Mass Transportation on the Earth

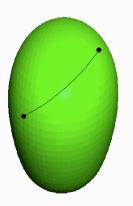
Ludovic Rifford

Université Nice - Sophia Antipolis & Institut Universitaire de France

University of Sciences and Technology of China (Hefei, June 13th, 2013)

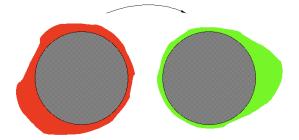
The framework

Let *M* be a **smooth connected compact surface** in \mathbb{R}^n . For any $x, y \in M$, we define the geodesic distance between x and y, denoted by d(x, y), as the minimum of the lengths of the curves (drawn on *M*) joining x to y.



Let μ_0 and μ_1 be **probability measures** on M. We call **transport map** from μ_0 to μ_1 any measurable map $T: M \to M$ such that $T_{\sharp}\mu_0 = \mu_1$, that is

 $\mu_1(B) = \mu_0(T^{-1}(B)), \quad \forall B \text{ measurable } \subset M.$



Given two probabilities measures μ_0, μ_1 sur M, find a transport map $T: M \to M$ from μ_0 to μ_1 which minimizes the quadratic cost ($c = d^2/2$)

$$\int_M c(x,T(x))d\mu_0(x).$$

Given two probabilities measures μ_0, μ_1 sur M, find a transport map $T: M \to M$ from μ_0 to μ_1 which minimizes the quadratic cost ($c = d^2/2$)

$$\int_M c(x, T(x)) d\mu_0(x).$$

Existence ?

Uniqueness ?

Regularity ?

The Brenier Theorem

Quadratic Monge's Problem in \mathbb{R}^n : Given two probability measures μ_0, μ_1 with compact supports in \mathbb{R}^n , we are concerned with transport maps t $T : \mathbb{R}^n \to \mathbb{R}^n$ pushing forward μ_0 to μ_1 which minimize the transport cost

$$\int_{\mathbb{R}^n} \left| T(x) - x \right|^2 d\mu_0(x).$$

The Brenier Theorem

Quadratic Monge's Problem in \mathbb{R}^n : Given two probability measures μ_0, μ_1 with compact supports in \mathbb{R}^n , we are concerned with transport maps t $T : \mathbb{R}^n \to \mathbb{R}^n$ pushing forward μ_0 to μ_1 which minimize the transport cost

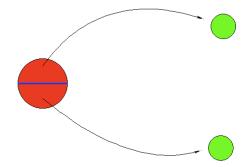
$$\int_{\mathbb{R}^n} \left| T(x) - x \right|^2 d\mu_0(x).$$

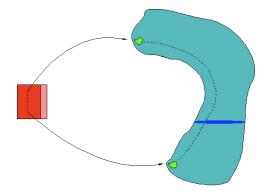
Theorem (Brenier '91)

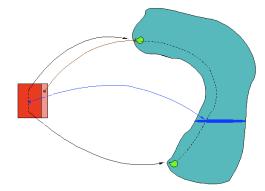
If μ_0 is absolutely continuous with respect to the Lebesgue measure, there exists a unique optimal transport map with respect to the quadratic cost. In fact, there is a **convex** function $\psi : \mathbf{M} \to \mathbb{R}$ such that

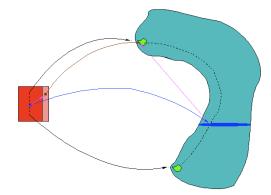
$$T(x) = \nabla \psi(x)$$
 μ_0 a.e. $x \in \mathbb{R}^n$.

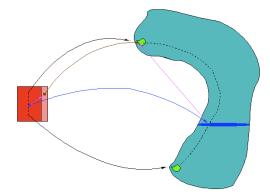
Obvious counterexample



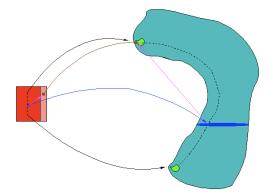








T gradient of a convex function



T gradient of a convex function $\implies \langle y-x, T(y)-T(x)\rangle \ge 0!!!$

Caffarelli's Regularity Theory

If μ_0 and μ_1 are sont associated with densities $\mathit{f}_0,\mathit{f}_1$ w.r.t. Lebesgue, then

$$T_{\sharp}\mu_{0} = \mu_{1} \Longleftrightarrow \int_{\mathbb{R}^{n}} \zeta(T(x)) f_{0}(x) dx = \int_{R^{n}} \zeta(y) f_{1}(y) dy \quad \forall \zeta.$$

 $\rightsquigarrow \psi$ weak solution of the l'Monge-Ampère equation :

$$\det \left(\nabla^2 \psi(x)\right) = \frac{f_0(x)}{f_1(\nabla \psi(x))}.$$

Theorem (Caffarelli '90s)

Let Ω_0, Ω_1 be connected and bounded open sets in \mathbb{R}^n and f_0, f_1 be probability densities resp. on Ω_0 and Ω_1 such that $f_0, f_1, 1/f_0, 1/f_1$ are essentially bounded. Assume that μ_0 and μ_1 have respectively densities f_0 and f_1 w.r.t. Lebesgue and that Ω_1 is convex. Then the quadratic optimal transport map from μ_0 to μ_1 is continuous.

The McCann Theorem

Given two probability measures μ_0, μ_1 on M, we are concerned with transport maps $T: M \to M$ ($T_{\sharp}\mu_0 = \mu_1$) which minimize the quadratic transport cost ($c = d^2/2$)

 $\int_M c(x,T(x))d\mu_0(x).$

The McCann Theorem

Given two probability measures μ_0, μ_1 on M, we are concerned with transport maps $T: M \to M$ ($T_{\sharp}\mu_0 = \mu_1$) which minimize the quadratic transport cost ($c = d^2/2$)

$$\int_M c(x, T(x)) d\mu_0(x).$$

Theorem (McCann '01)

If μ_0 is absolutely continuous w.r.t. Lebesgue, there exists a unique optimal transport map from μ_0 to μ_1 . In fact, there is a c-convex function $\varphi : M \to \mathbb{R}$ satisfying

$$T(x) = \exp_x \left(
abla arphi(x)
ight) \qquad \mu_0 \, \, a.e. \, \, x \in \mathbb{R}^n.$$

Moreover, for a.e. $x \in M$, $\nabla \varphi(x)$ belongs to the injectivity at x.

Exponential mapping and injectivity domains

Let $x \in M$ be fixed.

• For every $v \in T_x M$, we define the **exponential** of v by

$$\exp_x(v) = \gamma_{x,v}(1),$$

where $\gamma_{x,v} : [0,1] \to M$ is the unique geodesic starting at x with speed v.

Exponential mapping and injectivity domains

Let $x \in M$ be fixed.

• For every $v \in T_x M$, we define the **exponential** of v by

$$\exp_x(v) = \gamma_{x,v}(1),$$

where $\gamma_{x,v} : [0,1] \to M$ is the unique geodesic starting at x with speed v.

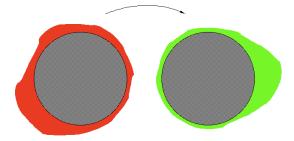
• We call **injectivity domain** at *x*, the subset of *T_xM* defined by

 $\mathcal{I}(x) := \left\{ v \in \mathcal{T}_x M \left| \begin{array}{c} \exists t > 1 \text{ s.t. } \gamma_{tv} \text{ is the unique} \\ \text{minim. geod. between } x \text{ and } \exp_x(tv) \end{array} \right\}$

It is a star-shaped (w.r.t. $0 \in T_x M$) bounded open set with Lipschitz boundary.

We say that the surface $M \subset \mathbb{R}^n$ satisfies the **Transport Continuity Property (TCP)** if the following property is satisfied:

The TCP property



For any pair of probability measures μ_0, μ_1 associated locally with **continuous positive densities** ρ_0, ρ_1 , that is

$$\mu_0 = \rho_0 \operatorname{vol}_g, \quad \mu_1 = \rho_1 \operatorname{vol}_g,$$

the optimal transport map from μ_0 to μ_1 is **continuous**.

Theorem (Figalli-R-Villani '10)

Let M be a smooth compact surface in \mathbb{R}^n . It satisfies **TCP** if and only if the following properties hold:

- all the injectivity domains are convex,
- the cost $c = \frac{1}{2}d^2$ is regular, that is for any $x, x' \in M$, the function

$$F_{x,x'}$$
 : $v \in \mathcal{I}(x) \longmapsto c(x, \exp_x(v)) - c(x', \exp_x(v))$

is quasiconvex (its sublevel sets are always convex).

Lemma

Let $U \subset \mathbb{R}^n$ be an open convex set and $F : U \to \mathbb{R}$ be a function of class C^2 . Assume that for every $v \in U$ and every $w \in \mathbb{R}^n \setminus \{0\}$ the following property holds :

$$\langle \nabla_{\mathbf{v}} F, \mathbf{w} \rangle = 0 \implies \langle \nabla_{\mathbf{v}}^2 F \mathbf{w}, \mathbf{w} \rangle > 0.$$

Then F is quasiconvex.

Proof of the easy lemma

Proof.

Let $v_0, v_1 \in U$ be fixed. Set $v_t := (1 - t)v_0 + tv_1$, for every $t \in [0, 1]$. Define $h : [0, 1] \rightarrow \mathbb{R}$ by

$$h(t) := F(v_t) \qquad \forall t \in [0,1].$$

If $h \not\leq \max\{h(0), h(1)\}$, there is $\tau \in (0, 1)$ such that

$$h(\tau) = \max_{t \in [0,1]} h(t) > \max\{h(0), h(1)\}.$$

Proof of the easy lemma

Proof.

Let $v_0, v_1 \in U$ be fixed. Set $v_t := (1 - t)v_0 + tv_1$, for every $t \in [0, 1]$. Define $h : [0, 1] \to \mathbb{R}$ by

$$h(t) := F(v_t) \qquad \forall t \in [0,1].$$

If $h \nleq \max\{h(0), h(1)\}$, there is $\tau \in (0, 1)$ such that

$$h(\tau) = \max_{t \in [0,1]} h(t) > \max\{h(0), h(1)\}.$$

There holds

$$\dot{h}(au) = \langle
abla_{m{v}_ au} m{F}, \dot{m{v}}_ au
angle \quad ext{et} \quad \ddot{h}(au) = \langle
abla^2_{m{v}_ au} m{F} \, \dot{m{v}}_ au, \dot{m{v}}_ au
angle.$$

Since τ is a local maximum, one has $\dot{h}(\tau) = 0$. Contradiction !!

Exercises

Let $U \subset \mathbb{R}^n$ be an open convex set and $F : U \to \mathbb{R}$ be a function of class C^2 .

False Lemma

Assume that for every $v \in U$ and every $w \in \mathbb{R}^n$, the following property holds:

$$\langle \nabla_{v}F, w \rangle = 0 \implies \langle \nabla_{v}^{2}F w, w \rangle \geq 0.$$

Then F is quasiconvex.

True Lemma

Assume that there is a constant C > 0 such that

$$\langle
abla_{\mathbf{v}}^2 F \, \mathbf{w}, \mathbf{w}
angle \geq -C \left| \langle
abla_{\mathbf{v}} F, \mathbf{w}
angle \right| |\mathbf{w}| \qquad \forall \mathbf{v} \in U, \forall \mathbf{w} \in \mathbb{R}^n.$$

Then F is quasiconvex.

Assume that all the injectivity domains are convex and fix $x, x' \in M$. Recall that

 $F_{x,x'}(v) = F(v) = c(x, \exp_x(v)) - c(x', \exp_x(v)).$

Assume that all the injectivity domains are convex and fix $x, x' \in M$. Recall that

$$F_{\mathbf{x},\mathbf{x}'}(\mathbf{v}) = F(\mathbf{v}) = c(\mathbf{x}, \exp_{\mathbf{x}}(\mathbf{v})) - c(\mathbf{x}', \exp_{\mathbf{x}}(\mathbf{v})).$$

• F is not smooth.

Assume that all the injectivity domains are convex and fix $x, x' \in M$. Recall that

$$F_{x,x'}(v) = F(v) = c(x, \exp_x(v)) - c(x', \exp_x(v)).$$

- F is not smooth.
- For generic segments, t → F(v_t) is smooth outside a finite set of "convex" times.

Assume that all the injectivity domains are convex and fix $x, x' \in M$. Recall that

$$F_{x,x'}(v) = F(v) = c(x, \exp_x(v)) - c(x', \exp_x(v)).$$

• F is not smooth.

- For generic segments, t → F(v_t) is smooth outside a finite set of "convex" times.
- If it is smooth at v, then $\nabla_v^2 F$ has the form

$$\nabla_v^2 F(h,h) = -\int_0^1 (1-t) \frac{\partial^4 c}{\partial^2 x \partial^2 y}(*)(*) dt$$

The Ma-Trudinger-Wang tensor

The MTW tensor \mathfrak{S} is defined as

$$\mathfrak{S}_{(x,v)}(\xi,\eta) = -\frac{3}{2} \left. \frac{d^2}{ds^2} \right|_{s=0} \left. \frac{d^2}{dt^2} \right|_{t=0} c\left(\exp_x(t\xi), \exp_x(v+s\eta) \right),$$

for every $x \in M$, $v \in \mathcal{I}(x)$, and $\xi, \eta \in T_x M$.

The Ma-Trudinger-Wang tensor

The MTW tensor \mathfrak{S} is defined as

$$\mathfrak{S}_{(x,\nu)}(\xi,\eta) = -\frac{3}{2} \left. \frac{d^2}{ds^2} \right|_{s=0} \left. \frac{d^2}{dt^2} \right|_{t=0} c\left(\exp_x(t\xi), \exp_x(\nu + s\eta) \right),$$

for every $x \in M$, $v \in \mathcal{I}(x)$, and $\xi, \eta \in T_x M$.

Proposition (Villani '09, Figalli-R-Villani '10)

Let M be a surface all of whose injectivity domains are convex. Then the following properties are equivalent:

- The cost $c = d^2/2$ is regular.
- The **MTW** tensor is $\succeq 0$, that is for any $x \in M, v \in \mathcal{I}(x)$, and $\xi, \eta \in T_x M$,

$$\langle \xi, \eta \rangle_x = 0 \implies \mathfrak{S}_{(x,v)}(\xi, \eta) \ge 0.$$

Caracterization of TCP on surfaces

Theorem (Figalli-R-Villani '10)

Let *M* be a surface in \mathbb{R}^n . It satisfies **TCP** if and only if the two following properties holds:

- all the injectivity domains are convex,
- $\mathfrak{S} \succeq 0$.

Caracterization of **TCP** on surfaces

Theorem (Figalli-R-Villani '10)

Let *M* be a surface in \mathbb{R}^n . It satisfies **TCP** if and only if the two following properties holds:

• all the injectivity domains are convex,

• $\mathfrak{S} \succeq 0$.

Loeper noticed that for every $x \in M$ and for any pair of unit orthogonal tangent vectors $\xi, \eta \in T_x M$, there holds

 $\mathfrak{S}_{(x,0)}(\xi,\eta)=\sigma_x,$

where σ_x denote the gaussian curvature of M at x. As a consequence,

TCP
$$\implies \sigma \ge 0.$$

Caracterization of **TCP** on surfaces

Theorem (Figalli-R-Villani '10)

Let *M* be a surface in \mathbb{R}^n . It satisfies **TCP** if and only if the two following properties holds:

• all the injectivity domains are convex,

• $\mathfrak{S} \succeq 0$.

Loeper noticed that for every $x \in M$ and for any pair of unit orthogonal tangent vectors $\xi, \eta \in T_x M$, there holds

 $\mathfrak{S}_{(x,0)}(\xi,\eta)=\sigma_x,$

where σ_x denote the gaussian curvature of M at x. As a consequence,

TCP
$$\implies \sigma \ge 0.$$

Therefore, if $M \subset \mathbb{R}^3$ satisfies **TCP**, then it is **convex**.

Examples and Counterexamples

Examples:

- Flat tori (Cordero-Erausquin, '99).
- Round spheres (Loeper, '06).
- Quotients of the above objects.

Examples and Counterexamples

Examples:

- Flat tori (Cordero-Erausquin, '99).
- Round spheres (Loeper, '06).
- Quotients of the above objects.

Counterexamples:

Examples and Counterexamples

Examples:

- Flat tori (Cordero-Erausquin, '99).
- Round spheres (Loeper, '06).
- Quotients of the above objects.

Counterexamples:

Spheres

Theorem (Loeper '06)

The **MTW** tensor on the round (unit) sphere \mathbb{S}^2 satisfies $\mathfrak{S} \succeq 1$, that is for any $x \in \mathbb{S}^2$, $v \in \mathcal{I}(x)$ and $\xi, \eta \in T_x \mathbb{S}^2$,

$$\langle \xi, \eta \rangle_{\mathsf{x}} = 0 \implies \mathfrak{S}_{(\mathsf{x},\mathsf{v})}(\xi,\eta) \ge |\xi|^2 |\eta|^2.$$

In particular, the round sphere \mathbb{S}^2 satisfies **TCP**.

Spheres

Theorem (Loeper '06)

The **MTW** tensor on the round (unit) sphere \mathbb{S}^2 satisfies $\mathfrak{S} \succeq 1$, that is for any $x \in \mathbb{S}^2$, $v \in \mathcal{I}(x)$ and $\xi, \eta \in T_x \mathbb{S}^2$,

$$\langle \xi, \eta \rangle_{\mathsf{x}} = 0 \implies \mathfrak{S}_{(\mathsf{x},\mathsf{v})}(\xi,\eta) \ge |\xi|^2 |\eta|^2.$$

In particular, the round sphere \mathbb{S}^2 satisfies **TCP**.

Is this result stable ?

Two issues

• Stability of the (uniform) convexity of injectivity domains.

Two issues

- Stability of the (uniform) convexity of injectivity domains.
- Stability of properties of the form $\mathfrak{S} \succeq K$ with K > 0.

Issues

Two issues

- Stability of the (uniform) convexity of injectivity domains.
- Stability of properties of the form S ≻ K with K > 0.
 On S², the MTW is given by

$$\begin{split} \mathfrak{S}_{(x,v)}(\xi,\xi^{\perp}) \\ &= 3\left[\frac{1}{r^2} - \frac{\cos(r)}{r\sin(r)}\right]\xi_1^4 + 3\left[\frac{1}{\sin^2(r)} - \frac{r\cos(r)}{\sin^3(r)}\right]\xi_2^4 \\ &\quad + \frac{3}{2}\left[-\frac{6}{r^2} + \frac{\cos(r)}{r\sin(r)} + \frac{5}{\sin^2(r)}\right]\xi_1^2\xi_2^2, \end{split}$$

with

$$x \in \mathbb{S}^2, v \in \mathcal{I}(x), r := |v|, \xi = (\xi_1, \xi_2), \xi^{\perp} = (-\xi_2, \xi_1).$$

• We extend the Ma-Trudinger-Wang tensor beyond boundaries of injectivity domains.

- We extend the Ma-Trudinger-Wang tensor beyond boundaries of injectivity domains.
- The uniform convexity of the nonfocal domains $\mathcal{NF}(x)$ is stable.

- We extend the Ma-Trudinger-Wang tensor beyond boundaries of injectivity domains.
- The uniform convexity of the nonfocal domains $\mathcal{NF}(x)$ is stable.
- The positivity of the extended tensor $\overline{\mathfrak{S}}$ is stable.

- We extend the Ma-Trudinger-Wang tensor beyond boundaries of injectivity domains.
- The uniform convexity of the nonfocal domains $\mathcal{NF}(x)$ is stable.
- The positivity of the extended tensor $\overline{\mathfrak{S}}$ is stable.
- $\overline{\mathfrak{S}} \succ 0 + (\text{uniform})$ convexity of the $\mathcal{NF}(x)$'s $\implies \mathfrak{S} \succ 0 + (\text{uniform})$ convexity of the $\mathcal{I}(x)$'s.

Mass Transportation on the Earth

Theorem (Figalli-R '09)

Any small deformation of \mathbb{S}^2 in C^5 topology satisfies $\overline{\mathfrak{S}} \succeq 1/2$, has convex injectivity domains and satisfies **TCP**.

Thank you for your attention !!

Greater dimensions

Let (M, g) be a smooth connected compact Riemannian manifold of dimension $n \ge 2$.

Theorem (Figalli-R-Villani '10)

Assume that (M, g) satisfies **(TCP)**. Then

- all its injectivity domains are convex,
- the **MTW** tensor is $\succeq 0$.

Theorem (Figalli-R-Villani '10)

Assume that (M, g) satisfies the two following properties:

- all its injectivity domains are strictly convex,
- the **MTW** tensor is $\succ 0$,

Then, it satisfies **TCP**.