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Abstract. Given a compact Riemannian manifold, we prove a uniform Franks’
lemma at second order for geodesic flows and apply the result in persistence theory.

1. Introduction

One of the most important tools of C1 generic and stability theories of dynamical
systems is the celebrated Franks Lemma [15]:

Let M be a smooth (i.e. of class C∞) compact manifold of dimension n ≥ 2
and let f : M −→ M be a C1 diffeomorphism. Consider a finite set of points
S = {p1, p2, .., pm}, let Π =

⊕m
i=1 TpiM , Π′ =

⊕m
i=1 Tf(pi)M . Then there exist ε0 > 0

such that for every 0 < ε ≤ ε0 there exists δ = δ(ε) > 0 such that the following holds:

Let L = (L1, L2, .., Lm) : Π −→ Π′ be an isomorphism such that∥∥Li −Dpif
∥∥ < δ ∀i = 1, . . . ,m,

then there exists a C1 diffeomorphism g : M −→M satisfying

(1) g(pi) = f(pi) for every i = 1, . . . ,m,
(2) Dpig = Li for each i = 1, . . . ,m,
(3) the diffeomorphim g is in the ε neighborhood of f in the C1 topology.

In a few words, the lemma asserts that given a collection S of m points pi in the
manifoldM , any isomorphism from Π to Π′ can be the collection of the differentials of
a diffeomorphism g, C1 close to f , at each point of S provided that the isomorphism
is sufficiently close to the direct sum of the maps Dpif , i = 1, . . . ,m. The sequence of
points is particularly interesting for applications in dynamics when the collection S
is a subset of a periodic orbit. The idea of the proof of the lemma is quite elementary:
we conjugate the isomorphisms Li by the exponential map of M in suitably small
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neighborhoods of the points pi’s and then glue (smoothly) the diffeomorphism f
outside the union of such neighborhoods with these collection of conjugate-to-linear
maps. So the proof strongly resembles an elementary calculus exercise: we can glue
a C1 function h : R −→ R outside a small neighborhood U of a point x with the
linear function in U whose graph is the line through (x, h(x)) with slope h′(x) and
get a new function that is C1 close to h.

The Franks lemma admits a natural extension to flows, and its important applica-
tions in the study of stable dynamics gave rise to versions for more specific families
of systems, like symplectic diffeomorphisms and Hamiltonian flows [35, 41]. It is
clear that for specific families of systems the proof of the lemma should be more
difficult that just gluing conjugates of linear maps by the exponential map since this
surgery procedure in general does not preserve specific properties of systems, like
preserving symplectic forms in the case of symplectic maps. The Frank’s Lemma
was extensively used by R. Mañé in his proof of the C1 structural stability conjec-
ture [23], and we could claim with no doubts that it is one of the pillars of the proof
together with C. Pugh’s C1 closing lemma [30, 31] (see Newhouse [27] for the proof
of the C1 structural stability conjecture for symplectic diffeomorphisms).

A particularly challenging problem is to obtain a version of Frank’s Lemma for ge-
odesic flows. First of all, a typical perturbation of the geodesic flow of a Riemannian
metric in the family of smooth flows is not the geodesic flow of another Riemannian
metric. To ensure that perturbations of a geodesic flow are geodesic flows as well
the most natural way to proceed is to perturb the Riemannian metric in the mani-
fold itself. But then, since a local perturbation of a Riemannian metric changes all
geodesics through a neighborhood, the geodesic flow of the perturbed metric changes
in tubular neighborhoods of vertical fibers in the unit tangent bundle. So local per-
turbations of the metric are not quite local for the geodesic flow, the usual strategy
applied in generic dynamics of perturbing a flow in a flowbox without changing the
dynamics outside the box does not work. This poses many interesting, technical
problems in the theory of local perturbations of dynamical systems of geometric
origin, the famous works of Klingenberg-Takens [18] and Anosov [3] (the bumpy
metric theorem) about generic properties of closed geodesics are perhaps the two
best known examples. Moreover, geodesics in general have many self-intersections
so the effect of a local perturbation of the metric on the global dynamics of per-
turbed orbits is unpredictable unless we know a priori that the geodesic flow enjoys
some sort of stability (negative sectional curvatures, Anosov flows for instance).
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The family of metric perturbations which preserves a compact piece of a given
geodesic is the most used to study generic theory of periodic geodesics. This fam-
ily of perturbations is relatively easy to characterize analytically when we restrict
ourselves to the category of conformal perturbations or more generally, to the set of
perturbations of Lagrangians by small potentials. Recall that a Riemannian metric
h in a manifold M is conformally equivalent to a Riemannian metric g in M if there
exists a positive, C∞ function b : M −→ R such that hx(v, w) = b(x)gx(v, w) for
every x ∈M and v, w ∈ TxM . Given a C∞, Tonelli Lagrangian L : TM×TM −→ R
defined in a compact manifold M , and a C∞ function u : M −→ R, the function
Lu(p, v) = L(p, v) + u(p) gives another Tonelli Lagrangian. The function u is usu-
ally called a potential because of the analogy between this kind of Lagrangian and
mechanical Lagrangians.

By Maupertuis principle (see for example [12]), the Lagrangian associated to
a metric h in M that is conformally equivalent to g is of the form L(p, v) =
1
2
gp(v, v) + u(p) for some function u. Since the Lagrangian of a metric g is given

by the formula Lg(p, v) = 1
2
gp(v, v), we get Lh(p, v) = Lg(p, v) + u(p). Now, given

a compact part γ : [0, T ] −→ M of a geodesic of (M, g), the collection of poten-
tials u : M → R such that γ[0, T ] is still a geodesic of L(p, v) = Lg(p, v) + u(p)
contains the functions whose gradients vanish along the subset of Tγ(t)M which are
perpendicular to γ′(t) for every t ∈ [0, T ] (see for instance [37, Lemma 2.1]). La-
grangian perturbations of Tonelli Lagrangians of the type Lh(p, v) = Lg(p, v) + u(p)
were used extensively by R. Mañé to study generic properties of Tonelli Lagrangians
and applications to Aubry-Mather theory (see for instance [24, 25]). Mañé’s idea
proved to be very fruitful and insightful in Lagrangian generic theory, and opened
a new branch of generic theory that is usually called Mañé’s genericity. Recently,
Rifford-Ruggiero [34] gave a proof of Klingenberg-Takens and Anosov C1 genericity
results for closed geodesics using control theory techniques applied to the class of
Mañé type perturbations of Lagrangians. Control theory ideas simplify a great deal
the technical problems involved in metric perturbations and at the same time show
that Mañé type perturbations attain full Hamiltonian genericity. This result, com-
bined with a previous theorem by Oliveira [28] led to the Kupka-Smale Theorem for
geodesic flows in the family of conformal perturbations of metrics.

These promissing applications of control theory to the generic theory of geodesic
flows motivate us to study Frank’s Lemma for conformal perturbations of Riemann-
ian metrics or equivalently, for Mañé type perturbations of Riemannian Lagrangians.
Before stating our main theorem, let us recall first some notations and basic results
about geodesic flows. The geodesic flow of a Riemannian manifold (M, g) will be



4 A. LAZRAG, L. RIFFORD, AND R. RUGGIERO

denoted by φt, the flow acts on the unit tangent bundle T1M , a point θ ∈ T1M has
canonical coordinates θ = (p, v) where p ∈ M , v ∈ TpM , and γθ denotes the unit
speed geodesic with initial conditions γθ(0) = p, γ′θ(0) = v. Let Nθ ⊂ TθT1M be the
plane of vectors which are perpendicular to the geodesic flow with respect to the
Sasaki metric (see for example [38]). The collection of these planes is preserved by
the action of the differential of the geodesic flow:Dθφt(Nθ) = Nφt(θ) for every θ and
t ∈ R.

Let us consider a geodesic arc, of length T

γθ : [0, T ] −→M,

and let Σ0 and ΣT be local transverse sections for the geodesic flow which are tangent
to Nθ and NφT (θ) respectively. Let Pg(Σ0,ΣT , γ) be a Poincaré map going from Σ0

to ΣT . In horizontal-vertical coordinates of Nθ, the differential DθφT that is the
linearized Poincaré map

Pg(γ)(T ) := DθPg(Σ0,ΣT , γ)

is a symplectic endomorphism of R(2n−2) × R(2n−2). This endomorphism can be
expressed in terms of the Jacobi fields of γθ which are perpendicular to γ′θ(t) for
every t:

Pg(γ)(T )(J(0), J̇(0)) = (J(T ), J̇(T )),

where J̇ denotes the covariant derivative along the geodesic. We can identify the set
of all symplectic endomorphisms of R2n−2 × R2n−2 with the symplectic group

Sp(n− 1) :=
{
X ∈ R(2n−2)×(2n−2);X∗JX = J

}
,

where X∗ denotes the transpose of X and

J =

[
0 In−1

−In−1 0

]
.

Given a geodesic γθ : [0, T ] → M , an interval [t1, t2] ⊂ [0, T ] and ρ > 0, we denote
by Cg

(
γθ
(
[t1, t2]

)
; ρ
)

the open geodesic cylinder along γθ
(
[t1, t2]

)
of radius ρ, that is

the open set defined by

Cg
(
γθ
(
[t1, t2]

)
; ρ
)

:={
p ∈M | ∃t ∈ (t1, t2) with dg

(
p, γθ(t)

)
< ρ and dg

(
p, γθ([t1, t2])

)
= dg

(
p, γθ(t)

)}
,

where dg denotes the geodesic distance with respect to g. Our main result is the
following.
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Theorem 1.1 (Franks’ Lemma). Let (M, g) be a smooth compact Riemannian man-
ifold of dimension ≥ 2. For every T > 0 there exist δT , τT , KT > 0 such that the
following property holds:
For every geodesic γθ : [0, T ]→M , there are t̄ ∈ [0, T − τT ] and ρ̄ > 0 with

Cg
(
γθ
([
t̄, t̄+ τT

])
; ρ̄
)
∩ γθ([0, T ]) = γθ

((
t̄, t̄+ τT

))
,

such that for every δ ∈ (0, δT ), for each symplectic map A in the open ball (in
Sp(n − 1)) centered at Pg(γ)(T ) of radius δ and for every ρ ∈ (0, ρ̄), there exists a
C∞ metric h in M that is conformal to g, hp(v, w) = (1 + σ(p))gp(v, w), such that:

(1) the geodesic γθ : [0, T ] −→M is still a geodesic of (M,h),
(2) Supp(σ) ⊂ Cg

(
γθ
([
t̄, t̄+ τT

])
; ρ
)
,

(3) Ph(γθ)(T ) = A,

(4) the C2 norm of the function σ is less than KT

√
δ.

Theorem 1.1 improves a previous result by Contreras [7, Theorem 7.1] which gives
a controllability result at first order under an additional assumption on the curva-
tures along the initial geodesic. Other proofs of Contreras Theorem can also be
found in [40] and [20]. The Lazrag proof follows already the ideas from geomet-
ric control introduced in [34] to study controllability properties at first order. Our
new Theorem 1.1 shows that controllability holds at second order without any as-
sumption on curvatures along the geodesic. Its proof amounts to study how small
conformal perturbations of the metric g along Γ := γ([0, T ]) affect the differential of
Pg(Σ0,ΣT , γ). This can be seen as a problem of local controllability along a reference
trajectory in the symplectic group. As in [34], The idea is to see the Hessian of the
conformal factor along the initial geodesic as a control and to obtain Theorem 1.1
as a uniform controllability result at second order for a control system of the form

Ẋ(t) = A(t)X(t) +
k∑
i=1

ui(t)BiX(t), for a.e. t,

in the symplectic group Sp(n− 1).

We apply Franks’ Lemma to extend some results concerning the characterization
of hyperbolic geodesic flows in terms of the persistence of some C1 generic properties
of the dynamics. These results are based on well known steps towards the proof of
the C1 structural stability conjecture for diffeomorphisms.
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Let us first introduce some notations. Given a smooth compact Riemannian
manifold (M, g), we say that a property P of the geodesic flow of (M, g) is ε-Ck-
persistent from Mañé’s viewpoint if for every C∞ function f : M −→ R whose Ck

norm is less than ε we have that the geodesic flow of the metric (M, (1 + f)g) has
property P as well. By Maupertuis’ principle, this is equivalent to the existence
of an open Ck-ball of radius ε′ > 0 of functions q : M −→ R such that for every
C∞ function in this open ball the Euler-Lagrange flow of the Lagrangian L(p, v) =
1
2
gp(v, v) − q(p) in the level of energy equal to 1 has property P . This definition is

inspired by the definition of Ck−1 persistence for diffeomorphisms: a property P of
a diffeomorphism f : M −→ M is called ε-Ck−1 persistent if the property holds for
every diffeomorphism in the ε-Ck−1 neighborhood of f . It is clear that if a property
P is ε-C1 persistent for a geodesic flow then the property P is ε′-C2 persistent from
Mañé’s viewpoint for some ε′.

Theorem 1.2. Let (M, g) be a smooth compact Riemannian manifold of dimension
≥ 2 such that the periodic orbits of the geodesic flow are C2-persistently hyperbolic
from Mañé’s viewpoint. Then the closure of the set of periodic orbits of the geodesic
flow is a hyperbolic set.

An interesting application of Theorem 1.2 is the following extension of Theorem
A in [36]: C1 persistently expansive geodesic flows in the set of Hamiltonian flows
of T1M are Anosov flows. We recall that a non-singular smooth flow φt : Q −→ Q
acting on a complete Riemannian manifold Q is ε-expansive if given x ∈ Q we
have that for each y ∈ Q such that there exists a continuous surjective function
ρ : R −→ R with ρ(0) = 0 satisfying

d
(
φt(x), φρ(t)(y)

)
≤ ε ∀t ∈ R,

for every t ∈ R then there exists t(y), | t(y) |< ε such that φt(y)(x) = y. A smooth
non-singular flow is called expansive if it is expansive for some ε > 0. Anosov flows
are expansive, and it is not difficult to get examples which show that the converse
of this statement is not true. Theorem 1.2 yields the following.

Theorem 1.3. Let (M, g) be a smooth compact Riemannian manifold, suppose that
either M is a surface or dimM ≥ 3 and (M, g) has no conjugate points. Assume
that the geodesic flow is C2 persistently expansive from Mañé’s viewpoint, then the
geodesic flow is Anosov.

The proof of the above result requires the set of periodic orbits to be dense. Such
a result follows from expansiveness on surfaces [36] and from the absence of conju-
gate points in any dimension. If we drop the assumption of the absence of conjugate
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points we do not know whether periodic orbits of expansive geodesic flows are dense
(and so if the geodesic flow in Theorem 1.3 is Anosov). This is a difficult, challenging
problem.

The paper is organized as follows. In the next section, we introduce some pre-
liminaries which describe the relationship between local controllability and some
properties of the End-Point mapping and we introduce the notions of local control-
lability at first and second order. We recall a result of controllability at first order
(Proposition 2.1) already used in [34] and state results (Propositions 2.2 and 2.4) at
second order whose long and technical proofs are given in Sections 2.5 and 2.6. In
Section 3, we provide the proof of Theorem 1.1 and the proof of theorems 1.2, 1.3
are given in Section 4.

2. Preliminaries in control theory

Our aim here is to provide sufficient conditions for first and second order local
controllability results. This kind of results could be developed for nonlinear control
systems on smooth manifolds. For sake of simplicity, we restrict our attention here
to the case of affine control systems on the set of (symplectic) matrices. We refer
the interested reader to [1, 9, 21, 17, 33] for a further study in control theory.

2.1. The End-Point mapping. Let us a consider a bilinear control system on
M2m(R) (with m, k ≥ 1), of the form

Ẋ(t) = A(t)X(t) +
k∑
i=1

ui(t)BiX(t), for a.e. t,(1)

where the state X(t) belongs to M2m(R), the control u(t) belongs to Rk, t ∈ [0, T ] 7→
A(t) (with T > 0) is a smooth map valued in M2m(R), and B1, . . . , Bk are k matrices
in M2m(R). Given X̄ ∈M2m(R) and ū ∈ L2

(
[0, T ];Rk

)
, the Cauchy problem

Ẋ(t) = A(t)X(t) +
k∑
i=1

ūi(t)BiX(t) for a.e. t ∈ [0, T ], X(0) = X̄,(2)

possesses a unique solution XX̄,ū(·). The End-Point mapping associated with X̄ in
time T > 0 is defined as

EX̄,T : L2
(
[0, T ];Rk

)
−→ M2m(R)

u 7−→ XX̄,u(T ).
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It is a smooth mapping whose differential can be expressed in terms of the linearized
control system (see [33]). Given X̄ ∈ M2m(R), ū ∈ L2

(
[0, T ];Rk

)
, and setting

X̄(·) := XX̄,ū(·), the differential of EX̄ at ū is given by the linear operator

DūE
X̄,T : L2

(
[0, T ];Rk

)
−→ M2m(R)

v 7−→ Y (T ),

where Y (·) is the unique solution to the linearized Cauchy problem{
Ẏ (t) = A(t)Y (t) +

∑k
i=1 vi(t)Bi(t)X̄(t) for a.e. t ∈ [0, T ],

Y (0) = 0.

Note that if we denote by S(·) the solution to the Cauchy problem

(3)

{
Ṡ(t) = A(t)S(t)
S(0) = I2m

∀t ∈ [0, T ],

then there holds

DūE
X̄,T (v) =

k∑
i=1

S(T )

∫ T

0

vi(t)S(t)−1BiX̄(t) dt,(4)

for every v ∈ L2([0, T ];Rk).

Let Sp(m) be the symplectic group in M2m(R) (m ≥ 1), that is the smooth
submanifold of matrices X ∈M2m(R) satisfying

X∗JX = J where J :=

[
0 Im
−Im 0

]
.

Denote by S(2m) the set of symmetric matrices in M2m(R). The tangent space to
Sp(m) at the identity matrix is given by

TI2mSp(m) =
{
Y ∈M2m(R) | JY ∈ S(2m)

}
.

Therefore, if there holds

JA(t), JB1, . . . , JBk ∈ S(2m) ∀t ∈ [0, T ],(5)

then Sp(m) is invariant with respect to (1), that is for every X̄ ∈ Sp(m) and ū ∈
L2
(
[0, T ];Rk

)
,

XX̄,u(t) ∈ Sp(m) ∀t ∈ [0, T ].

In particular, this means that for every X̄ ∈ Sp(m), the End-Point mapping EX̄,T

is valued in Sp(m). Given X̄ ∈ Sp(m) and ū ∈ L2
(
[0, T ];Rk

)
, we are interested
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in local controllability properties of (1) around ū. The control system (1) is called
controllable around ū in Sp(m) (in time T ) if for every final state X ∈ Sp(m) close
to XX̄,ū(T ) there is a control u ∈ L2

(
[0, T ];Rk

)
which steers X̄ to X, that is such

that EX̄,T (u) = X. Such a property is satisfied as soon as EX̄,T is locally open at ū.
Our aim in the next sections is to give an estimate from above on the size of ‖u‖L2

in terms of ‖X −XX̄,u(T )‖.

2.2. First order controllability results. Given T > 0, X̄ ∈ Sp(m), a mapping
t ∈ [0, T ] 7→ A(t) ∈ M2m(R), k matrices B1, . . . , Bk ∈ M2m(R) satisfying (5), and
ū ∈ L2

(
[0, T ];Rk

)
, we say that the control system (1) is controllable at first order

around ū in Sp(m) if the mapping EX̄,T : L2
(
[0, T ];Rk

)
→ Sp(m) is a submersion

at ū, that is if the linear operator

DūE
X̄,T : L2

(
[0, T ];Rk

)
−→ TX̄(T )Sp(m),

is surjective (with X̄(T ) := XX̄,ū(T )). The following sufficient condition for first
order controllability is given in [34, Proposition 2.1] (see also [20, 21]).

Proposition 2.1. Let T > 0, t ∈ [0, T ] 7→ A(t) a smooth mapping and B1, . . . , Bk ∈
M2m(R) be matrices in M2m(R) satisfying (5). Define the k sequences of smooth
mappings

{Bj
1}, . . . , {B

j
k} : [0, T ]→ TI2mSp(m)

by {
B0
i (t) := Bi

Bj
i (t) := Ḃj−1

i (t) +Bj−1
i (t)A(t)− A(t)Bj−1

i (t),
(6)

for every t ∈ [0, T ] and every i ∈ {1, . . . , k}. Assume that there exists some t̄ ∈ [0, T ]
such that

Span
{
Bj
i (t̄) | i ∈ {1, . . . , k}, j ∈ N

}
= TI2mSp(m).(7)

Then for every X̄ ∈ Sp(m), the control system (1) is controllable at first order
around ū ≡ 0.

The control system which is relevant in the present paper is not always controllable
at first order. We need sufficient condition for controllability at second order.
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2.3. Second-order controllability results. Using the same notations as above,
we say that the control system (1) is controllable at second order around ū in Sp(m)

if there are µ,K > 0 such that for every X ∈ B
(
X̄(T ), µ

)
∩ Sp(m), there is u ∈

L2
(
[0, T ];Rk

)
satisfying

EX̄,T (u) = X and ‖u‖L2 ≤ K
∣∣X − X̄(T )

∣∣1/2 .
Obtaining such a property requires a study of the End-Point mapping at second
order. Recall that given two matrices B,B′ ∈ M2m(R), the bracket [B,B′] is the
matrix of M2m(R) defined as

[B,B′] := BB′ −B′B.
The following results are the key points in the proof of our main theorem. Their
proofs will be given respectively in Sections 2.5 and 2.6.

Proposition 2.2. Let T > 0, t ∈ [0, T ] 7→ A(t) a smooth mapping and B1, . . . , Bk ∈
M2m(R) be matrices in M2m(R) satisfying (5) such that

BiBj = 0 ∀i, j = 1, . . . , k.(8)

Define the k sequences of smooth mappings {Bj
1}, . . . , {B

j
k} : [0, T ]→ TI2mSp(m) by

(6) and assume that the following properties are satisfied with t̄ = 0:[
Bj
i (t̄), Bi

]
∈ Span

{
Bs
r(t̄) | r = 1, .., k, s ≥ 0

}
∀i = 1, . . . , k, ∀j = 1, 2,(9)

and

Span
{
Bj
i (t̄), [B

1
i (t̄), B

1
l (t̄)] | i, l = 1, .., k and j = 0, 1, 2

}
= TI2mSp(m).(10)

Then, for every X̄ ∈ Sp(m), the control system (1) is controllable at second order
around ū ≡ 0.

Remark 2.3. For sake of simplicity we restrict here our attention to control systems
of the form (1) satisfying (8)-(9). More general results can be found in [21].

To prove Theorem 1.1, we will need the following parametrized version of Propo-
sition 2.2 which will follow from the fact that smooth controls with support in (0, T )
are dense in L2([0, T ];Rk) and compactness.

Proposition 2.4. Let T > 0, and for every θ in some set of parameters Θ let
t ∈ [0, T ] 7→ Aθ(t) be a smooth mapping and Bθ

1 , . . . , B
θ
k ∈ M2m(R) be matrices in

M2m(R) satisfying (5) (with A(t) = Aθ) such that

Bθ
iB

θ
j = 0 ∀i, j = 1, . . . , k.(11)
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Define for every θ ∈ Θ the k sequences of smooth mappings {Bθ,j
1 }, . . . , {B

θ,j
k } :

[0, T ] → TI2mSp(m) as in (6) and assume that the following properties are satisfied
with t̄ = 0 for every θ ∈ Θ:[

Bθ,j
i (t̄), Bθ

i

]
∈ Span

{
Bθ,s
r (t̄) | r = 1, .., k, s ≥ 0

}
∀i = 1, . . . , k, ∀j = 1, 2,(12)

and

Span
{
Bθ,j
i (t̄), [Bθ,1

i (t̄), Bθ,1
l (t̄)] | i, l = 1, .., k and j = 0, 1, 2

}
= TI2mSp(m).(13)

Assume moreover, that the sets{
Bθ
i | i = 1, . . . , k, θ ∈ Θ

}
⊂M2m(R)

and {
t ∈ [0, T ] 7→ Aθ(t) | θ ∈ Θ

}
⊂ C2

(
[0, T ];M2m(R)

)
are compact. Then, there are µ,K > 0 such that for every θ ∈ Θ, every X̄ ∈ Sp(m)

and every X ∈ B
(
X̄θ(T ), µ

)
∩ Sp(m) (X̄θ(T ) denotes the solution at time T of the

control system (1) with parameter θ starting from X̄), there is u ∈ C∞
(
[0, T ];Rk

)
with support in [0, T ] satisfying

EX̄,T
θ (u) = X and ‖u‖C2 ≤ K

∣∣X − X̄(T )
∣∣1/2

(EX̄,T
θ denotes the End-Point mapping associated with the control system (1) with

parameter θ).

Our proof is based on a series of results on openness properties of C2 mappings
near critical points in Banach spaces which was developed by Agrachev and his
co-authors, see [1].

2.4. Some sufficient condition for local openness. Here we are interested in
the study of mappings F : U → RN of class C2 in an open set U in some Banach
space X. We call critical point of F any u ∈ U such that DuF : U → RN is not
surjective. We call corank of u, the quantity

corank(u) := N − dim
(
Im
(
DuF

))
.

If Q : U → R is a quadratic form, its negative index is defined by

ind−(Q) := max
{

dim(L) | Q|L\{0} < 0
}
.

The following non-quantitative result whose proof can be found in [1, 21, 33] provides
a sufficient condition at second order for local openness.
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Theorem 2.5. Let F : U → RN be a mapping of class C2 on an open set U ⊂ X
and ū ∈ U be a critical point of F of corank r. If

ind−

(
λ∗
(
D2
ūF
)
|Ker(DūF )

)
≥ r ∀λ ∈

(
Im
(
DūF

))⊥ \ {0},(14)

then the mapping F is locally open at ū, that is the image of any neighborhood of ū
is an neighborhood of F (ū).

In the above statement, (D2
ūF )|Ker(DūF )

refers to the quadratic mapping from

Ker(DūF ) to RN defined by(
D2
ūF
)
|Ker(DūF )

(v) := D2
ūF · (v, v) ∀v ∈ Ker(DūF ).

The following result is a quantitative version of the previous theorem. (We denote
by BX(·, ·) the balls in X with respect to the norm ‖ · ‖X .)

Theorem 2.6. Let F : U → RN be a mapping of class C2 on an open set U ⊂ X
and ū ∈ U be a critical point of F of corank r. Assume that (14) holds. Then there
exist ε̄, c ∈ (0, 1) such that for every ε ∈ (0, ε̄) the following property holds: For every
u ∈ U , z ∈ RN with

‖u− ū‖X < ε, |z − F (u)| < c ε2,(15)

there are w1, w2 ∈ X such that u+ w1 + w2 ∈ U ,

z = F
(
u+ w1 + w2

)
,(16)

and

w1 ∈ Ker (DuF ) ,
∥∥w1

∥∥
X
< ε,

∥∥w2

∥∥
X
< ε2.(17)

Again, the proof of Theorem 2.6 which follows from previous results by Agrachev-
Sachkov [1] and Agrachev-Lee [2] can be found in [21, 33]. A parametric version of
Theorem 2.6 that will be useful in the proof of Proposition 2.4 is provided in [21].

2.5. Proof of Proposition 2.2. Without loss of generality, we may assume that
X̄ = I2m. As a matter of fact, if Xu : [0, T ] → Sp(m) ⊂ M2m(R) is solution to the
Cauchy problem

Ẋu(t) = A(t)Xu(t) +
k∑
i=1

ui(t)BiXu(t) for a.e. t ∈ [0, T ], Xu(0) = I2m,(18)
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then for every X̄ ∈ Sp(m), the trajectory
(
XuX̄

)
: [0, T ] → M2m(R) starts at X̄

and satisfies

d

dt

(
Xu(t)X̄

)
= A(t)

(
Xu(t)X̄

)
+

k∑
i=1

ui(t)Bi

(
Xu(t)X̄

)
for a.e. t ∈ [0, T ].

So any trajectory of (1), that is any control, steering I2m to some X ∈ Sp(m)
gives rise to a trajectory, with the same control, steering X̄ ∈ Sp(m) to XX̄ ∈
Sp(m). Since right-translations in Sp(m) are diffeomorphisms, we infer that local
controllability at second order around ū ≡ 0 from X̄ = I2m implies controllability
at second order around ū ≡ 0 for any X̄ ∈ Sp(m). So from now we assume that
X̄ = I2m (in the sequel we omit the lower index and simply write I). We recall
that X̄ : [0, T ] → Sp(m) ⊂ M2m(R) denotes the solution of (18) associated with
u = ū ≡ 0 while Xu : [0, T ] → Sp(m) ⊂ M2m(R) stands for a solution of (18)
associated with some control u ∈ L2

(
[0, T ];Rk

)
. Furthermore, we may also assume

that the End-Point mapping EI,T : L2
(
[0, T ];Rk

)
→ Sp(m) is not a submersion at

ū because it would imply controllability at first order around ū and so at second
order, as desired.

We equip the vector space M2m(R) with the scalar product defined by

P ·Q = tr (P ∗Q) ∀P,Q ∈M2m(R).

Let us fix P ∈ TX̄(T )Sp(m) such that P belongs to
(
Im
(
D0E

I,T
))⊥ \ {0} with

respect to our scalar product (note that
(
Im
(
D0E

I,T
))⊥ \ {0} is nonempty since

D0E
I,T : L2

(
[0, T ];Rk

)
→ TX̄(T )Sp(m) is assumed to be not surjective).

Lemma 2.7. For every t ∈ [0, T ], we have

tr
[
P ∗S(T )S(t)−1Bj

i (t)S(t)
]

= 0 ∀j ≥ 0,∀i = 1, ..., k.

Proof of Lemma 2.7. Recall (remember (4)) that for every u ∈ L2([0, T ];Rk),

D0E
I,T (u) = S(T )

∫ T

0

S(t)−1

k∑
i=1

ui(t)BiX̄(t) dt,

where S(·) denotes the solution of the Cauchy problem (3). Thus if P belongs to(
ImD0E

I,T
)⊥

, we have

tr

[
P ∗S(T )

∫ T

0

S(t)−1

k∑
i=1

ui(t)BiX̄(t) dt

]
= 0 ∀u ∈ L1([0, T ];Rk).
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This can be written as

k∑
i=1

∫ T

0

ui(t) tr
[
P ∗S(T )S(t)−1BiS(t)

]
dt = 0 ∀u ∈ L1([0, T ];Rk).

We infer that

tr
[
P ∗S(T )S(t)−1BiS(t)

]
= 0 ∀i ∈ {1, . . . , k}, ∀t ∈ [0, T ].

We conclude by noticing that

dj

dtj
(
S(t)−1BiS(t)

)
= S(t)−1Bj

i (t)S(t) ∀t ∈ [0, T ].

�

Let u ∈ L2
(
[0, T ];Rk

)
be fixed, for every ε ∈ R small we define δε : [0, T ] →

M2m(R) by

δε(t) := EI,t(εu) ∀t ∈ [0, T ].

By regularity of the End-Point mapping (see [33]), we have formally for every t ∈
[0, T ],

δε(t) = X̄(t) + δ1
ε (t) + δ2

ε (t) + o(ε2),

where δ1
ε is linear in ε and δ2

ε quadratic. Then we have for every t ∈ [0, T ],

δε(t) = X̄(t) + δ1
ε (t) + δ2

ε (t) + o(ε2)

= I +

∫ t

0

A(s)δε(s) +
k∑
i=1

ε ui(s)Biδε(s) ds

= X̄(t) +

∫ t

0

A(s)δ1
ε (s) +

k∑
i=1

ε ui(s)BiX̄(s) ds

+

∫ t

0

A(s)δ2
ε (s) +

k∑
i=1

ε ui(s)Biδ
1
ε (s) ds+ o(ε2).

Consequently, the second derivative of EI,T at 0 is given by the solution (times 2)
at time T of the Cauchy problem{

Ż(t) = A(t)Z(t) +
∑k

i=1 ui(t)BiY (t),
Z(0) = 0,



FRANK’S LEMMA FOR C2-MAÑÉ PERTURBATIONS 15

where Y : [0, T ]→M2m(R) is solution to the linearized Cauchy problem (3). There-
fore we have

D2
0E

I,T (u) = 2S(T )

∫ T

0

S(t)−1

k∑
i=1

ui(t)Biϕ(t) dt,

where

ϕ(t) :=
k∑
i=1

S(T )

∫ T

0

S(t)−1ui(t)BiX̄(t) dt.

Then we infer that for every u ∈ L2([0, T ];Rk),

(19) P ·D2
0E

I,T (u) =

2
k∑

i,j=1

∫ T

0

∫ t

0

ui(t)uj(s)tr
[
P ∗S(T )S(t)−1BiS(t)S(s)−1BjS(s)

]
ds dt.

It is useful to work with an approximation of the quadratic form P · D2
0E

I,T . For
every δ > 0, we see the space L2([0, δ];Rk) as a subspace of L2([0, T ];Rk) by the
canonical immersion

u ∈ L2([0, δ];Rk) 7−→ ũ ∈ L2([0, T ];Rk),

with

ũ(t) :=

{
u(t) if t ∈ [0, δ]

0 otherwise.
for a.e. t ∈ [0, T ].

For sake of simplicity, we keep the same notation for ũ and u.

Lemma 2.8. There is C > 0 such that for every δ ∈ (0, T ), we have∣∣∣P ·D2
0E

I,T (u)−Qδ(u)
∣∣∣ ≤ Cδ4 ‖u‖2

L2 ∀u ∈ L2([0, δ];Rk) ⊂ L2([0, T ];Rk),

where Qδ : L2([0, δ];Rk)→ R is defined by

Qδ(u) := 2
k∑

i,j=1

∫ δ

0

∫ t

0

ui(t)uj(s)Pi,j(t, s) ds dt ∀u ∈ L2([0, δ];Rk),

with

Pi,j(t, s) = tr

[
P ∗S(T )

(
sBiB

1
j (0) + tB1

i (0)Bj +
s2

2
BiB

2
j (0)

+
t2

2
B2
i (0)Bj + tsB1

i (0)B1
j (0)

)]
,
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for any t, s ∈ [0, T ].

Proof of Lemma 2.8. Setting for every i, j = 1, . . . , k,

Bi(t) := Bi + t B1
i (0) +

t2

2
B2
i (0) ∀t ∈ [0, T ]

and using (8), we check that for any t, s ∈ [0, T ],

Bi(t)Bj(s) = Pi,j(t, s) + ∆i,j(t, s),

with

∆i,j(t, s) :=
t2s

2
B2
i (0)B1

j (0) +
ts2

2
B1
i (0)B2

j (0) +
t2s2

4
B2
i (0)B2

j (0).

Moreover, remembering that

dj

dtj
(
S(t)−1BiS(t)

)
= S(t)−1Bj

i (t)S(t) ∀t ∈ [0, T ],

we have

S(t)−1BiS(t) = Bi(t) +O
(
t3
)
.

Then by (19) we infer that for any δ ∈ (0, T ) and any u ∈ L2([0, δ];Rk),

P ·D2
0E

I,T (u)−Qδ(u)

= 2
k∑

i,j=1

∫ δ

0

∫ t

0

ui(t)uj(s)tr
[
P ∗S(T )

(
Bi(t) +O

(
t3
)) (
Bj(s) +O

(
s3
))

−Pi,j(t, s)
]
ds dt

= 2
k∑

i,j=1

∫ δ

0

∫ t

0

ui(t)uj(s)tr
[
P ∗S(T )

(
O
(
t3
)
Bj(s) +Bi(t)O

(
s3
)

+O
(
t3
)
O
(
s3
)

+∆i,j(t, s)
)]
ds dt.
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But for every nonnegative integers p, q with p+ q ≥ 3, we have∣∣∣∣∣
k∑

i,j=1

∫ δ

0

∫ t

0

ui(t)uj(s)t
psq ds dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ δ

0

(
k∑
i=1

ui(t)t
p

) (∫ t

0

k∑
j=1

uj(s))s
q ds

)
dt

∣∣∣∣∣
≤

∫ δ

0

(
k∑
i=1

|ui(t)| tp
) (∫ t

0

k∑
j=1

|uj(s)| sq ds

)
dt

≤
∫ δ

0

(
k∑
i=1

|ui(t)| tp+q
) (∫ t

0

k∑
j=1

|uj(s)| ds

)
dt,

which by Cauchy-Schwarz inequality yields∣∣∣∣∣
k∑

i,j=1

∫ δ

0

∫ t

0

ui(t)uj(s)t
psq ds dt

∣∣∣∣∣
≤

√√√√∫ δ

0

(
k∑
i=1

|ui(t)| tp+q
)2

dt

√√√√∫ δ

0

(∫ t

0

k∑
j=1

|uj(s)| ds

)2

dt

≤

√√√√k

∫ δ

0

t2(p+q)

k∑
i=1

|ui(t)|2 dt

√√√√∫ δ

0

t

∫ t

0

(
k∑
j=1

|uj(s)|

)2

ds dt

≤

√√√√kδ2(p+q)

∫ δ

0

k∑
i=1

|ui(t)|2 dt

√√√√∫ δ

0

t

∫ δ

0

(
k∑
j=1

|uj(s)|

)2

ds dt

≤
√
k δ3‖u‖L2

√
k‖u‖2

L2

∫ δ

0

t dt =
k√
2
δ4‖u‖2

L2 .

We conclude easily. �

Returning to the proof of Proposition 2.2, we now want to show that the as-
sumption (14) of Theorems 2.5-2.6 is satisfied. We are indeed going to show that a
stronger property holds, namely that the index of the quadratic form in (14) goes
to infinity as δ tends to zero.
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Lemma 2.9. For every integer N > 0, there are δ > 0 and a subspace Lδ ⊂
L2
(
[0, δ];Rk

)
of dimension larger than N such that the restriction of Qδ to Lδ sat-

isfies

Qδ(u) ≤ −2C‖u‖2
L2δ4 ∀u ∈ Lδ.

Proof of Lemma 2.9. Using the notation

h1 � h2 = h1(t)� h2(s) :=

∫ δ

0

∫ t

0

h1(t)h2(s) ds dt,

for any pair of continuous functions h1, h2 : [0, δ] → R, we check that for every
u ∈ L2

(
[0, δ];Rk

)
,

1

2
Qδ(u) =

k∑
i,j=1

(ui � (suj)) tr
[
P ∗S(T )BiB

1
j (0)

]
(20)

+
k∑

i,j=1

((tui)� uj) tr
[
P ∗S(T )B1

i (0)Bj

]

+
k∑

i,j=1

(
ui �

(
s2uj

2

))
tr
[
P ∗S(T )BiB

2
j (0)

]

+
k∑

i,j=1

((
t2ui

2

)
� uj

)
tr
[
P ∗S(T )B2

i (0)Bj

]

+
k∑

i,j=1

((tui)� (suj)) tr
[
P ∗S(T )B1

i (0)B1
j (0)

]
.

Fix ī, j̄ ∈ {1, . . . , k} with ī 6= j̄ and take v =
(
v1, . . . , vk

)
∈ L2([0, δ];Rk) such that

vi(t) = 0 ∀t ∈ [0, δ], ∀i ∈ {1, . . . , k} \ {̄i, j̄}.
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The sum of the first two terms in the right-hand side of (20) is given by

k∑
i,j=1

{
(vi � (svj)) tr

[
P ∗S(T )BiB

1
j (0)

]
+ ((tvi)� vj) tr

[
P ∗S(T )B1

i (0)Bj

]}
=
(
vī � (svj̄)

)
tr
[
P ∗S(T )BīB

1
j̄ (0)

]
+
(
vj̄ � (svī)

)
tr
[
P ∗S(T )Bj̄B

1
ī (0)

]
+ (vī � (svī)) tr

[
P ∗S(T )BīB

1
ī (0)

]
+
(
vj̄ � (svj̄)

)
tr
[
P ∗S(T )Bj̄B

1
j̄ (0)

]
+
(
(tvī)� vj̄

)
tr
[
P ∗S(T )B1

ī (0)Bj̄

]
+
(
(tvj̄)� vī

)
tr
[
P ∗S(T )B1

j̄ (0)Bī

]
+ ((tvī)� vī) tr

[
P ∗S(T )B1

ī (0)Bī

]
+
(
(tvj̄)� vj̄

)
tr
[
P ∗S(T )B1

j̄ (0)Bj̄

]
.

By integration by parts, we have

vī � (svī) =

(∫ δ

0

vī(s) ds

)(∫ δ

0

svī(s) ds

)
− (tvī)� vī).

So

(vī � (svī)) tr
[
P ∗S(T )BīB

1
ī (0)

]
+ ((tvī)� vī) tr

[
P ∗S(T )B1

ī (0)Bī

]
=

(∫ δ

0

vī(s) ds

)(∫ δ

0

svī(s) ds

)
tr
[
P ∗S(T )BīB

1
ī (0)

]
+ (tvī)� vī)tr

[
P ∗S(T )

[
B1
ī (0), Bī

]]
.

But according to (9) with i = ī (remember that t̄ = 0), we have[
B1
ī (0), Bī

]
∈ Span

{
Bs
r(0) | r = 1, .., k, s ≥ 0

}
,

then by Lemma 2.7 we obtain

tr
[
P ∗S(T )

[
B1
ī (0), Bī

]]
= 0,

and consequently,

(vī � (svī)) tr
[
P ∗S(T )BīB

1
ī (0)

]
+ ((tvī)� vī) tr

[
P ∗S(T )B1

ī (0)Bī

]
=

(∫ δ

0

vī(s) ds

)(∫ δ

0

svī(s) ds

)
tr
[
P ∗S(T )BīB

1
ī (0)

]
.
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Similarly, we obtain(
vj̄ � (svj̄)

)
tr
[
P ∗S(T )Bj̄B

1
j̄ (0)

]
+
(
(tvj̄)� vj̄

)
tr
[
P ∗S(T )B1

j̄ (0)Bj̄

]
=

(∫ δ

0

vj̄(s) ds

)(∫ δ

0

svj̄(s) ds

)
tr
[
P ∗S(T )Bj̄B

1
j̄ (0)

]
.

In conclusion, the sum of the first two terms in the right-hand side of (20) can be
written as

k∑
i,j=1

{
(vi � (svj)) tr

[
P ∗S(T )BiB

1
j (0)

]
+ ((tvi)� vj) tr

[
P ∗S(T )B1

i (0)Bj

]}
=
(
vī � (svj̄)

)
tr
[
P ∗S(T )BīB

1
j̄ (0)

]
+
(
vj̄ � (svī)

)
tr
[
P ∗S(T )Bj̄B

1
ī (0)

]
+

(∫ δ

0

vī(s) ds

)(∫ δ

0

svī(s) ds

)
tr
[
P ∗S(T )BīB

1
ī (0)

]
+
(
(tvī)� vj̄

)
tr
[
P ∗S(T )B1

ī (0)Bj̄

]
+
(
(tvj̄)� vī

)
tr
[
P ∗S(T )B1

j̄ (0)Bī

]
+

(∫ δ

0

vj̄(s) ds

)(∫ δ

0

svj̄(s) ds

)
tr
[
P ∗S(T )Bj̄B

1
j̄ (0)

]
.

By the same arguments as above, the sum of the third and fourth terms in the
right-hand side of (20) can be written as

k∑
i,j=1

{(
vi �

(
s2vj

2

))
tr
[
P ∗S(T )BiB

2
j (0)

]
+

((
t2vi
2

)
� vj

)
tr
[
P ∗S(T )B2

i (0)Bj

]}
=

(
vī �

(
s2vj̄

2

))
tr
[
P ∗S(T )BīB

2
j̄ (0)

]
+

(
vj̄ �

(
s2vī

2

))
tr
[
P ∗S(T )Bj̄B

2
ī (0)

]
+

(∫ δ

0

vī(s) ds

)(∫ δ

0

s2vī(s)

2
ds

)
tr
[
P ∗S(T )BīB

2
ī (0)

]
+

((
t2vī
2

)
� vj̄

)
tr
[
P ∗S(T )B2

ī (0)Bj̄

]
+

((
t2vj̄

2

)
� vī

)
tr
[
P ∗S(T )B2

j̄ (0)Bī

]
+

(∫ δ

0

vj̄(s) ds

)(∫ δ

0

s2vj̄(s)

2
ds

)
tr
[
P ∗S(T )Bj̄B

2
j̄ (0)

]
,
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the fifth (and last) part of 1
2
Qδ(v) is given by

k∑
i,j=1

{
((tvi)� (svj)) tr

[
P ∗S(T )B1

i (0)B1
j (0)

]}
=

(
(tvī)� (svj̄)

)
tr
[
P ∗S(T )B1

ī (0)B1
j̄ (0)

]
+
(
(tvj̄)� (svī)

)
tr
[
P ∗S(T )B1

j̄ (0)B1
ī (0)

]
+ ((tvī)� (svī)) tr

[
P ∗S(T )(B1

ī (0))2
]

+
(
(tvj̄)� vj̄)

)
tr
[
P ∗S(T )(B1

j̄ (0))2
]
.

By integration by parts, we have

(tvī)� (svī) =
1

2

(∫ δ

0

svī(s) ds

)2

, (tvj̄)� (svj̄) =
1

2

(∫ δ

0

svj̄(s) ds

)2

,

and (tvj̄)� (svī) =

(∫ δ

0

svī(s) ds

)(∫ δ

0

svj̄(s) ds

)
− (tvī)� (svj̄).

Therefore the last part of 1
2
Qδ(v) can be written as

k∑
i,j=1

{
((tvi)� (svj)) tr

[
P ∗S(T )B1

i (0)B1
j (0)

]}
=

(
(tvī)� (svj̄)

)
tr
[
P ∗S(T )

[
B1
ī (0), B1

j̄ (0)
]]

+

(∫ δ

0

svī(s) ds

)(∫ δ

0

svj̄(s) ds

)
tr
[
P ∗S(T )B1

j̄ (0)B1
ī (0)

]
+

1

2

(∫ δ

0

svī(s) ds

)2

tr
[
P ∗S(T )(B1

ī (0))2
]

+
1

2

(∫ δ

0

svj̄(s) ds

)2

tr
[
P ∗S(T )(B1

j̄ (0))2
]
.
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To summarize, we have

1

2
Qδ(v) =(

vī � (svj̄)
)

tr
[
P ∗S(T )BīB

1
j̄ (0)

]
+
(
vj̄ � (svī)

)
tr
[
P ∗S(T )Bj̄B

1
ī (0)

]
+

(∫ δ

0

vī(s) ds

)(∫ δ

0

svī(s) ds

)
tr
[
P ∗S(T )BīB

1
ī (0)

]
+
(
(tvī)� vj̄

)
tr
[
P ∗S(T )B1

ī (0)Bj̄

]
+
(
(tvj̄)� vī

)
tr
[
P ∗S(T )B1

j̄ (0)Bī

]
+

(∫ δ

0

vj̄(s) ds

)(∫ δ

0

svj̄(s) ds

)
tr
[
P ∗S(T )Bj̄B

1
j̄ (0)

]
+

(
vī �

(
s2vj̄

2

))
tr
[
P ∗S(T )BīB

2
j̄ (0)

]
+

(
vj̄ �

(
s2vī

2

))
tr
[
P ∗S(T )Bj̄B

2
ī (0)

]
+

(∫ δ

0

vī(s) ds

)(∫ δ

0

s2vī(s)

2
ds

)
tr
[
P ∗S(T )BīB

2
ī (0)

]
+

((
t2vī
2

)
� vj̄

)
tr
[
P ∗S(T )B2

ī (0)Bj̄

]
+

((
t2vj̄

2

)
� vī

)
tr
[
P ∗S(T )B2

j̄ (0)Bī

]
+

(∫ δ

0

vj̄(s) ds

)(∫ δ

0

s2vj̄(s)

2
ds

)
tr
[
P ∗S(T )Bj̄B

2
j̄ (0)

]
+

(∫ δ

0

svī(s) ds

)(∫ δ

0

svj̄(s) ds

)
tr
[
P ∗S(T )B1

j̄ (0)B1
ī (0)

]
+

1

2

(∫ 1

0

svī(s) ds

)2

tr
[
P ∗S(T )(B1

ī (0))2
]

+
1

2

(∫ 1

0

svj̄(s) ds

)2

tr
[
P ∗S(T )(B1

j̄ (0))2
]

+
(
(tvī)� (svj̄)

)
tr
[
P ∗S(T )

[
B1
ī (0), B1

j̄ (0)
]]
.

We now need the following technical result whose proof is given in Appendix.

Lemma 2.10. Denote by Lī,j̄ the set of

v =
(
v1, . . . , vk

)
∈ L2([0, 1];Rk)
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such that

vi(t) = 0 ∀t ∈ [0, 1], ∀i ∈ {1, . . . , k} \ {̄i, j̄},∫ 1

0

vī(s) ds =

∫ 1

0

svī(s) ds =

∫ 1

0

vj̄(s) ds =

∫ 1

0

svj̄(s) ds = 0,

vī � (svj̄) = vj̄ � (svī) = vī � (s2vj̄) = vj̄ � (s2vī) = 0,

and

(tvī)� (svj̄) > 0.

Then, for every integer N > 0, there are a vector space LNī,j̄ ⊂ Lī,j̄∪{0} of dimension

N and a constant K(N) > 0 such that(
tvī
)
�
(
svj̄
)
≥ 1

K(N)
‖v‖2

L2 ∀v ∈ LNī,j̄.

Let us now show how to conclude the proof of Lemma 2.9. Recall that P ∈
TX̄(T )Sp(m) was fixed such that P belongs to

(
Im
(
D0E

I,T
))⊥ \ {0} and that by

Lemma 2.7, we know that (taking t = 0)

P · S(T )Bj
i (0) = 0 ∀j ≥ 0, ∀i ∈ 1, .., k.

By (10) (t̄ = 0), we also have

Span
{
S(T )Bj

i (0), S(T )[B1
i (0), B1

s (0)] | i, s ∈ 1, .., k, j = 0, 1, 2
}

= TX̄(T )Sp(m).

Consequently, we infer that there are ī, j̄ ∈ {1, . . . , k} with ī 6= j̄ such that

tr
(
P ∗S(T )

[
B1
ī (0), B1

j̄ (0)
])

< 0.

Let N > 0 an integer be fixed, LNī,j̄ ⊂ Lī,j̄ ∪ {0} of dimension N and the constant

K(N) > 0 given by Lemma 2.10, for every δ ∈ (0, t) denote by LNδ the vector space
of u ∈ L2

(
[0, δ];Rk

)
⊂ L2

(
[0, T ];Rk

)
such that there is v ∈ Lī,j̄ satisfying

u(t) = v(t/δ) ∀t ∈ [0, δ].

For every v ∈ Lī,j̄, the control uδ : [0, T ]→ Rk defined by

uδ(t) := v(t/δ) t ∈ [0, δ]

belongs to LNδ and by an easy change of variables,∥∥uδ∥∥2
=

∫ T

0

∣∣uδ(t)∣∣2 dt =

∫ δ

0

∣∣uδ(t)∣∣2 dt = δ

∫ 1

0

|v(t)|2 dt = δ‖v‖2.
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Moreover it satisfies

Qδ(uδ) = 2
((
tvī
)
�
(
svj̄
))
δ4 tr

(
P ∗S(T )

[
B1
ī (0), B1

j̄ (0)
])
.

Then we infer that

Qδ(uδ)

‖uδ‖2
L2δ4

=
2
((
tvī
)
�
(
svj̄
))

δ‖v‖2
L2

tr
(
P ∗S(T )

[
B1
ī (0), B1

j̄ (0)
])

≤ 2

δK(N)
tr
(
P ∗S(T )

[
B1
ī (0), B1

j̄ (0)
])
.

We get the result for δ > 0 small enough. �

We can now conclude the proof of Proposition 2.2. First we note that given N ∈ N
strictly larger than m(2m + 1), if L ⊂ L2

(
[0, T ];Rk

)
is a vector space of dimension

N , then the linear operator(
D0E

I,T
)
|L : L→ TX̄(T )Sp(m) ⊂M2m(R)

has a kernel of dimension at least N −m(2m+ 1), which means that

Ker
(
D0E

I,T
)
∩ L

has dimension at least N−m(2m+1). Then, thanks to Lemma 2.9, for every integer
N > 0, there are δ > 0 and a subspace Lδ ⊂ L2

(
[0, δ];Rk

)
⊂ L2

(
[0, T ];Rk

)
such

that the dimension of L̃δ := Lδ ∩Ker
(
D0E

I,T
)

is larger than N and the restriction

of Qδ to L̃δ satisfies

Qδ(u) ≤ −2C‖u‖2
L2δ4 ∀u ∈ L̃δ.

By Lemma 2.8, we have

P ·D2
0E

I,T (u) ≤ Qδ(u) + Cδ4 ‖u‖2
L2 ∀u ∈ L̃δ.

Then we infer that

P ·D2
0E

I,T (u) ≤ −Cδ4 ‖u‖2
L2 < 0 ∀u ∈ L̃δ.(21)

Note that since EI,T is valued in Sp(m) which is a submanifold of M2m(R), assump-
tion (14) is not satisfied and Theorems 2.5 and 2.6 do not apply.

Let Π : M2m(R) → TX̄(T )Sp(m) be the orthogonal projection onto TX̄(T )Sp(m).

Its restriction to Sp(m), Π̄ := Π|Sp(m)
, is a smooth mapping whose differential

at X̄(T ) is equal to the identity of TX̄(T )Sp(m) so it is an isomorphism. Thanks to
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the Inverse Function Theorem (for submanifolds), Π̄ is a local C∞-diffeomorphism at

X̄(T ). Hence there exist µ > 0 such that the restriction of Π̄ to B
(
X̄(T ), µ

)
∩Sp(m)

Π̄|B(X̄(T ),µ)∩Sp(m) : B
(
X̄(T ), µ

)
∩ Sp(m)→ Π̄

(
B
(
X̄(T ), µ

)
∩ Sp(m)

)
is a smooth diffeomorphism. The map EI,T is continuous so

U := (EI,T )−1
(
B
(
X̄(T ), µ

)
∩ Sp(m)

)
is an open set of L2([0, T ];Rk) containing ū = 0. Define the function F : U →
TX̄(T )Sp(m) by F := Π̄ ◦ EI,T = Π ◦ EI,T . The mapping F is C2 and we have

F (ū) = X̄(T ), DūF = DūE
I,T and D2

ūF = Π ◦D2
ūE

I,T .

Let us check that F satisfies assumption (14). For every P ∈ TX̄(T )Sp(m) such that

P belongs to
(
Im
(
DūF

))⊥ \ {0} and every v ∈ L2([0, T ];Rk), we have

P ·D2
ūE

I,T (v) = P · Π ◦D2
ūE

I,T (u) + P ·
(
D2
ūE

I,T (u)− Π ◦D2
ūE

I,T (u)
)
.

But

D2
ūE

I,T (u)− Π ◦D2
ūE

I,T (u) ∈
(
TX̄(T )Sp(m)

)⊥
,

hence

P ·D2
ūE

I,T (u) = P ·D2
ūF (u).

Therefore, by (21), assumption (14) is satisfied. Consequently, thanks to Theorem
2.6 there exist ε̄, c ∈ (0, 1) such that for every ε ∈ (0, ε̄) the following property holds:
For every u ∈ U , Z ∈ TX̄(T )Sp(m) with

‖u− ū‖L2 < ε, |Z − F (u)| < c ε2,

there are w1, w2 ∈ L2
(
[0, T ];Rk

)
such that u+ w1 + w2 ∈ U ,

Z = F
(
u+ w1 + w2

)
,

and

w1 ∈ Ker (DuF ) ,
∥∥w1

∥∥
L2 < ε,

∥∥w2

∥∥
L2 < ε2.

Apply the above property with u = ū and X ∈ Sp(m) such that∣∣X − X̄(T )
∣∣ =:

cε2

2
with ε < ε̄.
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Set Z := Π(X), then we have (Π is an orthogonal projection so it is 1-lipschitz)

|Z − F (ū)| =
∣∣Π(X)− Π(X̄(T ))

∣∣ ≤ ∣∣X − X̄(T )
∣∣ =

cε2

2
< cε2.

Therefore by the above property, there are w1, w2 ∈ L2
(
[0, T ];Rk

)
such that ũ :=

ū+ w1 + w2 ∈ U satisfies

Z = F
(
ũ
)
,

and ∥∥ũ∥∥
L2 ≤ ‖w1‖L2 + ‖w2‖L2 ≤ ε+ ε2.

Since Π̄|B(X̄(T ),µ)∩Sp(m) is a local diffeomorphism, taking ε > 0 small enough, we infer
that

X = EI,T
(
ũ
)

and
∥∥ũ∥∥

L2 ≤ 2ε = 2

√
2

c

∣∣X − X̄(T )
∣∣1/2 .

In conclusion, the control system (1) is controllable at second order around ū ≡ 0,
which concludes the proof of Proposition 2.2.

2.6. Proof of Proposition 2.4. As in the proof of Proposition 2.2, we may assume
without loss of generality that X̄ = I2m. Recall that for every θ ∈ Θ, EI,T

θ :
L2
(
[0, T ];Rk

)
→ Sp(m) ⊂M2m(R) denotes the End-Point mapping associated with

(1) with parameter θ starting at I = I2m. Given θ ∈ Θ two cases may appear, either

EI,T
θ is a submersion at ū ≡ 0 or is not submersion at ū ≡ 0. Let us denote by

Θ1 ⊂ Θ the set of parameters θ where EI,T
θ is submersion at ū ≡ 0 and by Θ2 its

complement in Θ. By continuity of the mapping θ 7→ D0E
I,T
θ the set Θ1 is open in

Θ while Θ2 is compact.
For every θ ∈ Θ1, since EI,T

θ is submersion at ū, we have uniform controllability
at first order around ū for a set of parameters close to θ̄. So we need to show
that we have controllability at second order around ū for any parameter in some
neighborhood of Θ2.

By the proof of Proposition 2.2 (see (21)), for every θ ∈ Θ2, every P in the

nonempty set
(

Im
(
D0E

I,T
θ

))⊥
\ {0} and every integer N > 0 there exists a finite

dimensional subspace Lθ,P,N ⊂ L2([0, T ];Rk) with

D := dim (Lθ,P,N) > N,

such that

P ·D2
0E

I,T
θ (u) < 0 ∀u ∈ Lθ,P,N \ {0}
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and

dim
(
Lθ,P,N ∩Ker

(
D0E

I,T
θ

))
≥ N −m(2m+ 1).

By bilinearity of u 7→ P ·D2
0E

I,T
θ (u) and compactness of the sphere in Lθ,P,N , there

is Cθ,P,N > 0 such that

P ·D2
0E

I,T
θ (u) ≤ −Cθ,P,N ‖u‖2

L2 ∀u ∈ Lθ,P,N .

Let u1, . . . , uD ∈ L2([0, T ];Rk) be a basis of Lθ,P,N such that

‖ui‖L2 = 1 ∀i = 1, . . . , D.

Since the set of controls u ∈ C∞([0, T ],Rk) with Supp(u) ⊂ (0, T ) is dense in
L2([0, T ],Rk), there is a linearly independent family ũ1, . . . , ũD in C∞([0, T ],Rk) with
Supp(u) ⊂ (0, T ) (from now we will denote by C∞0 ([0, T ],Rk) the set of functions in
C∞([0, T ],Rk) with support in (0, T )) such that

P ·D2
0E

I,T
θ (u) ≤ −Cθ,P,N

2
‖u‖2

L2 ∀u ∈ L̃θ,P,N := Span
{
ũi | i = 1, . . . , D

}
.

Moreover by continuity of the mapping (P, θ) 7→ P · D2
0E

I,T
θ , we may also assume

that the above inequality holds for any θ̃ close to θ and P̃ close to P . Let an integer
N > 0 be fixed, we check easily that the set

A :=
{

(θ, P ) ∈ Θ×M2m(R) | ‖P‖ = 1, P ∈
(

Im
(
D0E

I,T
θ

))⊥}
is compact. Therefore, by the above discussion there is a finite family {(θa, Pa)}a=1,...,A

in A together with a finite family of open neighborhoods {Va}a=1,...,A of the pairs
(θa, Pa) (a = 1, . . . , A) in A such that

A =
A⋃
a=1

Va

and there is a finite family of {L̃a}a=1,...,A of finite dimensional subspaces in C∞0 ([0, T ],Rk)
such that

P ·D2
0E

I,T
θ (u) < 0 ∀u ∈ L̃a \ {0},

for every a ∈ {1, . . . , A} and any (θ, P ) in Va. Then set

L̃(N) :=
A⋃
a=1

L̃a ⊂ C∞0 ([0, T ],Rk),
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pick a basis ũ1, . . . , ũB of L̃(N) and define FN : Θ× RB → Sp(m) by

FN
θ (λ) := EI,T

θ

(
B∑
b=1

λbũ
b

)
∀λ = (λ1, ..., λB) ∈ RB, ∀θ ∈ Θ.

By construction, FN is at least C2 and for every θ ∈ Θ2 and every P ∈
(
Im
(
D0F

N
θ

))⊥\
{0}, there is a subspace LNθ,P ⊂ L̃(N) such that

dim
(
LNθ,P

)
> N,

P ·D2
0F

N
θ (u) < 0 ∀u ∈ LNθ,P \ {0}

and
dim

(
LNθ,P ∩Ker

(
D0F

N
θ

))
≥ N −m(2m+ 1).

As in the proof of Proposition 2.2, we need to be careful because FN is valued
in Sp(m). Given θ̄, we denote by Πθ̄ : M2m(R) → TX̄θ̄(T )Sp(m) the orthogonal
projection onto TX̄θ̄(T )Sp(m) and observe that the restriction of Π to TX̄θ(T )Sp(m)

is an isomorphism for θ ∈ Wθ̄ an open neighborhood of θ̄. Then we define GN,θ̄ :
Θ× RB → TX̄θ̄(T )Sp(m) by

GN,θ̄
θ (λ) := Πθ̄

(
FN
θ (λ)

)
∀λ ∈ RB, ∀θ ∈ Wθ̄.

Taking N large enough, by compactness of Θ2, a parametric version of Theorem 2.6
(see [21]) yields ε̄, c ∈ (0, 1) such that for every ε ∈ (0, ε̄) and for any θ̄ ∈ Θ2 the
following property holds: For every θ ∈ Wθ̄, λ ∈ RB, Z ∈ TX̄θ(T )Sp(m) with

|λ|L2 < ε,
∣∣∣Z −GN,θ̄

θ (λ)
∣∣∣ < c ε2,

there are β1, β2 ∈ RB such that

Z = GN,θ̄
θ

(
λ+ β1 + β2

)
,

and

β1 ∈ Ker
(
DλG

N,θ̄
θ

)
,
∣∣β1

∣∣ < ε,
∣∣β2

∣∣ < ε2.

Note that any
B∑
b=1

λbũ
b with λ = (λ1, ..., λB) ∈ RB

is a smooth control whose support is strictly contained in [0, T ]. Then proceeding
as in the proof of Proposition 2.2 we conclude easily.
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3. Proof of Theorem 1.1

We recall that given a geodesic γθ : [0, T ] → M , an interval [t1, t2] ⊂ [0, T ] and
ρ > 0, Cg

(
γθ
(
[t1, t2]

)
; ρ
)

stands for the open geodesic cylinder along γθ
(
[t1, t2]

)
of

radius ρ, that is the open set defined by

Cg
(
γθ
(
[t1, t2]

)
; ρ
)

:={
p ∈M | ∃t ∈ (t1, t2) with dg

(
p, γθ(t)

)
< ρ and dg

(
p, γθ([t1, t2])

)
= dg

(
p, γθ(t)

)}
.

The following holds:

Lemma 3.1. Let (M, g) be a compact Riemannian manifold of dimension ≥ 2.
Then for every T > 0, there exists τT ∈ (0, T ) such that for every θ ∈ T1M , there
are t̄ ∈ [0, T − τT ] and ρ̄ > 0 such that

Cg
(
γθ
([
t̄, t̄+ τT

])
; ρ̄
)
∩ γθ([0, T ]) = γθ

((
t̄, t̄+ τT

))
.

Proof of Lemma 3.1. Let rg > 0 be the injectivity radius of (M, g), that is the
supremum of r > 0 such that any geodesic arc of length r is minimizing between its
end-points. We call self-intersection of the geodesic curve γθ([0, T ]) any p ∈M such
that there are t 6= t′ in [0, T ] such that γθ(t) = γθ(t

′) = p. We claim that for every
integer k > 0 the number of self-intersection of a (non-periodic) geodesic of length
k rg is bounded by

N(k) :=
k−1∑
i=0

i =
k(k − 1)

2
.

We prove it by induction. Since any geodesic of length rg has no self-intersection,
the result holds for k = 1. Assume that we proved the result for k and prove it for
(k+ 1). Let γ : [0, (k+ 1)rg]→M be a unit speed geodesic of length (k+ 1)rg. The
geodesic segment γ([krg, (k + 1)rg]) has no self-intersection but it could intersect
the segment γ([0, krg]). If the number of intersection of γ([krg, (k + 1)rg]) with
γ([0, krg]) is greater or equal than (k + 1), then there are t1 6= t2 ∈ [krg, (k + 1)rg],
i ∈ {0, . . . , k − 1}, and s1, s2 ∈ [irg, (i+ 1)rg] such that

γ(t1) = γ(s1) and γ(t2) = γ(s2).

Since γ is not periodic, this means that two geodesic arcs of length ≤ rg join γ(t1) to
γ(t2), a contradiction. We infer that the number of self-intersection of γ is bounded
by N(k) + k, and in turn that it is bounded by N(k+ 1). We deduce that for every
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integer k ≥ 2, all the disjoint open intervals

Ii :=

(
i
krg
N(k)

, (i+ 1)
krg
N(k)

)
i = 0, . . . , N(k)− 1

can not contain a point of self-intersection of a unit speed geodesic γ : [0, krg]→M .
Hence for every unit speed geodesic γ : [0, krg]→ M there is i ∈ {0, . . . , N(k)− 1}
such that no self-intersection of γ is contained in the closed interval[

i
krg
N(k)

, (i+ 1)
krg
N(k)

]
.

We conclude easily. �

Let T > 0 be fixed, τT ∈ (0, T ) given by Lemma 3.1 and γθ : [0, T ]→M be a unit
speed geodesic of length T . Then there are t̄ ∈ [0, T − τT ] and ρ > 0 such that

Cg
(
γθ
([
t̄, t̄+ τT

])
; ρ
)
∩ γθ([0, T ]) = γθ

((
t̄, t̄+ τT

))
.

Set

θ̄ = (p̄, v̄) := (γθ(t̄), γ̇θ(t̄)) θ̃ = (p̃, ṽ) := (γθ(t̄), γ̇θ(t̄+ τT )) ,

θT = (pT , vT ) := (γθ(T ), γ̇θ(T )) ,

and consider local transverse sections Σ0, Σ̄, Σ̃,ΣT ⊂ T1M respectively tangent to
Nθ, Nθ̄, Nθ̃, NθT . Then we have

Pg(γ)(T ) = DθPg(Σ0,ΣT , γ) = Dθ̃Pg
(
Σ̃,ΣT , γ

)
◦Dθ̄Pg

(
Σ̄, Σ̃, γ

)
◦DθPg

(
Σ0, Σ̄, γ

)
.

Since the sets of symplectic endomorphism of Sp(n− 1) of the form Dθ̃Pg
(
Σ̃,ΣT , γ

)
andDθPg

(
Σ0, Σ̄, γ

)
(that is the differential of Poincaré maps associated with geodesics

of lengths T−t̄−τT and t̄) are compact and the left and right translations in Sp(n−1)
are diffeomorphisms, it is sufficient to prove Theorem 1.1 with τT = T . More exactly,
it is sufficient to show that there are δT , KT > 0 such that for every δ ∈ (0, δT ) and
every ρ > 0, the following property holds:
Let γθ : [0, τT ] → M be a geodesic in M , U be the open ball centered at Pg(γ)(τT )
of radius δ in Sp(n − 1). Then for each symplectic map A ⊂ U there exists a C∞

metric h in M that is conformal to g, hp(v, w) = (1 + σ(p))gp(v, w), such that

(1) The geodesic γθ : [0, τT ] −→M is still a geodesic of (M,h),
(2) Supp(σ) ⊂ Cg (γθ ([0, τT ]) ; ρ),
(3) Ph(γθ)(τT ) = A,

(4) the C2 norm of the function σ is less than KT

√
δ.
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Set τ := τT and let γ : [0, τ ] → M a geodesic in M be fixed, we consider a
Fermi coordinate system Φ(t, x1, x2, .., xn−1), t ∈ (0, τ), (x1, x2, .., xn−1) ∈ (−δ, δ)n−1

along γ([0, τ ]), where t is the arc length of γ, and the coordinate vector fields
e1(t), . . . , en−1(t) of the system are orthonormal and parallel along γ. Let us consider
the family of smooth functions {Pij}i,j=1,...,n−1 : Rn−1 → R defined by

Pij
(
y1, y2, .., yn−1

)
:= yiyj Q

(
|y|
)

∀i 6= j ∈ {1, . . . , n− 1}
and

Pii(y1, y2, .., yn−1) :=
y2
i

2
Q
(
|y|
)

∀i ∈ {1, . . . , n− 1},

for every y = (y1, y2, .., yn−1) ∈ Rn−1 where Q : [0,+∞) → [0,+∞) is a smooth
cutoff function satisfying {

Q(λ) = 1 if λ ≤ 1/3
Q(λ) = 0 if λ ≥ 2/3.

Given a radius ρ > 0 with Cg (γ ([0, τ ]) ; ρ) ⊂ Φ((0, τ)× (−δ, δ)n−1) and a family of
smooth function u = (uij)i≤j=1,...,n−1 : [0, τ ]→ R such that

Supp
(
uij
)
⊂ (0, τ) ∀i ≤ j ∈ {1, . . . , n− 1},

we define a family of smooth perturbations{
σρ,uij

}
i≤j=1,...,n−1

: M −→ R

with support in Φ((0, τ)× (−δ, δ)n−1) by

σρ,uij
(
Φ
(
t, x1, x2, .., xn−1

))
:= ρ2 uij(t)Pij

(
x1

ρ
,
x2

ρ
, ..,

xn−1

ρ

)
,

for every p = Φ
(
t, x1, x2, .., xn−1

)
∈ Φ ((0, τ)× (−δ, δ)n−1) and we define σρ,u : M →

R by

σρ,u :=
n−1∑

i,j=1,i≤j

σρ,uij .

The following result follows by construction, its proof is left to the reader. The
notation ∂l with l = 0, 1, . . . , n − 1 stands for the partial derivative in coordinates
x0 = t, x1, . . . , xn−1 and Hσρ,u denotes the Hessian of σρ,u with respect to g.

Lemma 3.2. The following properties hold:

(1) Supp(σρ,u) ⊂ Cg (γ ([0, τ ]) ; ρ),
(2) σρ,u(γ(t)) = 0 for every t ∈ (0, τ),
(3) ∂lσ

ρ,u(γ(t)) = 0 for every t ∈ (0, τ) and l = 0, 1, . . . , n− 1,
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(4) (Hσρ,u)i,0 (γ(t)) = 0 for every t ∈ (0, τ) and i = 1, . . . , n− 1,

(5) (Hσρ,u)i,j (γ(t)) = uij(t) for every t ∈ (0, τ) and i, j = 1, . . . , n− 1,

(6) ‖σρ,u‖C2 ≤ C‖u‖C2 for some universal constant C > 0.

Set m = n − 1 and k := m(m + 1)/2. Let u = (uij)i≤j=1,...,n−1 : [0, τ ] → R be a
family of smooth functions with support strictly contained in (0, τ) and ρ ∈ (0, ρ̄)
be fixed, using the previous notations we set the conformal metric

h := (1 + σρ,u)2 g.

We denote by 〈·, ·〉,∇,Γ,H,Rm respectively the scalar product, gradient, Christoffel
symbols, Hessian and curvature tensor associated with g. With the usual notational
conventions of Riemannian geometry (as in [11]), in components we have{

Γkij = 1
2

(
∂igjm + ∂jgim − ∂mgij

)
gmk

(Hf)ij = ∂ijf − Γkij∂kf,

where (gk`) stands for the inverse of (gk`), and we use Einstein’s convention of
summation over repeated indices. We shall use a superscript h to denote the same
objects when they are associated with the metric h. As usual δij = δij = δji will be
1 if i = j, and 0 otherwise. The Christoffel symbols are modified as follows by a
conformal change of metrics: if h = e2fg then (see for example [19])

(Γh)kij = Γkij +
(
∂ifδ

k
j + ∂jfδ

k
i − ∂mfgijgmk

)
.

Thus, since f = ln(1 + σρ,u) and its derivatives ∂0f, ∂1f, . . . , ∂n−1f vanish along
γ([0, τ ]) (by Lemma 3.2 (2)-(3)), the Christoffel symbols of h and g coincide along
γ. Then the family of tangent vectors e0(t) = γ̇(t), e1(t), . . . , en−1(t) is still a family
which is orthonormal and parallel along γ([0, τ ]). Moreover, if h = e2fg then the
curvature tensor Rmh,Rm respectively of h and g satisfy

e−2f
〈
Rmh(u, v) v, w

〉h
= 〈Rm(u, v) v, w〉 − Hf(u,w),

at any p ∈ M where ∇f vanishes and any tangent vectors u, v, w ∈ TpM such that
u,w ⊥ v and Hf(v, ·) = 0. By Lemma 3.2 (2)-(5), we infer that along γ([0, τ ]), we
have for every i, j ∈ {1, . . . , n− 1} and every t ∈ [0, τ ],

Rh
ij(t) :=

〈
Rmh

γ(t) (ei(t), γ̇(t)) γ̇(t), ej(t)
〉h
γ(t)

(22)

=
〈
Rmγ(t) (ei(t), γ̇(t)) γ̇(t), ej(t)

〉
γ(t)
− uij(t)

= Rij(t)− uij(t),
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with

Rij(t) :=
〈
Rmγ(t) (ei(t), γ̇(t)) γ̇(t), ej(t)

〉
γ(t)

.(23)

By the above discussion, γ is still a geodesic with respect to h and by construction
(Lemma 3.2 (1)) the support of σρ,u is contained in a cylinder of radius ρ, so prop-
erties (1) and (2) above are satisfied. it remains to study the effect of σρ,u on the
symplectic mapping Ph(γ)(τ). By the Jacobi equation, we have

Ph(γ)(τ)(J(0), J̇(0)) = (J(τ), J̇(τ)),

where J : [0, τ ]→ Rm is solution to the Jacobi equation

J̈(t) +Rh(t)J(t) = 0 ∀t ∈ [0, τ ],

where Rh(t) is the m×m symmetric matrix whose coefficients are given by (22). In
other terms, Ph(γ)(τ) is equal to the 2m× 2m symplectic matrix X(τ) given by the
solution X : [0, τ ] → Sp(m) at time τ of the following Cauchy problem (compare
[34, Sect. 3.2] and [20]):

Ẋ(t) = A(t)X(t) +
m∑

i≤j=1

uij(t)E(ij)X(t) ∀t ∈ [0, τ ], X(0) = I2m,(24)

where the 2m×2m matrices A(t), E(ij) are defined by (R(t) is the m×m symmetric
matrix whose coefficients are given by (23))

A(t) :=

(
0 Im

−R(t) 0

)
∀t ∈ [0, τ ]

and

E(ij) :=

(
0 0

E(ij) 0

)
,

where the E(ij), 1 ≤ i ≤ j ≤ m are the symmetric m×m matrices defined by

and (E(ij))k,l = δikδjl + δilδjk ∀i, j = 1, . . . ,m.

Since our control system has the form (1), all the results gathered in Section 2 apply.
So, Theorem 1.1 will follow from Proposition 2.4. First by compactness of M and
regularity of the geodesic flow, the compactness assumptions in Proposition 2.4 are
satisfied. It remains to check that assumptions (11), (12) and (13) hold.

First we check immediately that

E(ij)E(kl) = 0 ∀i, j, k, l ∈ {1, . . . ,m} with i ≤ j, k ≤ l.
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So, assumption (11) is satisfied. Since the E(ij) do not depend on time, we check
easily that the matrices B0

ij, B
1
ij, B

2
ij associated to our system are given by (remember

that we use the notation [B,B′] := BB′ −B′B)
B0
ij(t) = Bij := E(ij)

B1
ij(t) = [E(ij), A(t)]

B2
ij(t) = [[E(ij), A(t)] , A(t)] ,

for every t ∈ [0, τ ] and any i, j = 1, . . . ,m with i ≤ j. An easy computation yields
for any i, j = 1, . . . ,m with i ≤ j and any t ∈ [0, τ ],

B1
ij(t) = [E(ij), A(t)] =

(
−E(ij) 0

0 E(ij)

)
and

B2
ij(t) = [[E(ij), A(t)] , A(t)] =

(
0 −2E(ij)

−E(ij)R(t)−R(t)E(ij) 0

)
.

Then we get for any i, j = 1, . . . ,m with i ≤ j,[
B1
ij(0), Bij

]
= 2

(
0 0

(E(ij))2 0

)
∈ Span

{
B0
rs(0) | r ≤ s

}
and [

B2
ij(0), Bij

]
= 2

(
−(E(ij))2 0

0 (E(ij))2

)
∈ Span

{
B1
rs(0) | r ≤ s

}
.

So assumption (12) is satisfied. It remains to show that (13) holds. We first notice
that for any i, j, k, l = 1, . . . ,m with i ≤ j, k ≤ l, we have[

B1
ij(0), B1

kl(0)
]

=
[
[E(ij), A(0)] , [E(kl), A(0)]

]
=

(
[E(ij), E(kl)] 0

0 [E(ij), E(kl)]

)
,

with

(25) [E(ij), E(kl)] = δilF (jk) + δjkF (il) + δikF (jl) + δjlF (ik),

where F (pq) is the m×m skew-symmetric matrix defined by

(F (pq))rs := δrpδsq − δrqδsp.
It is sufficient to show that the space S ⊂M2m(R) given by

S := Span
{
B0
ij(0), B1

ij(0), B2
ij(0), [B1

kl(0), B1
rr′(0)] | i, j, k, l, r, r′

}
⊂ TI2mSp(m)
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has dimension p := 2m(2m + 1)/2. First since the set matrices E(ij) with i, j =
1, . . . ,m and i ≤ j forms a basis of the vector space of m ×m symmetric matrices
S(m) we check easily by the above formulas that the vector space

S1 := Span
{
B0
ij, B

2
ij(0) | i, j

}
= Span

{
E(ij), [[E(ij), A(t)] , A(t)] | i, j

}
has dimension 2(m(m+ 1)/2) = m(m+ 1). We check easily that the vector spaces

S2 := Span
{
B1
ij(0) | i, j

}
= Span

{
[E(ij), A(0)] | i, j

}
and

S3 := Span
{[
B1
ij(0), B1

kl(0)
]
| i, j, k, l

}
=

Span
{[

[E(ij), A(0)] , [E(kl), A(0)]
]
| i, j, k, l

}
are orthogonal to S1 with respect to the scalar product P · Q = tr(P ∗Q). So, we
need to show that S2 +S3 has dimension p−m(m+1) = m2. By the above formulas,
we have

S2 := Span

{(
−E(ij) 0

0 E(ij)

)
| i, j

}
and

S3 := Span

{(
[E(ij), E(kl)] 0

0 [E(ij), E(kl)]

)
| i, j, k, l

}
,

and in addition S2 and S3 are orthogonal. The first space S2 has the same dimension
as S(m), that is m(m+1)/2. Moreover, by (25) for every i 6= j, k = i, and l /∈ {i, j},
we have

[E(ij), E(kl)] = F (jl).

The space spanned by the matrices of the form(
F (jl) 0

0 F (jl)

)
,

with 1 ≤ j < l ≤ m has dimension m(m− 1)/2. This shows that S3 has dimension
at least m(m− 1)/2 and so S2 ⊕ S3 has dimension m2. This concludes the proof of
Theorem 1.1.
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4. Proofs of Theorems 1.2 and 1.3

Let us start with the proof of Theorem 1.2, namely, if the periodic orbits of
the geodesic flow of a smooth compact manifold (M, g) of dimension ≥ 2 are C2-
persistently hyperbolic from Mañé’s viewpoint then the closure of the set of periodic
orbits is a hyperbolic set. Recall that an invariant set Λ of a smooth flow ψt :
Q −→ Q acting without singularities on a complete manifold Q is called hyperbolic
if there exist constants, C > 0, λ ∈ (0, 1), and a direct sum decomposition TpQ =
Es(p) ⊕ Eu(p) ⊕ X(p) for every p ∈ Λ, where X(p) is the subspace tangent to the
orbits of ψt, such that

(1) ‖ Dψt(W ) ‖≤ Cλt ‖ W ‖ for every W ∈ Es(p) and t ≥ 0,
(2) ‖ Dψt(W ) ‖≤ Cλ−t ‖ for every W ∈ Eu(p) and t ≤ 0.

In particular, when the set Λ is the whole Q the flow is called Anosov. The proof
follows the same steps of the proof of Theorem B in [36] where the same conclusion is
obtained supposing that the geodesic flow is C1 persistently expansive in the family
of Hamiltonian flows.

4.1. Dominated splittings and hyperbolicity. Let F 2(M, g) be the set of Rie-
mannian metrics in M conformal to (M, g) endowed with the C2 topology such that
all closed orbits of their geodesic flows are hyperbolic.

The first step of the proof of Theorem 1.2 is closely related with the notion of
dominated splitting introduced by Mañé.

Definition 4.1. Let φt : Q −→ Q be a smooth non-singular flow acting on a
complete Riemannian manifold Q and let Ω ⊂ Q be and invariant set. We say that
Ω has a dominated splitting in Ω if there exist constants δ ∈ (0, 1), m > 0, and
invariant subspaces S(θ), U(θ) in TθΩ such that for every θ ∈ Ω,

(1) If X(θ) is the unit vector tangent to the flow then S(θ)⊕U(θ)⊕X(θ) = TθQ,
(2) ‖ Dθφm|S(θ) ‖ · ‖ Dφm(θ)φ−m|U(φm(θ) ‖≤ δ.

The invariant splitting of an Anosov flow is always dominated, but the converse
may not be true in general. However, for geodesic flows the following statement
holds

Theorem 4.2. Any continuous, Lagrangian, invariant, dominated splitting in a
compact invariant set for the geodesic flow of a smooth compact Riemannian man-
ifold is a hyperbolic splitting. Therefore, the existence of a continuous Lagrangian
invariant dominated splitting in the whole unit tangent bundle is equivalent to the
Anosov property in the family of geodesic flows.
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This statement is proved in [36] not only for geodesic flows but for symplectic
diffeomorphisms. Actually, the statement extends easily to a Hamiltonian flow in a
nonsingular energy level (see also Contreras [6]).

The following step of the proof of Theorem 1.2 relies on the connection between
persistent hyperbolicity of periodic orbits and the existence of invariant dominated
splittings. One of the most remarkable facts about Mañé’s work about the stability
conjecture (see Proposition II.1 in [22]) is to show that persistent hyperbolicity of
families of linear maps is connected to dominated splittings, the proof is pure generic
linear algebra (see Lemma II.3 in [22]). Then Mañé observes that Franks’ Lemma
allows to reduce the study of persistently hyperbolic families of periodic orbits of
diffeomorphisms to persistently hyperbolic families of linear maps. Let us explain
briefly Mañé’s result and see how its combination with Franks’ Lemma for geodesic
flows implies Theorem 1.2.

Let GL(n) be the group of linear isomorphisms of Rn. Let ψ : Z −→ GL(n) be a
sequence of such isomorphisms, we denote by Es

j (ψ) the set of vectors v ∈ Rn such
that

sup
n≥0

{∥∥(Πn
i=0ψj+i) v

∥∥} <∞,
and by Eu

j (ψ) the set of vectors v ∈ Rn such that

sup
n≥0

{∥∥(Πn
i=0ψj−1−i)

−1 v
∥∥} <∞.

Let us say that the sequence ψ is hyperbolic if Es
j (ψ)

⊕
Eu
j (ψ) = Rn for every j ∈ Z.

Actually, this definition is equivalent to require the above direct sum decomposition
for some j. A periodic sequence ψ is characterized by the existence of n0 > 0 such
that ψj+n0 = ψj for every j. It is easy to check that the hyperbolicity of a periodic

sequence ψ is equivalent to the classical hyperbolicity of the linear map
∏n0−1

j=0 ψj.
Now, let {

ψα, α ∈ Λ
}

be a family of periodic sequences of linear maps indexed in a set Λ. Let us define
the distance d(ψ, η) between two families of periodic sequences indexed in Λ by

d(ψ, η) = sup
n∈Z,α∈Λ

{
‖ ψαn − ηαn ‖

}
.

We say that the family {ψα, α ∈ Λ} is hyperbolic if every sequence in the family
is hyperbolic. Let us call by periodically equivalent two families ψα, ηα for which
given any α, the minimum periods of ψα and ηα coincide. Following Mañé, we say
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that the family {ψα, α ∈ Λ} is uniformly hyperbolic if there exists ε > 0 such that
every periodically equivalent family ηα such that d(ψ, η) < ε is also hyperbolic. The
main result concerning uniformly hyperbolic families of linear maps is the following
symplectic version of Lemma II.3 in [22].

Theorem 4.3. Let {ψα, α ∈ Λ} be a uniformly hyperbolic family of periodic linear
sequences of symplectic isomorphisms of Rn. Then there exist constants K > 0,
m ∈ N, and λ ∈ (0, 1) such that :

(1) If α ∈ Λ and ψα has minimum period n ≥ m, then

k−1∏
j=0

∥∥(Πm−1
i=0 ψ

α
mj+i)|Esmj(ψα)

∥∥ ≤ Kλk,

and
k−1∏
j=0

∥∥(Πm−1
i=0 ψ

α
mj+i)

−1|Eumj(ψα)

∥∥ ≤ Kλk,

where k is the integer part of n
m

.
(2) For all α ∈ Λ, j ∈ Z,∥∥(Πm−1

i=0 ψ
α
j+i)|Esj (ψα)

∥∥ · ∥∥(Πm−1
i=0 ψ

α
j+i)

−1|Euj (ψα)

∥∥ ≤ λ.

(3) For every α ∈ Λ

lim sup
n→+∞

1

n

n−1∑
j=0

ln
(∥∥(Πm−1

i=0 ψ
α
mj+i)|Esmj(ψα)

∥∥) < 0

and

lim sup
n→+∞

1

n

n−1∑
j=0

ln
(∥∥(Πm−1

i=0 ψ
α
mj+i)

−1|Eu
m(j+1)

(ψα)

∥∥) < 0.

At the end of the section we shall give an outline of the proof of Theorem 4.3 based
on Mañé’s Lemma II.3 in [22] which is proved for linear isomorphisms without the
symplectic assumption.

Now, we are ready to combine Franks’ Lemma from Mañé’s viewpoint and Theo-
rem 4.3 to get a geodesic flow version of Theorem 4.3.

Lemma 4.4. Let (M, g) be a compact Riemannian manifold. Then there exists
Tg > 0 such that every closed geodesic has period greater than Tg.
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The proof is more or less obvious from the flowbox lemma since the geodesic flow
has no singularitites and the unit tangent bundle of (M, g) is compact.

Let Per(g) be the set of periodic points of the geodesic flow of (M, g). Given a
periodic point θ ∈ Per(g) with period T (θ), consider a family of local sections Σθ

i ,

i = 0, 1, .., kθ = [T (θ)
Tg

], where [T (θ)
Tg

] is the integer part of T (θ)
Tg

, with the following

properties:

(1) Σθ
i contains the point φiTg(θ) for every i = 0, 1, .., kθ − 1,

(2) Σθ
i is perpendicular to the geodesic flow at φiTg(θ) for every i.

Let us consider the sequence of symplectic isomorphisms

ψθ,g =
{
Aθ,i,g, i ∈ Z

}
(1) For i = nkθ + s, where n ∈ Z, 0 ≤ s < kθ − 1, let

Aθ,i,g = DφsTg (θ)φTg : TφsTg (θ)Σ
θ
s −→ Tφ(s+1)Tg (θ)Σ

θ
s+1,

(2) For i = nkθ − 1, where n ∈ Z, let

Aθ,i,g = Dφ(kθ−1)Tg (θ)φTg+rθ : Tφ(kθ−1)Tg (θ)Σ
θ
(kθ−1) −→ TθΣ

θ
0

where T (θ) = kθTg + rθ.

Notice that the sequence ψθ,g is periodic and let

ψg =
{
ψθ,g, θ ∈ Per(g)

}
.

The family ψg is a collection of periodic sequences, and by Franks’ Lemma from
Mañé’s viewpoint (Theorem 1.1) we have

Lemma 4.5. Let (M, g) be a compact Riemannian manifold. If (M, g) is in the
interior of F 2(M, g) then the family ψg is uniformly hyperbolic.

Proof. Let δTg > 0, KTg , be given in Franks’ Lemma, Theorem 1.1.
If (M, g) is in the interior of F 2(M, g) then there exists an open C2 neighborhood

U of (M, g) in the set of metrics which are conformally equivalent to (M, g) such that
every closed orbit of the geodesic flow of (M,h) ∈ U is hyperbolic. In particular,
given a periodic point θ ∈ T1M for the geodesic flow of (M, g), the set of metrics
(M,hθ) ∈ U for which the orbit of θ is still a periodic orbit for the geodesic flow of
(M,hθ) have the property that this orbit is hyperbolic as well for the hθ-geodesic

flow. By Theorem 1.1, for any δ ∈ (0, δTg), the (KTg

√
δ)-C2 open neighborhood of

the metric (M, g) in the set of its conformally equivalent metrics covers a δ-open
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neighborhood of symplectic linear transformations of the derivatives of the Poincaré
maps between the sections Σθ

s, Σθ
s+1 defined above. Then consider δ > 0 such that

the (KTg

√
δ)-C2 open neighborhood of the metric (M, g) is contained in U , and we

get that the family Aθ,i,g is uniformly hyperbolic. Since this holds for every periodic
point θ for the geodesic flow of (M, g) the family ψg is uniformly hyperbolic. �

Therefore, applying Theorem 4.3 to the sequence ψg we obtain,

Theorem 4.6. Suppose that there exists an open neighborhood V (ε) of (M, g) in
F 2(M, g). Then there exist constants K > 0, D ≥ Tg, λ ∈ (0, 1) such that:

(1) For every periodic point θ with minimum period ω ≥ D, we have

k−1∏
i=0

‖ DφD|Es(φiD(θ) ‖≤ Kλk

and
k−1∏
i=0

‖ Dφ−D|Eu(φ−iD(θ) ‖≤ Kλk,

where Es(τ) ⊕ Eu(τ) = Nτ is the hyperbolic splitting of the geodesic flow of
(M, g) at a periodic point τ and k = [ ω

D
].

(2) There exists a continuous Lagrangian, invariant, dominated splitting

TθT1M = Gs(θ)⊕Gu(θ)⊕X(θ)

in the closure of the set of periodic orbits of φt which extends the hyperbolic
splitting of periodic orbits: if θ is periodic then Gs(θ) = Es(θ), Gu(θ) =
Eu(θ).

Theorem 4.6 improves Theorem 2.1 in [36] where the same conclusions are claimed
assuming that the geodesic flow of (M, g) is in the C1 interior of the set of Hamil-
tonian flows all of whose periodic orbits are hyperbolic.

Hence, the proof of Theorem 1.2 follows from the combination of Theorems 4.2
and Theorem 4.6.

4.2. Proof of Theorem 1.3. Let E2(M, g) be the set of Riemannian metrics in
M conformally equivalent to (M, g), endowed with the C2 topology, whose geodesic
flows are expansive. The main result of the subsection is an improved version of
Proposition 1.1 in [36].

Theorem 4.7. The interior of E2(M, g) is contained in F 2(M, g).
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We just give an outline of the proof based on [36]. The argument is by contradic-
tion. Suppose that there exists (M,h) in the interior of E2(M, g) whose geodesic flow
has a nonhyperbolic periodic point θ. Let Σ be a cross section of the geodesic flow
at θ tangent to Nθ. The derivative of the Poincaré return map has some eigenvalues
in the unit circle. By the results of Rifford-Ruggiero [34] DP every generic property
in the symplectic group is attained by C2 perturbations by potentials of (M,h) pre-
serving the orbit of θ. This means that there exists (M, h̄) C2-close to (M,h) and
conformally equivalent to it such that the orbit of θ is still a periodic orbit of the ge-
odesic flow of (M, h̄) and the derivative of the Poincaré map P̄ : Σ −→ Σ has generic
unit circle eigenvalues. By the central manifold Theorem of Hirsch-Pugh-Shub [16]
there exists a central invariant submanifold Σ0 ⊂ Σ such that the return map P0

of the geodesic flow of (M, h̄) is tangent to the invariant subspace associated to the
eigenvalues of DP̄ in the unit circle. Moreover, we can suppose by the Ck Mañé-
generic version of the Klingenberg-Takens Theorem due to Carballo-Gonçalves [5]
that the Birkhoff normal form of the Poincaré map at the periodic point θ is generic.
So we can apply the Birkhoff-Lewis fixed point Theorem due to Moser [26] to deduce
that given δ > 0 there exists infinitely many closed orbits of the geodesic flow of
(M, h̄) in the δ-tubular neighborhood of the orbit of θ. This clearly contradicts the
expansiveness of the geodesic flow of (M, h̄) ∈ E2(M, g).

In the case where (M, g) is a closed surface, we know that the expansiveness of
the geodesic flow implies the density of the set of periodic orbits in the unit tangent
bundle (see [36] for instance). So if (M, g) is in the interior of E2(M, g) the closure
of the set of periodic orbits is a hyperbolic set by Theorem 1.2, and since this set is
dense its closure is the unit tangent bundle and therefore, the geodesic flow is Anosov.
If the dimension of M is arbitrary, then we know that if (M, g) has no conjugate
points, the expansiveness of the geodesic flow implies the density of periodic orbits
as well, so we can extend the above result for surfaces.

4.3. Main ideas to show Theorem 4.3. As mentioned before, Theorem 4.3 is a
symplectic version of Lemma II.3 in [22] that is proved for general families of periodic
sequences of linear isomorphisms of Rn. Theorem 4.3 has been already used in [36],
and since there is no written proof in the literature we would like to give a sketch
of proof for the sake of completeness. We shall not repeat all the steps of the proof
of Lemma II.3 in [22] because the arguments extend quite forwardly, we shall just
point out where the symplectic assumption matters.

The proof of Lemma II.3 in [22] has two main parts. The first part is based on the
generic linear algebra of what Mañé calls uniformly contracting families of periodic
sequences of linear isomorphisms, namely, uniformly hyperbolic families of periodic
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sequences where the unstable part of each sequence is trivial (see [22] from pages
527 to 532). Since the restriction of the dynamics of a uniformly hyperbolic periodic
sequence to the stable subspace gives rise to a uniformly contracting periodic se-
quence the argument consists in proving separatedly uniform contraction properties
for the stable part of the dynamics and then uniform expansion properties for the
unstable part of the dynamics. In the case of hyperbolic symplectic matrices, the
invariant subspaces of the dynamics are always Lagrangian, so we have the following
elementary result of symplectic linear algebra:

Lemma 4.8. Given a symplectic matrix S and a Lagrangian invariant subspace L
there exists an unitary matrix U such that

(1) S = UTY U where Y is a 2n× 2n symplectic matrix formed by n× n blocks
of the form

Y =

(
A B
0 (AT )−1

)
,

where AT is the adjoint of A.
(2) The matrix A represents the restriction of S to L.

Now, symplectic matrices in n×n blocks can be characterized in terms of certain
algebraic properties of their blocks.

Lemma 4.9. Let

S =

(
A B
C D

)
be a 2n× 2n matrix where A,B,C,D are n× n blocks. The matrix S is symplectic
if and only if

(1) ATD − CTB = I
(2) The matrices BTD and ATC are symmetric.

So any matrix

M =

(
A B
0 D

)
formed by n× n blocks A,B, 0, D is symplectic if and only if D = (AT )−1 and BTD
is symmetric .

Hence, to extend to the symplectic case Mañé’s generic linear algebra arguments
for uniformly contracting families of periodic isomorphisms one can consider the
family of restrictions of hyperbolic symplectic matrices to their stable subspaces.
This family is represented by a family of uniformly contracting periodic n×n linear
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isomorphisms ψ = {Aα, α ∈ Λ} placed in the upper left block of the differentials of
Poincaré maps according to Lemma 4.8. Then observe that any open neighborhood
of the family ψ according to the distance d(ψ, η) can be embedded in a neighborhood
of a family of symplectic isomorphisms just by applying Lemma 4.9. We can build a
symplectic family of symplectic isomorphisms from a perturbation Ãα of Aα taking
D̃ = (ÃT )−1 and finding B̃ close to B such that B̃T D̃ is symmetric. Such matrix B̃
exists because the set of symmetric matrices is a submanifold of the set of matrices,
and BT D̃ is close to the symmetric matrix BTD. So there exists ε > 0 such that the
ball Vε of radius ε of matrices centered at BT D̃ meets the submanifold of symmetric
matrices in an open (relative) neighborhood of BTD . But the multiplication of an
open neighborhood V (BT ) of BT by D̃ gives an open neighborhood of BT D̃ in the
set of matrices. Then for a suitable choice of V (BT ) we have that V (BT )D contains
a matrix B̃T D̃ that is symmetric.

Therefore, Mañé’s arguments for uniformly contracting families can be extended
to the symplectic category. Finally, let us remark that the symplectic nature of
the family implies that contraction properties of the norm of the restriction to the
stable part under the action of the dynamics already give expansion properties for
the action of the dynamics on the norm of the restriction to the unstable part.
This yields that it is enough to consider the contracting part of the dynamics of
a symplectic family of periodic linear isomorphisms to extend the first part of the
proof of Lemma II.3 in [22] to such families.

The second part of the proof deals with the angle between the invariant subspaces
of uniformly hyperbolic families (see [22] pages 532-540).

Definition 4.10. Given two subspaces E, S ⊂ Rn such that E
⊕

S = Rn, let
](E, S) be defined by

](E, S) =‖ L ‖−1

where L : E⊥ −→ E is such that S = {v+L(v), v ∈ E⊥}. In particular, ](E,E⊥) =
∞.

The main goal of this part of the proof of Lemma II.3 in [22] is to show that
the invariant splitting of a uniformly hyperbolic family is a continuous dominated
splitting. The general idea of the proof of this second part is to ”move” one of the
invariant subspaces of the dynamics with perturbations of the map L while keeping
the other subspace unchanged.

The proof of the continuous domination has two steps. First of all, so show that
the angle between the invariant subspaces must be bounded below by a positive
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constant (Lemma II.9 in [22] pages 532 to 534). This is the content of the following
result whose proof we present in detail to give a sample of how the arguments extend
to symplectic matrices. We just follow step by step Mañé’s proof, we even respect
the notations in his paper.

Lemma 4.11. Let {ψα, α ∈ Λ} be a uniformly hyperbolic family of periodic se-
quences of symplectic isomorphisms of R2n. Then, there exist ε > 0, γ > 0, and
n0 ∈ Z− such that if {ηα, α ∈ Λ} is a periodically equivalent family with d(ψ, η) < ε
then {ηα, α ∈ Λ} is hyperbolic and the angle between stable and unstable subspaces
satisfies

](Es
0(ηα), Eu

0 (ηα)) > γ

for every α ∈ Λ such that the minimum period of ηα is greater than n0.

Proof. Suppose by contradiction that the statement is false. Then there would exist
hyperbolic periodic sequences η : Z −→ Sp(2n,R) with arbitrarily large period n,
such that

(1) ](Es
0(ηα), Eu

0 (ηα)) is arbitrarily small,
(2) For some α ∈ Λ the periods of ψα and η coincide,
(3) supi ‖ ηi − ψαi ) ‖ is arbitrarily small.

Suppose that in the coordinates of the base Es
0(η)⊥

⊕
Es

0(η) the matrix of
∏n−1

j=0 ηj
is

M =

(
A 0
P B

)
where A,P,B are n×n matrices. By the uniform contraction property of the stable
part of the dynamics of the family there exist K > 0, λ ∈ (0, 1) such that

‖ A−1 ‖≤ Kλn

and

‖ B ‖≤ Kλn.

Since we can choose an orthogonal change of coordinates Q, we have that the matrix
M = QA is a symplectic matrix and thus, by Lemma 4.8 we get B = (AT )−1.

Let L : Es
0(η)⊥ −→ Es

0(η) be such that {v + L(v), v ∈ Es
0(η)⊥} = Eu

0 (η). Since∏n−1
j=0 ηj(E

u
0 (η)) = Eu

0 (η) we get

LA = P +BL,

and therefore,

L = PA−1 +BLA−1
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and by the previous inequalities

‖ L ‖≤‖ PA−1 ‖ +K2λ2n ‖ L ‖ .
For n large enough, K2λ2n ≤ 1

2
, so we have

1

2
‖ PA−1 ‖−1≤‖ L ‖−1= ](Es

0(ηα), Eu
0 (ηα)),

and hence the number ‖ PA−1 ‖−1 assumes arbitrarily small values by the contra-
diction assumption.

Next, define a sequence ξ : Z −→ Sp(2n,R) with minimum period n, where

(1) ξi = ηi for every 0 < i ≤ n− 1,

(2) ξ0 = η0

(
I C
0 I

)
.

The matrix

(
I C
0 I

)
is symplectic for every C such that C is symmetric by Lemma

4.9. Then,
n−1∏
i=0

ξi =

(
A 0
P B

)(
I C
0 I

)
=

(
A AC
P B + PC

)
.

So the goal is to find a symmetric matrix C with small norm such that the above
matrix has an eigenvalue equal to 1. In this way we get a contradiction because we
are supposing that the family {ψα, α ∈ Λ} is uniformly hyperbolic so any sufficiently
close family would have to be as well.

To find the matrix C let us consider the system{
Ax+ ACy = x

Px+ (PC +B)y = y.

For a solution (x, y) of the system we would have

x = (I − A)−1ACy = −(I − A−1)−1Cy

and

(I −B)−1P (I − (I − A−1)−1)Cy = y.

Notice that I − (I − A−1)−1 = −A−1(I − A−1)−1, so we get

−(I −B)−1PA−1(I − A−1)−1Cy = y.

Take a vector v such that ‖ v ‖=‖ PA−1 ‖−1, and ‖ PA−1v ‖= 1. Let

y = −(I −B)−1PA−1v.
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Since ‖ B ‖≤ Kλn we can assume that ‖ I − B ‖≤ 2. Hence ‖ y ‖−1≤ 2. Now take
a vector w such that

(I − A−1)−1w = v.

Since the norm of A−1 is small the matrix (I − A−1) is close to the identity, so we
can suppose that ‖ w ‖≤ 2 ‖ v ‖. Next, consider a matrix C such that

Cy = w, ‖ C ‖= ‖ w ‖
‖ y ‖

.

Observe that

‖ C ‖≤ 4 ‖ v ‖= 4 ‖ PA−1 ‖−1≤ 2](Es
0(ηα), Eu

0 (ηα))

that can be made arbitrarily small. Thus, the matrix C and the vector y defined

above give a fixed point (x, y) for the matrix

(
A AC
P B + PC

)
which shows that

the sequence ξi is not hyperbolic.

Notice that the conditions defining C are quite loose, there are many possible
candidates. In particular, the matrix C can be taken symmetric. Indeed, symmet-
ric matrices are linear maps which send the unit sphere to ellipsoids centered at 0.
Moreover, the norm of such a map is the length of the largest axis of the correspond-
ing ellipsoid. So let us consider a linear map T such that T (y) = w as the linear
map C does, and take T such that

(1) The image of the unit vector y
‖y‖ by T is w

‖y‖ .

(2) The image of the unit sphere by T is an ellipsoid whose largest axis is con-

tained in the line tw, t ∈ R, and whose length is ‖w‖‖y‖ .

If we take C = T we have a symmetric matrix solving the above system of equations.
�

The final step of the second part of the proof is to show that the uniform hyperbol-
icity of families combined with the existence of a lower bound for the angle between
invariant subspaces implies the domination condition ([22] pages 534-540). The ar-
gument is by contradiction: if the domination condition is not satisfied then it is
possible to find a small perturbation of the family such that the invariant subspaces
of the perturbed one are very close to each other, which is impossible by Lemma
4.11. The proof is involved but again, the tools of the proof are quite general and
elementary in linear algebra, they can be adapted straighforwardly to symplectic
matrices.
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Appendix A. Proof of Lemma 2.10

First of all, we observe that given LNī,j̄, the existence of K(N) follows by homo-
geneity and continuity of the mapping

v ∈ LNī,j̄ 7−→
(
tvī
)
�
(
svj̄
)
∈ R.

Let us now demonstrate the existence of LNī,j̄ by induction over N . In fact, setting

f = vī, g = vj̄, it is sufficient to show that the set L of w = (f, g) ∈ L2([0, 1];R2)
with f and g polynomials satisfying



∫ 1

0
f(s)ds = 0∫ 1

0
sf(s)ds = 0∫ 1

0
g(s)ds = 0∫ 1

0
sg(s)ds = 0
f � (sg) = 0
g � (sf) = 0
f � (s2g) = 0
g � (s2f) = 0

(26)

and

(tf)� (sg) 6= 0(27)

contains (adding the origin) vector spaces LN of any dimension. When f, g are
polynomials, that is of the form

f(t) =
∑
p∈Z

apt
p and g(t) =

∑
q∈Z

bqt
q

with ap = bq = 0 for any p, q < 0 and ap = bq = 0 for large p, q, we check easily that
(from now on, we omit to write the set Z containing p and q)

f � g =
∑
p,q

αp,qap bq,
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with 1/αp,q = (q + 1)(p+ q + 2). Then we have

∫ 1

0
f(s)ds =

∑
p

1
p+1

ap∫ 1

0
sf(s)ds =

∑
p

1
p+2

ap∫ 1

0
g(s)ds =

∑
q

1
q+1

bq∫ 1

0
sg(s)ds =

∑
q

1
q+2

bq
f � (sg) =

∑
p,q αp,qap bq−1

f � (s2g) =
∑

p,q αp,qap bq−2

g � (sf) =
∑

p,q αq,pap−1 bq
g � (s2f) =

∑
p,q αq,pap−2 bq,

and

(tf)� (sg) =
∑
p,q

αp,qap−1 bq−1.

We can now show that the set L ∪ {0} contains a vector line. As a matter of fact,
taking f(t) = 1− 6t+ 6t2 and taking g in the set of polynomial of degree ≤ d, leads
to the system

∑
q

1
q+1

bq = 0∑
q

1
q+2

bq = 0∑
q(α0,q − 6α1,q + 6α2,q) bq−1 =

∑
q

q+1
(q+3)(q+4)(q+5)

bq = 0∑
q(α0,q − 6α1,q + 6α2,q) bq−2 =

∑
q

q+2
(q+4)(q+5)(q+6)

bq = 0∑
q(αq,1 − 6αq,2 + 6αq,3) bq = −

∑
q

q+2
(q+3)(q+4)(q+5)

bq = 0∑
q(αq,2 − 6αq,3 + 6αq,4) bq = 1

30

∑
q

q2−16q−60
(q+4)(q+5)(q+6)

bq = 0,

(28)

which is the system of equations of the intersection of 6 hyperplans H1, H2, H3, H4,
H5 and H6 respectively, that we denote by

V := ∩6
i=1Hi ⊂ Rd[X].

Then V has dimension at least d−5. We can check with Maple that there is a d̄ ∈ N
sufficiently large such that V is not contained in the kernel of the linear form

φ : (bq) ∈ Rd̄[X] 7→
∑
q

q + 3

(q + 4)(q + 5)(q + 6)
bq.

For every i = 1, ..., 6, let φi be the linear form correspoding to the i-th line in
(28) and denote by A(d) the 7 × (d + 1) matrix whose seven lines are given by the
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coeficients of φ1, φ2, φ3, φ4, φ5, φ6 and φ respectively, that is

A(d) :=



1 1
2
· · · 1

d
1
d+1

1
2

1
3
· · · 1

d+1
1
d+2

1
60

1
60
· · · d

(d+2)(d+3)(d+4)
d+1

(d+3)(d+4)(d+5)
1
60

1
70
· · · d+1

(d+3)(d+4)(d+5)
d+2

(d+4)(d+5)(d+6)
1
30

1
40
· · · d+1

(d+2)(d+3)(d+4)
d+2

(d+3)(d+4)(d+5)
−1
2

−5
14
· · · (d−1)2−16(d−1)−60

(d+3)(d+4)(d+5)
d2−16d−60

(d+4)(d+5)(d+6)
1
40

2
105
· · · d+2

(d+3)(d+4)(d+5)
d+3

(d+4)(d+5)(d+6)


.

We check with Maple that rank
(
A(50)

)
= 7, which shows that φ /∈ Span (φ1, ..., φ6) ,

and in turn that V 6⊂ Ker(φ). Therefore there is a solution (bq) ∈ R50[X] of the
above system which satisfies

(
f(t) = 1− 6t+ 6t2

)
�

(
g(t) =

∑
q

bqt
q

)
=
∑
q

q + 3

(q + 4)(q + 5)(q + 6)
bq = 1.

Assume now that we proved the existence of a vector space LN ⊂ L ∪ {0} of
dimension N ≥ 1. Let {(f1, g1), . . . , (fN , gN)} be a basis of LN . We need to find a
pair (f, g) such that for any α = (α1, . . . , αN) ∈ RN and β ∈ R, the pair(

βf +
N∑
l=1

αlfl, βg +
N∑
l=1

αlgl

)

satisfies (26) and (27). By bilinearity of the � product, this amounts to say that
β2 f � (sg) + β

∑N
l=1 αl f � (sgl) + β

∑N
l=1 αl fl � (sg) = 0

β2 f � (s2g) + β
∑N

l=1 αl f � (s2gl) + β
∑N

l=1 αl fl � (s2g) = 0

β2 g � (sf) + β
∑N

l=1 αl g � (sfl) + β
∑N

l=1 αl gl � (sf) = 0

β2 g � (s2f) + β
∑N

l=1 αl g � (s2fl) + β
∑N

l=1 αl gl � (s2f) = 0,

(29)

{ ∫ 1

0
f(s) ds = 0∫ 1

0
sf(s) ds = 0,

{ ∫ 1

0
g(s) ds = 0∫ 1

0
sg(s) ds = 0,

(30)
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and

(31)

β2 (tf)� (sg) + β
N∑
l=1

αl (tf)� (sgl) + β

N∑
l=1

αl (tfl)� (sg) +
N∑
l=1

α2
l (tfl)� (sgl)

6= 0.

In fact, any pair (f, g) satisfying (26)-(27) and the systems
f � (sgl) = 0
f � (s2gl) = 0
gl � (sf) = 0
gl � (s2f) = 0

(tf)� (sgl) = 0


fl � (sg) = 0
fl � (s2g) = 0
g � (sfl) = 0
g � (s2fl) = 0

(tfl)� (sg) = 0

(32)

provides a solution. First we claim that there is a polynomial f0 satisfying the left
systems in (30) and (32). As a matter of fact, f0 has to belong to the intersection of
2 + 5N hyperplanes in Rd[X]. Such an intersection is not trivial if d is large enough.
The function f = f0 being fixed, we need now to find a polynomial g solution to the
four last equations of system (26), to (27), and to the right systems in (30) and (32).
Thus g needs to belong to the intersection of 6 + 5N hyperplanes and to satisfies
(27). Let

fl(t) =
P∑
p=0

alpt
p and gl(t) =

P∑
q=0

blqt
q,

f0(t) =
d∑
p=0

a0
pt
p and g(t) =

∑
q∈Z

bqt
q,

where P is the maximum of the degrees of f1, . . . , fN , g1, . . . , gN and d is the degree
of f0. We have { ∫ 1

0
g(s)ds =

∑
q

1
q+1

bq∫ 1

0
sg(s)ds =

∑
q

1
q+2

bq,
(33)
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fl � (sg) =
∑

q

(∑
p αp,q+1 a

l
p

)
bq

fl � (s2g) =
∑

q

(∑
p αp,q+2 a

l
p

)
bq

g � (sfl) =
∑

q

(∑
p αq,p+1 a

l
p

)
bq

g � (s2fl) =
∑

q

(∑
p αq,p+2 a

l
p

)
bq,

(34)

and

(35) (tfl)� (sg) =
∑
q

(∑
p

αp+1,q+1 a
l
p

)
bq

for every l = 1, ..., N, and moreover

(tf0)� (sg) =
∑
q

(∑
p

αp+1,q+1 a
0
p

)
bq.(36)

We need to show that the kernel of the linear form (given by (36))

Φf0 : (bq) ∈ Rd[X] 7−→
∑
q

(∑
p

αp+1,q+1 a
0
p

)
bq

does not contain the intersection of the kernels of the 2 + 4(N + 1) + N = 5N + 6
linear forms given by (33)-(35). If this is the case, for every integer d ≥ 0, any choice
of f0 in Rd[X], and any integer d′ ≥ 0, there are C = 5N + 6 real numbers (not all
zero)

λl,d
′

1 , . . . , λl,d
′

5 , λ0,d′

6 , λ0,d′

7 , λ0,d′

8 , λ0,d′

9 , λd
′

10, λ
d′

11,
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such that for every integer q ∈ {0, . . . , d′},
d∑
p=0

αp+1,q+1 a
0
p =

N∑
l=1

λl,d
′

1

(
P∑
p=0

αp,q+1 a
l
p

)
+

N∑
l=1

λl,d
′

2

(
P∑
p=0

αp,q+2 a
l
p

)

+
N∑
l=1

λl,d
′

3

(
P∑
p=0

αq,p+1 a
l
p

)
+

N∑
l=1

λl,d
′

4

(
P∑
p=0

αq,p+2 a
l
p

)

+
N∑
l=1

λl,d
′

5

(
d∑
p=0

αp+1,q+1 a
l
p

)
+ λ0,d′

6

(
d∑
p=0

αp,q+1 a
0
p

)

+λ0,d′

7

(
d∑
p=0

αp,q+2 a
0
p

)
+ λ0,d′

8

(
d∑
p=0

αq,p+1 a
0
p

)

+λ0,d′

9

(
d∑
p=0

αq,p+2 a
0
p

)
+

λd
′

10

q + 1
+

λd
′

11

q + 2
.

Observe that the above equality can be written as

0 =
d∑
p=0

[(
N∑
l=1

λl,d
′

5 alp

)
− a0

p

]
αp+1,q+1

+
d∑
p=0

[(
N∑
l=1

λl,d
′

1 alp

)
+ λ0,d′

6 a0
p

]
αp,q+1

+
d∑
p=0

[(
N∑
l=1

λl,d
′

2 alp

)
+ λ0,d′

7 a0
p

]
αp,q+2

+
d∑
p=0

[(
N∑
l=1

λl,d
′

3 alp

)
+ λ0,d′

8 a0
p

]
αq,p+1

+
d∑
p=0

[(
N∑
l=1

λl,d
′

4 alp

)
+ λ0,d′

9 a0
p

]
αq,p+2

+
λd
′

10

q + 1
+

λd
′

11

q + 2
.

For every q, let
V (q) =

(
V 1(q), . . . , V 7(q)

)
∈ R7(d+1)
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with

V i(q) =
(
V i

0 (q), . . . , V i
d (q)

)
∈ Rd+1 ∀i = 1, . . . , 7,

defined by 

V 1
p (q) = αp+1,q+1

V 2
p (q) = αp,q+1

V 3
p (q) = αp,q+2

V 4
p (q) = αq,p+1

V 5
p (q) = αq,p+2

V 6
p (q) = 1

(d+1)(q+1)

V 7
p (q) = 1

(d+1)(q+2)

for every p = 0, . . . , d. The above equality means that for every d′ ≥ 0, there is a
linear form Ψd′ on R7(d+1) of the form

Ψd′(V ) =
d∑
p=0

[
Γ1,d′

p − a0
p

]
V 1
p +

d∑
p=0

[
Γ2,d′

p + λ0,d′

6 a0
p

]
V 2
p

+
d∑
p=0

[
Γ3,d′

p + λ0,d′

7 a0
p

]
V 3
p +

d∑
p=0

[
Γ4,d′

p + λ0,d′

8 a0
p

]
V 4
p

+
d∑
p=0

[
Γ5,d′

p + λ0,d′

9 a0
p

]
V 5
p +

d∑
p=0

λd
′

10 V
6
p +

d∑
p=0

λd
′

11 V
7
p

for every V =
(
V 1, . . . , V 7

)
∈ (R(d+1))7 such that

Ψd′
(
V (q)

)
= 0 ∀q ∈ {0, . . . , d′}.

For every integer d′ ≥ 0, let dim(d′) be the dimension of the vector space which
is generated by V (0), . . . , V (d′). The function d′ 7→ dim(d′) is nondecreasing and
valued in the positive integers. Moreover it is bounded by 7(d + 1). Thus it is
stationnary and in consequence there is d̄′ ≥ 0 such that for every q > d̄′,

V (q) ∈ Span
{
V (0), . . . , V

(
d̄′
)}
.
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Therefore there is a linear form Ψ : R7(d+1) → R of the form

Ψ(V ) =
d∑
p=0

[
Γ1
p − a0

p

]
V 1
p +

d∑
p=0

[
Γ2
p + λ0

6 a
0
p

]
V 2
p

+
d∑
p=0

[
Γ3
p + λ0

7 a
0
p

]
V 3
p +

d∑
p=0

[
Γ4
p + λ0

8 a
0
p

]
V 4
p

+
d∑
p=0

[
Γ5
p + λ0

9 a
0
p

]
V 5
p +

d∑
p=0

λ10 V
6
p +

d∑
p=0

λ11 V
7
p ,

for every V =
(
V 1, . . . , V 7

)
∈ (R(d+1))7 such that

Ψ
(
V (q)

)
= 0 ∀q ∈ N.

We observe that for any integers p, q ≥ 0,

αp,q =
1

(q + 1)(p+ q + 2)
=

1

p+ 1

[
1

q + 1
− 1

q + p+ 2

]
,

then we have for all q ∈ N,

0 = Ψ
(
V (q)

)
=

d∑
p=0

[
Γ1
p − a0

p

p+ 2

] (
1

q + 2

)
−

d∑
p=0

[
Γ1
p − a0

p

p+ 2

] (
1

q + p+ 4

)

+
d∑
p=0

[
Γ2
p + λ0

6 a
0
p

p+ 1

] (
1

q + 2

)
−

d∑
p=0

[
Γ2
p + λ0

6 a
0
p

p+ 1

] (
1

q + p+ 3

)

+
d∑
p=0

[
Γ3
p + λ0

7 a
0
p

p+ 1

] (
1

q + 3

)
−

d∑
p=0

[
Γ3
p + λ0

7 a
0
p

p+ 1

] (
1

q + p+ 4

)

+
d∑
p=0

[
Γ7
p + λ0

8 a
0
p

p+ 2

] (
1

q + p+ 3

)
+

d∑
p=0

[
Γ5
p + λ0

9 a
0
p

p+ 3

] (
1

q + p+ 4

)

+
d∑
p=0

λ10

d+ 1

(
1

q + 1

)
+

d∑
p=0

λ11

d+ 1

(
1

q + 2

)
.
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This can be written as

0 = Ψ
(
V (q)

)
=

d∑
p=0

λ10

d+ 1

(
1

q + 1

)
+

d∑
p=0

[
Γ1
p − a0

p

p+ 2
+

Γ2
p + λ0

6 a
0
p

p+ 1
+

λ11

d+ 1

] (
1

q + 2

)

+
d∑
p=0

([
Γ3
p + λ0

7 a
0
p

p+ 1

]
+

[
Γ7

0 + λ0
8 a

0
0

2

]
−
[
Γ2

0 + λ0
6 a

0
0

]) ( 1

q + 3

)

−
d+3∑
r=4

∆r ·
(

1

q + r

)
−
([

Γ3
d + λ0

7 a
0
d

d+ 1

]
−
[

Γ5
d + λ0

9 a
0
d

d+ 3

]
+

[
Γ1
d − a0

d

d+ 2

])(
1

q + d+ 4

)
,

where for any r ∈ {4, . . . , d+ 3},

∆r :=
Γ7
r−3 + λ0

8 a
0
r−3 + Γ5

r−4 + λ0
9a

0
r−4

r − 1

−
Γ2
r−3 + Γ1

r−4 + λ0
6 a

0
r−3 − a0

r−4

r − 2
−

Γ3
r−4 + λ0

7 a
0
r−4

r − 3

=
Γ7
r−3 + Γ5

r−4

r − 1
−

Γ1
r−4 + Γ2

r−3

r − 2
−

Γ3
r−4

r − 3
+

(
λ0

8

r − 1
− λ0

6

r − 2

)
a0
r−3

+

(
λ0

9

r − 1
− λ0

7

r − 3
− 1

r − 2

)
a0
r−4.

The function Ψ is a rational function with infinitely many zeros, so it vanishes
everywhere and in consequence all its coefficients vanish. Remember in addition
that by construction,

Γlp = 0 ∀p ∈ {P + 1, . . . , d}, ∀l ∈ {1, . . . , N}.
Then we have ∆r = 0 for any r ∈ {P + 5, . . . , d+ 3}, that is(

λ0
8

r − 1
− λ0

6

r − 2

)
a0
r−3 +

(
λ0

9

r − 1
− λ0

7

r − 3
− 1

r − 2

)
a0
r−4 = 0,

and in addition the coefficient in front of 1
q+d+4

vanishes, that is(
λ0

7

d+ 1
− λ0

9

d+ 3

)
a0
d =

a0
d

d+ 2
.
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In conclusion, if there is no vector space of dimension N + 1 in L ∪ {0}, then for
every polynomial f0 ∈ Rd[X] of degree d (that is a0

d 6= 0) the linear form Φf0 contains
the intersection of the kernels of the 5N + 6 linear forms given by (33)-(35). By the
above discussion, this implies that there are four reals numbers A,B,C,D not all
zero (because a0

d 6= 0) such that(
A

r − 1
+

B

r − 2

)
a0
r−3 +

(
C

r − 1
− 1

r − 2
+

D

r − 3

)
a0
r−4 = 0,

for any r ∈ {P + 5, . . . , d+ 3} and in addition(
D

d+ 1
+

C

d+ 3

)
a0
d = − a0

d

d+ 2
=⇒ D = −(d+ 1)

(
1

d+ 2
+

C

d+ 3

)
.

Note that for every p ∈ {P + 2, . . . , d},
C

p+ 2
− 1

p+ 1
+
D

p

=
C

p+ 2
− 1

p+ 1
− d+ 1

p

(
1

d+ 2
+

C

d+ 3

)
=

2C(d+ 2)(p− d− 1)(p+ 1)− (d+ 3)((2d+ 3)p+ d+ 1)(p+ 2)

p(p+ 1)(p+ 2)(d+ 2)(d+ 3)

This means that the set of coefficients (a0
p)p∈{P+1,d} belongs to the algebraic set S of

(d− P )-tuples (ap)p∈{P+1,d} ∈ Rd−N for which there is (A,B,C) ∈ R3 such that

(37)

(
2C(d+ 2)(p− d− 1)(p+ 1)− (d+ 3)((2d+ 3)p+ d+ 1)(p+ 2)

p(p+ 1)(p+ 2)(d+ 2)(d+ 3)

)
ap−1

+

(
A

p+ 2
+

B

p+ 1

)
ap = 0 ∀p ∈ {P + 2, . . . , d}.

For every triple (A,B,C) ∈ R3, denote by S(A,B,C) the algebraic set of (d − P )-
tuples (ap)p∈{P+1,d} ∈ Rd−N satisfying (37). Notice that for every (A,B,C) ∈ R3,
the function

p ∈ {P + 2, . . . , d} 7−→ A

p+ 2
+

B

p+ 1
=

(A+B)p+ (A+ 2B)

(p+ 1)(p+ 2)

vanishes for at most one p in {P + 2, . . . , d}. This means that given (A,B,C) ∈ R3

either we have

ap = Cd
p ap−1 ∀p ∈ {P + 2, . . . , d},
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with

Cd
p :=

(
2C(d+ 2)(p− d− 1)(p+ 1)− (d+ 3)((2d+ 3)p+ d+ 1)(p+ 2)

p(p+ 1)(p+ 2)(d+ 2)(d+ 3)

)
/((A+B)p+ (A+ 2B)

(p+ 1)(p+ 2)

)
∀p ∈ {P + 2, . . . , d},

or there is p̄ = p̄(A,B,C) ∈ {P + 2, . . . , d} such that

ap = Cd
p ap−1 ∀p ∈ {P + 2, . . . , d} \

{
p̄
}

and(
2C(d+ 2)(p̄− d− 1)(p̄+ 1)− (d+ 3)((2d+ 3)p̄+ d+ 1)(p̄+ 2)

p̄(p̄+ 1)(p̄+ 2)(d+ 2)(d+ 3)

)
ap̄−1 = 0.

Since the sets we are dealing with are algebraic (see [4, 10]), we infer that given
(A,B,C) ∈ R3, the algebraic set S(A,B,C) ⊂ Rd−N has at most dimension three,
which means that S ⊂ Rd−N has at most dimension six.

In conclusion, the coefficients (a0
p)p∈{0,d} of f0 have to belong to the intersection

of 2 + 5N hyperplanes in Rd[X], and if in addition if there is no vector space of
dimension N + 1 in L ∪ {0}, then the (d − P )-tuples (a0

p)p∈{P+1,d} must belong to

S ⊂ Rd−N of dimension ≤ 6. But, for d large enough, the intersection of 2 + 5N
hyperplanes in Rd[X] with the complement of an algebraic set of dimension at most
6 + P + 1 is non empty. This concludes the proof of Lemma 2.10.
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