

Let us consider the linear control system

ẋ = Ax + Bu

where x ∈ Rn, u ∈ Rm and A,B are n × n and n ×m
matrices. Cost

c(x , y) = inf

{∫ 1

0

L(x(t), u(t)) dt | u ∈ L2, xu(0) = x , xu(1) = y

}
with (W sym. nonneg. and U sym. def. pos)

L(x , u) = 〈x ,Wx〉+ 〈u,Uu〉

Theorem (Hindawi-Pomet-R ’11)

Existence, uniqueness, and regularity.
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Quadratic sub-Riemannian distances I

Let (M ,∆, g) be a complete sub-Riemannian structure of
dimension n and rank m < n, that is

M a smooth connected manifold.

∆ a totally nonholonomic distribution.

g a smooth metric on ∆.

Let dSR(·, ·) be the sub-Riemannian distance on M ×M , i.e.

dSR(x , y) =

inf
{

lengthg (γ) | γC 1, γ(0) = x , γ(1) = y , γ̇(t) ∈ ∆γ(t)

}
.

From now on, we assume that the metric space (M , dSR) is
complete.
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Quadratic sub-Riemannian distances II

Let µ, ν be two compactly supported probability measures on
M . Find a measurable map T : M → M satisfying

T]µ = ν,

and in such a way that T minimizes the transportation cost
given by ∫

M

dSR(x ,T (x))2dµ(x).

Theorem (Figalli-R ’10)

Assume that there exists an open set Ω ⊂ M ×M such that
supp(µ× ν) ⊂ Ω, and d2

SR is locally Lipschitz on Ω \ D.
Then, there is existence and uniqueness of an optimal
transport map.
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Examples

Example 1: Two generating distributions

Proposition (A. Agrachev, P. Lee, 2008)

If ∆ is two-generating on M, then the squared sub-Riemannian
distance function is locally Lipschitz on M ×M.

Example 2: Generic sub-Riemannian structures

Proposition (Y. Chitour, F. Jean, E. Trélat, 2006)

Let (M , g) be a complete Riemannian manifold of dim ≥ 4.
Then, for any generic distribution of rank ≥ 3, the squared
sub-Riemannian distance function is locally semiconcave
(hence locally Lipschitz) on M ×M \ D.
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Examples

Example 3: Rank-two distributions in dimension 4
Consider the distribution ∆ in R4 spanned by

f1 = ∂x1 , f2 = ∂x2 + x1∂x3 + x3∂x4 .

A horizontal path γ : [0, 1]→ R4 is singular if and only if
it satisfies (up to reparameterization by arc-length)

γ̇(t) = f1(γ(t)), ∀t ∈ [0, 1].

Then, for any metric, the sub-Riemannian distance
function dSR is locally lipschitz on the set

Ω =
{

(x , y) ∈ R4 × R4 | (y − x) /∈ SPAN{e1}
}

Consequently, we get existence and uniqueness of
optimal transport maps.
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Thank you for your attention !!
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