The intrinsic dynamics of optimal transport

Ludovic Rifford

Université Nice Sophia Antipolis & Institut Universitaire de France

CMC conference "Analysis, Geometry, and Optimal Transport" KIAS, Seoul, June 2016

Ludovic Rifford The intrinsic dynamics of optimal transport

Monge vs. Kantorovich

Gaspard Monge

(1746-1818)

Leonid Kantorovich

(1912-1986)

Transport maps

Let μ_0 and μ_1 be **probability measures** on M. We call **transport map** from μ_0 to μ_1 any measurable map $T: M \to M$ such that $T_{\sharp}\mu_0 = \mu_1$, that is

 $\mu_1(B) = \mu_0(T^{-1}(B)), \quad \forall B \text{ measurable } \subset M.$

The original Monge Problem

Let $M = \mathbb{R}^n$, given two probabilities measures μ_0, μ_1 on M, find a **transport map** $T : M \to M$ from μ_0 to μ_1 which **minimizes** the transportation cost

$$\int_M \|T(x)-x\|\,d\mu_0(x),$$

among all transport maps from μ_0 to μ_1 .

Transport plans

Let μ_0 and μ_1 be **probability measures** on *M*. We call **transport plan** between μ_0 and μ_1 any probability measure γ on $M \times M$ having **marginals** μ_0 and μ_1 , i.e.

$$(\pi_1)_{\sharp}\gamma = \mu_0$$
 and $(\pi_2)_{\sharp}\gamma = \mu_1$,

(where $\pi_1 : M \times M \to M$ and $\pi_2 : M \times M \to M$ are the canonical projections),

The Kantorovich Optimal Transport Problem

Given M, a cost $c : M \times M \to \mathbb{R}$ and two probability measures μ_0, μ_1 on M, we want to find a transport plan γ on $M \times M$ between μ_0 and μ_1 which minimizes the transportation cost

$$\int_{M\times M} c(x,y) d\gamma(x,y),$$

among all transport maps from μ_0 to μ_1 .

Monge vs. Kantorovitch

Let M be a smooth compact manifold, $c : M \times M \to \mathbb{R}$ be a continuous cost function, and μ_0, μ_1 two probability measures on M.

Monge's Problem

Minimize

$$\int_{M} c(x, T(x)) d\mu_0(x)$$

among all transport maps T, that is $T_{\sharp}\mu_0 = \mu_1$.

Kantorovitch's Problem

Minimize

$$\int_M c(x,y) d\gamma(x,y)$$

among all transport plans γ , that is $(\pi_1)_{\sharp}\gamma = \mu_0, (\pi_2)_{\sharp}\gamma = \mu_1$.

Theorem

There are two continuous function $\psi_1, \psi_2 : M \to \mathbb{R}$ satisfying

$$\psi_1(x) = \max_{y \in M} \{\psi_2(y) - c(x, y)\} \quad \forall x \in M,$$

$$\psi_2(y) = \min_{x \in \mathcal{M}} \{\psi_1(x) + c(x, y)\} \qquad \forall y \in \mathcal{M}.$$

such that the following holds: a transport plan γ is optimal if and only if one has

$$\psi_2(y) - \psi_1(x) = c(x, y)$$
 for γ a.e. $(x, y) \in M \times M$.

As a consequence, to obtain that an optimal transport plan corresponds to a Monge's optimal transport map, we have to show that γ is concentrated on a graph.

Kantorovich 🛶 Monge

Let $\psi_1, \psi_2 : M \to \mathbb{R}$ be a pair of **Kantorovitch potentials** given by the previous result. A way to get existence and uniqueness for Monge is to proceed as follows:

- Show that ψ_1 admits a super-differential for μ_0 -almost every point.
- Let x̄ ∈ supp(µ₀) be such that ψ₁ admits a super-differential d_{x̄}f at x̄ and let ȳ be such that

$$\psi_1(\bar{x}) = \psi_2(\bar{y}) - c(\bar{x}, \bar{y}).$$

Then we have for every $x \in M$

$$c(x,ar y)\geq \psi_2(ar y)-\psi_1(x)\geq \psi_2(ar y)-f(x).$$

 \rightsquigarrow The function $x \mapsto c(x, \overline{y})$ admits $-d_{\overline{x}}f$ as a sub-differential at \overline{x} .

School matching around a lake

Find a transport map $(T_{\sharp}\mu_X = \mu_Y)$

$$T: X = \{ pupils \} = \mathbb{S}^1 \longrightarrow Y = \{ schools \} = \mathbb{S}^1$$

which minimizes the transportation cost

$$\int_X c(x,T(x)) \ d\mu_X(x)$$

for some **cost** $c : \mathbb{S}^1 \times \mathbb{S}^1 \to [0, \infty)$.

Geodesic cost

$$c(x,y) = d_g(x,y)^2$$

Euclidean cost

$$c(x,y) = |y-x|^2$$

Kingsley lake, FL

The (quadratic) geodesic cost

Let (M, g) be a smooth compact Riemannian manifold, given two probabilities measures μ_0, μ_1 on M, find a transport map $T: M \to M$ from μ_0 to μ_1 which minimizes

$$\int_M d_g^2(x, T(x)) d\mu_0(x).$$

Theorem (McCann '01)

If μ_0 is absolutely continuous w.r.t. Lebesgue, then **there** exists a unique optimal transport map T from μ_0 to μ_1 .

Comments:

- Sub-TWIST $(D_x^- c(\cdot, y_1) \cap D_x^- c(\cdot, y_2) = \emptyset \quad \forall y_1 \neq y_2, \forall x)$ \implies existence and uniqueness
- No smooth costs satisfy Sub-TWIST

Let
$$X = Y = \mathbb{S}^1 \subset \mathbb{R}^2$$
 and $c(x, y) = |y - x|^2$.

Let $\tilde{\psi}$ be the distance function to the disc D, then we define the pair of potentials $\psi_1, \psi_2 : \mathbb{S}^1 \to \mathbb{R}$ by

$$\psi_1(x) := ilde{\psi}(x) - rac{1}{2}|x|^2,$$
 $\psi_2(y) := \min_x \left\{ \psi_1(x) + c(x,y)
ight\}.$

For x close to the south pole, we define $\bar{y}(x), \hat{y}(x)$ in \mathbb{S}^1 by

$$\left\{ \begin{array}{ll} \bar{y}(x) & := \quad \nabla_x \tilde{\psi}, \\ \hat{y}(x) & := \quad \nabla_x \tilde{\psi} + \lambda(x) \, x \, \, \text{with} \, \, \lambda(x) \geq 0. \end{array} \right.$$

By convexity of $\tilde{\psi}$, $\langle \bar{y}(x), x' - x \rangle \leq \tilde{\psi}(x') - \tilde{\psi}(x) \quad \forall x'.$ $\rightsquigarrow \bar{y}(x) \in \partial_c \psi_1(x) := \{(x, y) \mid c(x, y) = \psi_2(y) - \psi_1(x)\}.$

We also have for any x',

$$egin{array}{rcl} \langle \hat{y}(x), x'-x
angle &=& \langle ar{y}(x), x'-x
angle + \lambda(x)\,\langle x, x'-x
angle \ &\leq& \langle ar{y}(x), x'-x
angle \ &\leq& ilde{\psi}(x') - ilde{\psi}(x). \end{array}$$

 $\rightsquigarrow \hat{y}(x) \in \partial_{c}\psi_{1}(x) := \{(x,y) \mid c(x,y) = \psi_{2}(y) - \psi_{1}(x)\} .$

In consequence, for x close to the south pole, we have $\partial_c \psi_1(x) = \{ \bar{y}(x), \hat{y}(x) \}.$

Let us consider an absolutely continuous probability measure μ_0 on $X = \mathbb{S}^1$ whose support is close to the south pole. Then define the measures $\bar{\nu}, \hat{\nu}$ on N by

$$ar{
u} := rac{1}{2}ar{y}_{\sharp}\mu_0, \ \hat{
u} := rac{1}{2}\hat{y}_{\sharp}\mu_0, \ ext{and set} \ \mu_1 := ar{
u} + \hat{
u}.$$

Any plan γ with marginals $\mu_{\rm 0}$ and $\mu_{\rm 1}$ satisfies

$$\begin{split} \int_{X \times Y} c(x, y) \, d\gamma(x, y) &\geq \int_{X \times Y} \left[\psi_2(y) - \psi_1(x) \right] \, d\gamma(x, y) \\ &= \int_Y \psi_2(y) \, d\mu_1(y) - \int_X \psi_1(x) \, d\mu_0(x) \\ &= \int_{X \times Y} c(x, y) \, d\bar{\gamma}(x, y), \end{split}$$

with equality in the first inequality if and only if $\gamma = \overline{\gamma}$ with $\overline{\gamma} := \frac{1}{2} (Id, \overline{y})_{\sharp} \mu_0 + \frac{1}{2} (Id, \hat{y})_{\sharp} \mu_0.$

Theorem (McCann, LR)

Let M, N be smooth compact manifolds of dimensions $n \ge 1$ and $c : M \times N \to [0, \infty)$ a cost function of class C^2 . Assume that

 $\exists (\bar{x}, \bar{y}) \in M \times N$ such that $\frac{\partial^2 c}{\partial x \partial y}(\bar{x}, \bar{y})$ is invertible. (1)

Then there is a pair μ_0 , μ_1 of probability measures respectively on M and N which are both absolutely continuous w.r.t. Lebesgue for which there is a unique optimal transport plan and such that this plan is not supported on a graph. The set of costs c satisfying (1) is open and dense in $C^2(M \times N; \mathbb{R})$.

\rightsquigarrow I do not know if assumption (1) is necessary.

- Study sufficient conditions for smooth costs that insure uniqueness of Kantorovitch optimizers (minimizing transport plans).
- Exhibit such costs on arbitrary manifolds.
- Study the size of the set of such costs (genericity for some topology)

- K. Hestir and S. C. Williams. Supports of doubly stochastic measures (1995)
- S. Bianchini and L. Caravenna. On the extremality, uniqueness, and optimality of transference plans (2009)
- W. Gangbo and R. J. McCann. Shape recognition via Wasserstein distance (2000)
- P.-A. Chiappori, R. McCann and L. Nesheim. Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness (2010)
- R. J. McCann and LR. The intrinsic dynamics of optimal transport (2015)

Setting

- M, N be smooth compact manifolds of dimensions ≥ 1 .
- $c: M \times N \rightarrow [0, \infty)$ of class C^1 .
- Given two probabilities measures μ_0, μ_1 on M, denote by $\Pi(\mu_0, \mu_1)$, the set of probability measures on $M \times N$ having marginals μ_0 and ν_0 .
- A transport plan γ ∈ Π(μ₀, μ₁) is called optimal if it minimizes the transportation cost

$$\int_{M\times N} c(x,y) d\gamma(x,y).$$

If the measures μ_0, μ_1 are two Borel probability measures on M and N, then

Theorem (Folklore)

For each $k \in \mathbb{N} \cup \{\infty\}$, there exists a residual set $C \subset C^k(M \times N; \mathbb{R})$ such that for every $c \in C$, there is a unique optimal transport plan between μ_0 and μ_1 .

We want to find sufficient conditions depending only upon the cost, such that we have uniqueness of an optimal transport plan for any datas!!!!

Alternant chains

Definition

We call *L*-chain in S ($L \ge 1$) any ordered family of pairs

$$((x_1, y_1), \ldots, (x_L, y_L)) \in (M \times N)^L$$

such that:

- The set $\{(x_1, y_1), \dots, (x_L, y_L)\}$ is *c*-cyclically monotone.
- For every $I = 1, \ldots, L 1$ odd,

$$x_l = x_{l+1}, y_l \neq y_{l+1}, \frac{\partial c}{\partial x}(x_l, y_l) = \frac{\partial c}{\partial x}(x_l, y_{l+1}),$$

• For every $I = 1, \ldots, L - 1$ even,

$$y_l = y_{l+1}, x_l \neq x_{l+1}, \frac{\partial c}{\partial y}(x_l, y_l) = \frac{\partial c}{\partial y}(x_{l+1}, y_l).$$

Alternant chains (picture)

A 5-chain

Alternant chains (picture)

Cyclic chains ~> infinite chains

Theorem

Let μ_0, μ_1 be probability measures respectively on M and Nwhich are both absolutely continuous w.r.t. Lebesgue. Denote by S^{∞} the set of points in $M \times N$ which occur in L-chains for arbitrarily large L and assume that $\mu_0(\pi^M(S^{\infty})) = 0$ or $\mu_1(\pi^N(S^{\infty})) = 0$. Then there is a **unique** optimal transport plan.

Comments:

- The theorem applies if there is a uniform bound on the length of all chains in $M \times N$.
- The theorem does not apply if there are cyclic chains on a set of positive measure.

Given μ_0, μ_1 , there is a *c*-cyclically monotone set S and Lipschitz potentials $\psi : M \to \mathbb{R}$ and $\phi : M \to \mathbb{R}$ which satisfy

$$\psi(x) = \max_{y} \{\phi(y) - c(x, y)\}, \ \phi(y) = \min_{x} \{\psi(x) + c(x, y)\},$$

$$\mathcal{S} \subset \partial_c \psi := \Big\{ (x, y) \in M \times N \mid c(x, y) = \phi(y) - \psi(x) \Big\},$$

such that $\gamma \in \Pi(\mu, \nu)$ is optimal if and only if $\text{Supp}(\gamma) \subset S$.

Observation:

If ψ is differentiable at x, then

$$y \in \partial_c \psi(x) \Longrightarrow \frac{\partial c}{\partial x}(x,y) = -d_x \psi.$$

The previous observation allows to decompose S into a **numbered limb system** consisting of Borel graph and antigraphs (apart from a set of measure zero).

Then the result follows from uniqueness of transport plans in $\Pi(\mu_0, \mu_1)$ concentrated on the numbered limb system.

Then the result follows from uniqueness of transport plans in $\Pi(\mu_0, \mu_1)$ concentrated on the numbered limb system.

Then the result follows from uniqueness of transport plans in $\Pi(\mu_0, \mu_1)$ concentrated on the numbered limb system.

A remark (after Hestir and Williams)

Given a set $S \subset M \times N$, define the equivalence relation \sim_S on S by saying that $(x, y) \sim_S (x', y')$ if there is an alternating chain from (x, y) to (x', y').

Theorem

If the orbits of \sim_S do not admit cycles, then S can be decomposed into a countable numbered limb system.

 \rightsquigarrow This can of formal result is not sufficient to get uniqueness of optimal plans.

Examples: Strictly convex sets

Setting: M = N = smooth strictly convex compact hypersurface in \mathbb{R}^n , $c(x, y) = |y - x|^2$.

Lemma

There is no chain of length \geq 4.

→ Uniqueness of optimal transport plans

Examples: Nested strictly convex sets

Setting: $M = N = \bigcup_{k=1}^{K} C_k$ nested family of smooth strictly convex compact hypersurfaces in \mathbb{R}^n , $c(x, y) = |y - x|^2$.

Lemma

There is no chain of length $\geq 4K + 1$.

→ Uniqueness of optimal transport plans

Setting: M = N smooth compact manifold of dimension n

Let us consider a triangulation of the manifold.

Then we define

$$c(x, y) = |F(y) - F(x)|^{2}$$

→ Uniqueness of optimal transport plans

Open question

Given $k \in \mathbb{N} \cup \{\infty\}$, is the set of costs for which we have uniqueness (of optimal transport plans between absolutely continuous measures w.r.t. Lebesgue) dense in the C^k topology ?

Open question

The dynamics of the results presented previously are always the same. Can we find other examples with more involved dynamics ? Thank you for your attention !!