Control and Dynamics

Ludovic Rifford

Université Nice Sophia Antipolis & Institut Universitaire de France

Analysis and Geometry in Control Theory and its Applications

Setting

Let M be a smooth compact manifold of dimension $n \ge 2$ be fixed. Let $H: T^*M \to \mathbb{R}$ be a Hamiltonian of class C^k , with $k \ge 2$, recall that the Hamiltonian vector field reads (in local coordinates)

$$X_H(x,p) = \begin{pmatrix} rac{\partial H}{\partial p}(x,p) \\ -rac{\partial H}{\partial x}(x,p) \end{pmatrix}$$

Setting

Let M be a smooth compact manifold of dimension $n \ge 2$ be fixed. Let $H: T^*M \to \mathbb{R}$ be a Hamiltonian of class C^k , with $k \ge 2$, recall that the Hamiltonian vector field reads (in local coordinates)

$$X_H(x,p) = \begin{pmatrix} rac{\partial H}{\partial p}(x,p) \\ -rac{\partial H}{\partial x}(x,p) \end{pmatrix}$$

Examples:

• $H(x, p) = ||p||_x^2/2$ • $H(x, p) = ||p||_x^2/2 + V(x)$ • $H(x, p) = ||p||_x^2/2 + p \cdot X(x)$ (Riemannian) (mechanical) (Mañé)

Tonelli Hamiltonians

Two types of problem

 Change the behavior of an orbit: e.g. close a recurrent orbit or an orbit through a non-wandering point of the Hamiltonian flow into a periodic orbit → Closing Lemma

Two types of problem

 Change the behavior of an orbit: e.g. close a recurrent orbit or an orbit through a non-wandering point of the Hamiltonian flow into a periodic orbit → Closing Lemma

2. Change the behavior of ϕ_t^H along a given orbit \rightsquigarrow Franks' Lemma Let X be a C^1 vector field on a compact manifold M and $x \in M$ be a non-wandering point w.r.t to the flow of X.

Proposition

For every $\epsilon > 0$, there is a C^1 vector field Y having x as a periodic point such that $||Y - X||_{C^0} < \epsilon$.

Let X be a C^1 vector field on a compact manifold M and $x \in M$ be a non-wandering point w.r.t to the flow of X.

Proposition

For every $\epsilon > 0$, there is a C^1 vector field Y having x as a periodic point such that $||Y - X||_{C^0} < \epsilon$.

Theorem (Pugh, 1967)

For every $\epsilon > 0$, there is a C^1 vector field Y having x as a periodic point such that $||Y - X||_{C^1} < \epsilon$.

The Franks Lemma for vector fields

Let \bar{x} be a periodic point for the flow of X of period T > 0. Fix a local section Σ transverse to the flow at \bar{x} and consider the **Poincaré first return map**

$$\begin{array}{cccc} P : \Sigma & \longrightarrow & \Sigma \\ x & \longmapsto & \phi^X_{\tau(x)}(x). \end{array}$$

It is a local C^1 diffeomorphism fixing \bar{x} .

The Franks Lemma for vector fields

Let \bar{x} be a periodic point for the flow of X of period T > 0. Fix a local section Σ transverse to the flow at \bar{x} and consider the **Poincaré first return map**

$$egin{array}{cccc} \Sigma & \longrightarrow & \Sigma \ x & \longmapsto & \phi^X_{ au(x)}(x). \end{array}$$

It is a local C^1 diffeomorphism fixing \bar{x} .

F

Lemma (Franks, 1971)

For every $\epsilon > 0$, there is $\delta = \delta(\epsilon) > 0$ such that for every isomorphism $Q : T_{\bar{x}} \Sigma \to T_{\bar{x}} \Sigma$ satisfying

$$\|Q-d_{\bar{x}}P\|<\delta,$$

there exists a C^1 vector field Y which preserves the orbit of \bar{x} such that

$$\|Y - X\|_{C^1} < \epsilon$$
 and $d_{\bar{x}}P = Q$.

Generic vector fields

Let X be a C^1 vector field on M, we set

- Per(X): set of periodic points.
- $\Omega(X)$: set of non-wandering points.

Let X be a C^1 vector field on M, we set

- Per(X): set of periodic points.
- $\Omega(X)$: set of non-wandering points.

Theorem (Pugh)

Let M be a smooth compact manifolds, the set of C^1 vector fields X on M such that

$$\overline{Per(X)} = \Omega(X),$$

is residual in $\mathcal{X}^1(M)$ (the set of C^1 vector fields on M).

Theorem (Pugh-Robinson, 1983)

Let (N, ω) be a symplectic manifold of dimension $2n \ge 2$ and $H : N \to \mathbb{R}$ be a given Hamiltonian of class C^2 . Let X be the Hamiltonian vector field associated with H and ϕ^H the Hamiltonian flow. Suppose that $x \in N$ is a non-wandering point of the flow of X and that \mathcal{U} is a neighborhood of X in the C^1 topology. Then there exists $Y \in \mathcal{U}$ such that Y is a Hamiltonian vector field and Y has a closed orbit through x.

Theorem (Pugh-Robinson, 1983)

Let (N, ω) be a symplectic manifold of dimension $2n \ge 2$ and $H: N \to \mathbb{R}$ be a given Hamiltonian of class C^2 . Let X be the Hamiltonian vector field associated with H and ϕ^H the Hamiltonian flow. Suppose that $x \in N$ is a non-wandering point of the flow of X and that \mathcal{U} is a neighborhood of X in the C^1 topology. Then there exists $Y \in \mathcal{U}$ such that Y is a Hamiltonian vector field and Y has a closed orbit through x.

Questions:

 If (N, ω) = (T^{*}M, w_{can}), can we close a recurrent orbit by adding a small potential (H → H + V) ?

Theorem (Pugh-Robinson, 1983)

Let (N, ω) be a symplectic manifold of dimension $2n \ge 2$ and $H: N \to \mathbb{R}$ be a given Hamiltonian of class C^2 . Let X be the Hamiltonian vector field associated with H and ϕ^H the Hamiltonian flow. Suppose that $x \in N$ is a non-wandering point of the flow of X and that \mathcal{U} is a neighborhood of X in the C^1 topology. Then there exists $Y \in \mathcal{U}$ such that Y is a Hamiltonian vector field and Y has a closed orbit through x.

Questions:

- If (N, ω) = (T^{*}M, w_{can}), can we close a recurrent orbit by adding a small potential (H → H + V) ?
- If H = (1/2) ||p||²_x, can we close a recurrent orbit by a small perturbation of the Riemannian metric ?

Theorem (Rifford, 2012)

Let *M* be a smooth compact manifold and *g* be a Riemannian metric on *M* of class C^k with $k \ge 3$ and let $(x, v) \in U^g M$ be a non-wandering point for the geodesic flow. Then for every $\epsilon > 0$, there exists a metric \tilde{g} of class C^{k-1} with $\|\tilde{g} - g\|_{C^1} < \epsilon$ such that the geodesic starting from *x* with initial velocity *v* is periodic.

Theorem (Rifford, 2012)

Let *M* be a smooth compact manifold and *g* be a Riemannian metric on *M* of class C^k with $k \ge 3$ and let $(x, v) \in U^g M$ be a non-wandering point for the geodesic flow. Then for every $\epsilon > 0$, there exists a metric \tilde{g} of class C^{k-1} with $\|\tilde{g} - g\|_{C^1} < \epsilon$ such that the geodesic starting from *x* with initial velocity *v* is periodic.

Remark

By Poincaré's recurrence theorem, the set of recurrent pairs has full measure in $U^g M$. Hence all points in $U^g M$ are non-wandering.

Theorem (Rifford, 2012)

Let *M* be a smooth compact manifold and *g* be a Riemannian metric on *M* of class C^k with $k \ge 3$ and let $(x, v) \in U^g M$ be a non-wandering point for the geodesic flow. Then for every $\epsilon > 0$, there exists a metric \tilde{g} of class C^{k-1} with $\|\tilde{g} - g\|_{C^1} < \epsilon$ such that the geodesic starting from *x* with initial velocity *v* is periodic.

Remark

By Poincaré's recurrence theorem, the set of recurrent pairs has full measure in U^gM. Hence all points in U^gM are non-wandering.

The closing lemma for the geodesic flow in the C^2 topology on the metric is open.

Back to Franks' Lemma

Let M be a smooth compact manifold and $H: T^*M \to \mathbb{R}$ an Hamiltonian of class C^k , with $k \ge 2$.

Let $\bar{\theta} = (\bar{x}, \bar{p})$ be a periodic point for the Hamiltonian flow of positive period T > 0.

Fix a local section transversal to the flow at $\bar{\theta}$ and contained in the energy level of $\bar{\theta}$.

Back to Franks' Lemma

Let M be a smooth compact manifold and $H: T^*M \to \mathbb{R}$ an Hamiltonian of class C^k , with $k \ge 2$. Let $\bar{\theta} = (\bar{x}, \bar{p})$ be a periodic point for the Hamiltonian flow of

positive period T > 0.

Fix a local section transversal to the flow at $\bar{\theta}$ and contained in the energy level of $\bar{\theta}.$

Then consider the **Poincaré first return map**

$$\begin{array}{cccc} \mathcal{P} : \Sigma & \longrightarrow & \Sigma \\ \theta & \longmapsto & \phi^{H}_{\tau(\theta)}(\theta), \end{array}$$

which is a local diffeomorphism and for which $\bar{\theta}$ is a fixed point.

Back to Franks' Lemma

Let M be a smooth compact manifold and $H : T^*M \to \mathbb{R}$ an Hamiltonian of class C^k , with $k \ge 2$. Let $\overline{\theta} = (\overline{x}, \overline{p})$ be a periodic point for the Hamiltonian flow of

positive period T > 0.

Fix a local section transversal to the flow at $\bar{\theta}$ and contained in the energy level of $\bar{\theta}.$

Then consider the **Poincaré first return map**

$$\begin{array}{cccc} \mathcal{P} : \Sigma & \longrightarrow & \Sigma \\ \theta & \longmapsto & \phi^{H}_{\tau(\theta)}(\theta), \end{array}$$

which is a local diffeomorphism and for which $\bar{\theta}$ is a fixed point.

The Poincaré map is symplectic, i.e. it preserves the restriction of the symplectic form to $T_{\theta}\Sigma$.

The symplectic group

Let Sp(*m*) be the symplectic group in $M_{2m}(\mathbb{R})$ (m = n - 1), that is the smooth submanifold of matrices $X \in M_{2m}(\mathbb{R})$ satisfying

$$X^* \mathbb{J} X = \mathbb{J}$$
 where $\mathbb{J} := \begin{bmatrix} 0 & I_m \\ -I_m & 0 \end{bmatrix}$

Choosing a convenient set of coordinates, the differential of the Poincaré map is the symplectic matrix X(T) where $X : [0, T] \rightarrow Sp(m)$ is solution to the Cauchy problem

$$\begin{cases} \dot{X}(t) = A(t)X(t) & \forall t \in [0, T], \\ X(0) = I_{2m}, \end{cases}$$

where A(t) has the form

$$A(t) = egin{pmatrix} 0 & I_m \ -\mathcal{K}(t) & 0 \end{pmatrix} \qquad orall t \in [0, T].$$

Given $\epsilon > 0$, does the set of differentials of Poincaré maps (restricted to $T_{\theta}\Sigma$) associated with potentials $V : M \to \mathbb{R}$ of class C^k such that

Given $\epsilon > 0$, does the set of differentials of Poincaré maps (restricted to $T_{\theta}\Sigma$) associated with potentials $V : M \to \mathbb{R}$ of class C^k such that

•
$$\|V\|_{C^k} < \epsilon$$
,

Given $\epsilon > 0$, does the set of diff

does the set of differentials of Poincaré maps (restricted to $T_{\theta}\Sigma$) associated with potentials $V: M \to \mathbb{R}$ of class C^k such that

- $\|V\|_{C^k} < \epsilon$,
- the periodic orbit through $\bar{\theta}$ is preserved by the Hamiltonian flow associated with the perturbed Hamiltonian H + V,

Given $\epsilon > 0$,

does the set of differentials of Poincaré maps (restricted to $T_{\theta}\Sigma$) associated with potentials $V: M \to \mathbb{R}$ of class C^k such that

- $\|V\|_{C^k} < \epsilon$,
- the periodic orbit through $\bar{\theta}$ is preserved by the Hamiltonian flow associated with the perturbed Hamiltonian H + V,

fill a ball around $d_{\bar{\theta}}P$?

Given $\epsilon > 0$,

does the set of differentials of Poincaré maps (restricted to $T_{\theta}\Sigma$) associated with potentials $V: M \to \mathbb{R}$ of class C^k such that

- $\|V\|_{C^k} < \epsilon$,
- the periodic orbit through $\bar{\theta}$ is preserved by the Hamiltonian flow associated with the perturbed Hamiltonian H + V,

fill a ball around $d_{\bar{\theta}}P$?

What's the radius of that ball in term of ϵ ?

Let γ be the projection of the periodic orbit passing through $\bar{\theta},$ we are looking for a potential

$$V: M \longrightarrow \mathbb{R}$$

satisfying the following properties

$$V(\gamma(t)) = 0, \quad dV(\gamma(t)) = 0,$$

with

 $d^2V(\gamma(t))$ free.

Let γ be the projection of the periodic orbit passing through $\bar{\theta},$ we are looking for a potential

$$V: M \longrightarrow \mathbb{R}$$

satisfying the following properties

$$V(\gamma(t)) = 0, \quad dV(\gamma(t)) = 0,$$

with

 $d^2V(\gamma(t))$ free.

$$\implies d^2 Vig(\gamma(t)ig)$$
 is the control.

A controllability problem on Sp(m)

The Poincaré map at time T associated with the new Hamiltonian

H + V

is given by $X_u(T)$ where $X_u : [0, T] \to \operatorname{Sp}(m)$ is solution to the control problem

$$\begin{cases} \dot{X}_{u}(t) = A(t)X_{u}(t) + \sum_{i \leq j=1}^{m} u_{ij}(t)\mathcal{E}(ij)X_{u}(t), \quad \forall t \in [0, T], \\ X(0) = I_{2m}, \end{cases}$$

where the $2m \times 2m$ matrices $\mathcal{E}(ij)$ are defined by

with

$$\mathcal{E}(ij) := \begin{pmatrix} 0 & 0 \\ E(ij) & 0 \end{pmatrix},$$

$$\begin{cases} (E(ii))_{k,l} := \delta_{ik}\delta_{il} \forall i = 1, \dots, m, \\ (E(ij))_{k,l} = \delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk} \forall i < j = 1, \dots, m. \end{cases}$$

Ludovic Rifford Control and Dynamics

References:

- "Generic properties of closed orbits of Hamiltonian flows from Mañé's viewpoint" L.R., Rafael Ruggiero, IMRN, 2012.
- "Franks' Lemma for C²-Mañé perturbations of Riemannian metrics and applications to persistence" Ayadi Lazrag, L.R., Rafael Ruggiero, Preprint, 2014.

References:

- "Generic properties of closed orbits of Hamiltonian flows from Mañé's viewpoint" L.R., Rafael Ruggiero, IMRN, 2012.
- "Franks' Lemma for C²-Mañé perturbations of Riemannian metrics and applications to persistence" Ayadi Lazrag, L.R., Rafael Ruggiero, Preprint, 2014.

Thank you for your attention !!