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Monge vs. Kantorovich

Gaspard Monge

(1746-1818)

Leonid Kantorovich

(1912-1986)
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Transport maps

Let µ0 and µ1 be probability measures on M . We call
transport map from µ0 to µ1 any measurable map
T : M → M such that T]µ0 = µ1, that is

µ1(B) = µ0

(
T−1(B)

)
, ∀B measurable ⊂ M .

µ0 µ1

T
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The original Monge Problem

Let M = Rn, given two probabilities measures µ0, µ1 on M ,
find a transport map T : M → M from µ0 to µ1 which
minimizes the transportation cost∫

M

‖T (x)− x‖ dµ0(x),

among all transport maps from µ0 to µ1.
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Transport plans

Let µ0 and µ1 be probability measures on M . We call
transport plan between µ0 and µ1 any probability measure γ
on M ×M having marginals µ0 and µ1, i.e.

(π1)]γ = µ0 and (π2)]γ = µ1,

(where π1 : M ×M → M and π2 : M ×M → M are the
canonical projections),

M

M

µ0

µ1

γ

B

µ0(B) = γ(B ×M)
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The Kantorovich Optimal Transport Problem

Given M , a cost c : M ×M → R and two probability measures
µ0, µ1 on M , we want to find a transport plan γ on M ×M
between µ0 and µ1 which minimizes the transportation cost∫

M×M
c(x , y)dγ(x , y),

among all transport maps from µ0 to µ1.
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Monge vs. Kantorovitch

Let M be a smooth compact manifold, c : M ×M → R be a
continuous cost function, and µ0, µ1 two probability measures
on M .

Monge’s Problem

Minimize ∫
M

c(x ,T (x))dµ0(x)

among all transport maps T , that is T]µ0 = µ1.

Kantorovitch’s Problem

Minimize ∫
M

c(x , y)dγ(x , y)

among all transport plans γ, that is (π1)]γ = µ0, (π2)]γ = µ1.
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Kantorovitch’s Duality

Theorem

There are two continuous function ψ1, ψ2 : M → R satisfying

ψ1(x) = max
y∈M
{ψ2(y)− c(x , y)} ∀x ∈ M ,

ψ2(y) = min
x∈M
{ψ1(x) + c(x , y)} ∀y ∈ M .

such that the following holds: a transport plan γ is optimal if
and only if one has

ψ2(y)− ψ1(x) = c(x , y) for γ a.e. (x , y) ∈ M ×M .

As a consequence, to obtain that an optimal transport plan
corresponds to a Monge’s optimal transport map, we have to
show that γ is concentrated on a graph.
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Kantorovich  Monge

Let ψ1, ψ2 : M → R be a pair of Kantorovitch potentials
given by the previous result. A way to get existence and
uniqueness for Monge is to proceed as follows:

Show that ψ1 admits a super-differential for µ0-almost
every point.

Let x̄ ∈ supp(µ0) be such that ψ1 admits a
super-differential dx̄ f at x̄ and let ȳ be such that

ψ1(x̄) = ψ2(ȳ)− c(x̄ , ȳ).

Then we have for every x ∈ M

c(x , ȳ) ≥ ψ2(ȳ)− ψ1(x) ≥ ψ2(ȳ)− f (x).

 The function x 7→ c(x , ȳ) admits −dx̄ f as a
sub-differential at x̄ .

Ludovic Rifford The intrinsic dynamics of optimal transport



School matching around a lake

Find a transport map (T]µX = µY )

T : X = {pupils} = S1 −→ Y = {schools} = S1

which minimizes the transportation cost∫
X

c (x ,T (x)) dµX (x)

for some cost c : S1 × S1 → [0,∞).

Geodesic cost

c(x , y) = dg (x , y)2

Kingsley lake, FL

Euclidean cost

c(x , y) = |y − x |2
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The (quadratic) geodesic cost

Let (M , g) be a smooth compact Riemannian manifold, given
two probabilities measures µ0, µ1 on M , find a transport map
T : M → M from µ0 to µ1 which minimizes∫

M

d2
g (x ,T (x))dµ0(x).

Theorem (McCann ’01)

If µ0 is absolutely continuous w.r.t. Lebesgue, then there
exists a unique optimal transport map T from µ0 to µ1.

Comments:

Sub-TWIST (D−x c(·, y1) ∩ D−x c(·, y2) = ∅ ∀y1 6= y2,∀x)
=⇒ existence and uniqueness

No smooth costs satisfy Sub-TWIST
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The (quadratic) Euclidean cost

Let X = Y = S1 ⊂ R2 and c(x , y) = |y − x |2.

b

b

b

X = Y

D

x

bȳ(x)

b
ŷ(x)
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The (quadratic) Euclidean cost

Let ψ̃ be the distance function to the disc D, then we define
the pair of potentials ψ1, ψ2 : S1 → R by

ψ1(x) := ψ̃(x)− 1

2
|x |2,

ψ2(y) := min
x
{ψ1(x) + c(x , y)} .

For x close to the south pole, we define ȳ(x), ŷ(x) in S1 by{
ȳ(x) := ∇x ψ̃,

ŷ(x) := ∇x ψ̃ + λ(x) x with λ(x) ≥ 0.
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The (quadratic) Euclidean cost

By convexity of ψ̃,

〈ȳ(x), x ′ − x〉 ≤ ψ̃(x ′)− ψ̃(x) ∀x ′.
 ȳ(x) ∈ ∂cψ1(x) := {(x , y) | c(x , y) = ψ2(y)− ψ1(x)} .

We also have for any x ′,

〈ŷ(x), x ′ − x〉 = 〈ȳ(x), x ′ − x〉+ λ(x) 〈x , x ′ − x〉
≤ 〈ȳ(x), x ′ − x〉
≤ ψ̃(x ′)− ψ̃(x).

 ŷ(x) ∈ ∂cψ1(x) := {(x , y) | c(x , y) = ψ2(y)− ψ1(x)} .

In consequence, for x close to the south pole, we have

∂cψ1(x) = {ȳ(x), ŷ(x)}.
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The (quadratic) Euclidean cost

Let us consider an absolutely continuous probability measure
µ0 on X = S1 whose support is close to the south pole. Then
define the measures ν̄, ν̂ on N by

ν̄ :=
1

2
ȳ]µ0, ν̂ :=

1

2
ŷ]µ0, and set µ1 := ν̄ + ν̂.

Any plan γ with marginals µ0 and µ1 satisfies∫
X×Y

c(x , y) dγ(x , y) ≥
∫
X×Y

[ψ2(y)− ψ1(x)] dγ(x , y)

=

∫
Y

ψ2(y) dµ1(y)−
∫
X

ψ1(x) dµ0(x)

=

∫
X×Y

c(x , y) d γ̄(x , y),

with equality in the first inequality if and only if γ = γ̄ with
γ̄ := 1

2
(Id , ȳ)] µ0 + 1

2
(Id , ŷ)] µ0.
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Non-genericity of twist

Theorem (McCann, LR)

Let M ,N be smooth compact manifolds of dimensions n ≥ 1
and c : M × N → [0,∞) a cost function of class C 2. Assume
that

∃(x̄ , ȳ) ∈ M × N such that
∂2c

∂x∂y
(x̄ , ȳ) is invertible. (1)

Then there is a pair µ0, µ1 of probability measures respectively
on M and N which are both absolutely continuous w.r.t.
Lebesgue for which there is a unique optimal transport
plan and such that this plan is not supported on a graph.
The set of costs c satisfying (1) is open and dense in
C 2(M × N ;R).

 I do not know if assumption (1) is necessary.
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Purpose of the talk

Study sufficient conditions for smooth costs that insure
uniqueness of Kantorovitch optimizers (minimizing
transport plans).

Exhibit such costs on arbitrary manifolds.

Study the size of the set of such costs (genericity for
some topology)
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Setting

M ,N be smooth compact manifolds of dimensions ≥ 1.

c : M × N → [0,∞) of class C 1.

Given two probabilities measures µ0, µ1 on M , denote by
Π(µ0, µ1), the set of probability measures on M × N
having marginals µ0 and ν0.

A transport plan γ ∈ Π(µ0, µ1) is called optimal if it
minimizes the transportation cost∫

M×N
c(x , y)dγ(x , y).
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Observation

If the measures µ0, µ1 are two Borel probability measures on
M and N , then

Theorem (Folklore)

For each k ∈ N ∪ {∞}, there exists a residual set
C ⊂ C k(M × N ;R) such that for every c ∈ C, there is a
unique optimal transport plan between µ0 and µ1.

We want to find sufficient conditions depending only upon the
cost, such that we have uniqueness of an optimal transport
plan for any datas!!!!
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Alternant chains
Definition

We call L-chain in S (L ≥ 1) any ordered family of pairs(
(x1, y1), . . . , (xL, yL)

)
∈ (M × N)L

such that:

The set {(x1, y1), . . . (xL, yL)} is c-cyclically monotone.

For every l = 1, . . . , L− 1 odd,

xl = xl+1, yl 6= yl+1,
∂c

∂x
(xl , yl) =

∂c

∂x
(xl , yl+1),

For every l = 1, . . . , L− 1 even,

yl = yl+1, xl 6= xl+1,
∂c

∂y
(xl , yl) =

∂c

∂y
(xl+1, yl).
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Alternant chains (picture)

A 5-chain

M
b b b

N

b

b

b

b(x1, y1)

b(x2, y2) b (x3, y3)

b(x4, y4) b (x5, y5)
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Alternant chains (picture)

Cyclic chains  infinite chains

M
b b b

N

b

b

b

b(x1, y1)

= (x7, y7)

b(x2, y2) b (x3, y3)

b(x4, y4) b (x5, y5)

b (x6, y6)
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Optimal transport is unique if long chains are rare

Theorem

Let µ0, µ1 be probability measures respectively on M and N
which are both absolutely continuous w.r.t. Lebesgue. Denote
by S∞ the set of points in M × N which occur in L-chains for
arbitrarily large L and assume that µ0

(
πM(S∞)

)
= 0 or

µ1

(
πN(S∞)

)
= 0. Then there is a unique optimal transport

plan.

Comments:

The theorem applies if there is a uniform bound on the
length of all chains in M × N .

The theorem does not apply if there are cyclic chains on a
set of positive measure.
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Sketch of proof

Given µ0, µ1, there is a c-cyclically monotone set S and
Lipschitz potentials ψ : M → R and φ : M → R which satisfy

ψ(x) = max
y
{φ(y)− c(x , y)}, φ(y) = min

x
{ψ(x) + c(x , y)},

S ⊂ ∂cψ :=
{

(x , y) ∈ M × N | c(x , y) = φ(y)− ψ(x)
}
,

such that γ ∈ Π(µ, ν) is optimal if and only if Supp(γ) ⊂ S.

Observation:
If ψ is differentiable at x , then

y ∈ ∂cψ(x) =⇒ ∂c

∂x
(x , y) = −dxψ.
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Sketch of proof

The previous observation allows to decompose S into a
numbered limb system consisting of Borel graph and
antigraphs (apart from a set of measure zero).
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Sketch of proof

Then the result follows from uniqueness of transport plans in
Π(µ0, µ1) concentrated on the numbered limb system.

B
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Sktech of proof

Then the result follows from uniqueness of transport plans in
Π(µ0, µ1) concentrated on the numbered limb system.

B

πN (B)

Ludovic Rifford The intrinsic dynamics of optimal transport



Sketch of proof

Then the result follows from uniqueness of transport plans in
Π(µ0, µ1) concentrated on the numbered limb system.
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A remark (after Hestir and Williams)

Given a set S ⊂ M × N , define the equivalence relation ∼S on
S by saying that (x , y) ∼S (x ′, y ′) if there is an alternating
chain from (x , y) to (x ′, y ′).

Theorem

If the orbits of ∼S do not admit cycles, then S can be
decomposed into a countable numbered limb system.

 This can of formal result is not sufficient to get uniqueness
of optimal plans.
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Examples: Strictly convex sets

Setting: M = N = smooth strictly convex compact
hypersurface in Rn, c(x , y) = |y − x |2.

M = N

Lemma

There is no chain of length ≥ 4.

 Uniqueness of optimal transport plans
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Examples: Nested strictly convex sets

Setting: M = N = ∪K
k=1Ck nested family of smooth strictly

convex compact hypersurfaces in Rn, c(x , y) = |y − x |2.

Lemma

There is no chain of length ≥ 4K + 1.

 Uniqueness of optimal transport plans
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Examples: On arbitrary manifold

Setting: M = N smooth compact manifold of dimension n

Let us consider a triangulation of the manifold.
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Examples: On arbitrary manifold
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Examples: On arbitrary manifold

b
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Examples: On arbitrary manifold

b
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Examples: On arbitrary manifold

F

−→
smooth b

Then we define

c(x , y) = |F (y)− F (x)|2

 Uniqueness of optimal transport plans
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Final comments

Open question

Given k ∈ N ∪ {∞}, is the set of costs for which we have
uniqueness (of optimal transport plans between absolutely
continuous measures w.r.t. Lebesgue) dense in the C k

topology ?

Open question

The dynamics of the results presented previously are always
the same. Can we find other examples with more involved
dynamics ?
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Thank you for your attention !!

Ludovic Rifford The intrinsic dynamics of optimal transport


