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Setting

Let M be a smooth compact manifold of dimension n ≥ 2 be
fixed. Let H : T ∗M → R be a Hamiltonian of class C k , with
k ≥ 2, recall that the Hamiltonian vector field reads (in local
coordinates)

XH(x , p) =

(
∂H
∂p

(x , p)

−∂H
∂x

(x , p)

)
.

Examples:

H(x , p) = ‖p‖2
x/2 (Riemannian)

H(x , p) = ‖p‖2
x/2 + V (x) (mechanical)

H(x , p) = ‖p‖2
x/2 + p · X (x) (Mañé)

Tonelli Hamiltonians
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Problems

Two types of problem

1. Change the behavior of an orbit: e.g. close a recurrent
orbit or an orbit through a non-wandering point of the
Hamiltonian flow into a periodic orbit
 Closing Lemma

2. Change the behavior of φH
t along a given orbit

 Franks’ Lemma
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The Pugh closing lemma

Let X be a C 1 vector field on a compact manifold M and
x ∈ M be a non-wandering point w.r.t to the flow of X .

Proposition

For every ε > 0, there is a C 1 vector field Y having x as a
periodic point such that ‖Y − X‖C0 < ε.

Theorem (Pugh, 1967)

For every ε > 0, there is a C 1 vector field Y having x as a
periodic point such that ‖Y − X‖C1 < ε.
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The Franks Lemma for vector fields
Let x̄ be a periodic point for the flow of X of period T > 0.
Fix a local section Σ transverse to the flow at x̄ and consider
the Poincaré first return map

P : Σ −→ Σ
x 7−→ φX

τ(x)(x).

It is a local C 1 diffeomorphism fixing x̄ .

Lemma (Franks, 1971)

For every ε > 0, there is δ = δ(ε) > 0 such that for every
isomorphism Q : Tx̄Σ→ Tx̄Σ satisfying

‖Q − dx̄P‖ < δ,

there exists a C 1 vector field Y which preserves the orbit of x̄
such that

‖Y − X‖C1 < ε and dx̄P = Q.
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Generic vector fields

Let X be a C 1 vector field on M , we set

Per(X ): set of periodic points.

Ω(X ): set of non-wandering points.

Theorem (Pugh)

Let M be a smooth compact manifolds, the set of C 1 vector
fields X on M such that

Per(X ) = Ω(X ),

is residual in X 1(M) (the set of C 1 vector fields on M) .
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Closing hamiltonian orbits

Theorem (Pugh-Robinson, 1983)

Let (N , ω) be a symplectic manifold of dimension 2n ≥ 2 and
H : N → R be a given Hamiltonian of class C 2. Let X be the
Hamiltonian vector field associated with H and φH the
Hamiltonian flow. Suppose that x ∈ N is a non-wandering
point of the flow of X and that U is a neighborhood of X in
the C 1 topology. Then there exists Y ∈ U such that Y is a
Hamiltonian vector field and Y has a closed orbit through x.

Questions:

If (N , ω) = (T ∗M ,wcan), can we close a recurrent orbit
by adding a small potential (H  H + V ) ?

If H = (1/2)‖p‖2
x , can we close a recurrent orbit by a

small perturbation of the Riemannian metric ?
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Closing geodesics in low topology

Theorem (Rifford, 2012)

Let M be a smooth compact manifold and g be a Riemannian
metric on M of class C k with k ≥ 3 and let (x , v) ∈ UgM be
a non-wandering point for the geodesic flow. Then for every
ε > 0, there exists a metric g̃ of class C k−1 with
‖g̃ − g‖C1 < ε such that the geodesic starting from x with
initial velocity v is periodic.

Remark

By Poincaré’s recurrence theorem, the set of recurrent pairs
has full measure in UgM. Hence all points in UgM are
non-wandering.

The closing lemma for the geodesic flow in the C 2 topology on
the metric is open.
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Back to Franks’ Lemma

Let M be a smooth compact manifold and H : T ∗M → R an
Hamiltonian of class C k , with k ≥ 2.
Let θ̄ = (x̄ , p̄) be a periodic point for the Hamiltonian flow of
positive period T > 0.
Fix a local section transversal to the flow at θ̄ and contained
in the energy level of θ̄.

Then consider the Poincaré first return map

P : Σ −→ Σ
θ 7−→ φH

τ(θ)(θ),

which is a local diffeomorphism and for which θ̄ is a fixed
point.

The Poincaré map is symplectic, i.e. it preserves the restriction
of the symplectic form to TθΣ.
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P : Σ −→ Σ
θ 7−→ φH

τ(θ)(θ),

which is a local diffeomorphism and for which θ̄ is a fixed
point.
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The symplectic group

Let Sp(m) be the symplectic group in M2m(R) (m = n − 1),
that is the smooth submanifold of matrices X ∈ M2m(R)
satisfying

X ∗JX = J where J :=

[
0 Im
−Im 0

]
.

Choosing a convenient set of coordinates, the differential of
the Poincaré map is the symplectic matrix X (T ) where
X : [0,T ]→ Sp(m) is solution to the Cauchy problem{

Ẋ (t) = A(t)X (t) ∀t ∈ [0,T ],
X (0) = I2m,

where A(t) has the form

A(t) =

(
0 Im

−K (t) 0

)
∀t ∈ [0,T ].
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Franks’s Lemma à la Mañé

Problem:

Given ε > 0,
does the set of differentials of Poincaré maps (restricted to
TθΣ) associated with potentials V : M → R of class C k such
that

‖V ‖C k < ε,

the periodic orbit through θ̄ is preserved by the
Hamiltonian flow associated with the perturbed
Hamiltonian H + V ,

fill a ball around dθ̄P ?

What’s the radius of that ball in term of ε ?
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Perturbation of the Poincaré map

Let γ be the projection of the periodic orbit passing through θ̄,
we are looking for a potential

V : M −→ R

satisfying the following properties

V
(
γ(t)

)
= 0, dV

(
γ(t)

)
= 0,

with
d2V

(
γ(t)

)
free.

=⇒ d2V
(
γ(t)

)
is the control.
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A controllability problem on Sp(m)

The Poincaré map at time T associated with the new
Hamiltonian

H + V

is given by Xu(T ) where Xu : [0,T ]→ Sp(m) is solution to
the control problem{

Ẋu(t) = A(t)Xu(t) +
∑m

i≤j=1 uij(t)E(ij)Xu(t), ∀t ∈ [0,T ],

X (0) = I2m,

where the 2m × 2m matrices E(ij) are defined by

E(ij) :=

(
0 0

E (ij) 0

)
,

with

{
(E (ii))k,l := δikδil ∀i = 1, . . . ,m,

(E (ij))k,l = δikδjl + δilδjk ∀i < j = 1, . . . ,m.
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Thank you for your attention !!
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from Mañé’s viewpoint”
L.R., Rafael Ruggiero, IMRN, 2012.

”Franks’ Lemma for C 2-Mañé perturbations of
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