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Monge quadratic transport in Rn

Let µ0 and µ1 be probability measures with compact
support in Rn. We call transport map from µ0 to µ1 any
measurable map T : Rn → Rn such that T]µ0 = µ1, that is

µ1(B) = µ0

(
T−1(B)

)
, ∀B measurable ⊂ Rn.
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The Brenier Theorem

Monge quadratic problem : Study of transport maps
T : Rn → Rn which minimize the quadratic transport cost∫

Rn

|T (x)− x |2 dµ0(x).

Theorem (Brenier ’91)

Assume that µ0 is absolutely continuous with respect to the
Lebesgue measure. Then there exists a unique optimal
transport map for the quadratic cost from µ0 to µ1.
There is a convex function ψ : M → R such that

T (x) = ∇ψ(x) µ0 a.e. x ∈ Rn.

Regularity ?
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Contre-exemple trivial
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Caffarelli’s regularity theory

Theorem (Caffarelli ’90s)

Let Ω0,Ω1 be connected bounded open subsets of Rn and
f0, f1 be probabilities densities on Ω0 and Ω1 respectively, with
f0 and f1 bounded from above and below. Assume that µ0 and
µ1 have respectively densisites f0 and f1 with respect to the
Lebesgue measure and that Ω1 is convex. Then the quadratic
optimal transport map from µ0 to µ1 is continuous.

The convexity of the target is necessary.
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Example of a nonconvex target
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Example of a nonconvex target
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Example of a nonconvex target

T gradient of a convex fonction

=⇒ 〈y−x ,T (y)−T (x)〉 ≥ 0

!!!
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Mass transportation on surfaces

Let M be a smooth connected compact surface in Rn. For any
x , y ∈ M , we define the geodesic distance between x and y ,
denoted by d(x , y), as the minimum of the lengths of the
curves (drawn on M) joining x to y .
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The McCann Theorem

Quadratic transport problem: Given two probability
measures µ0, µ1 on M , find a measurable map T : M → M
with T]µ0 = µ1 which minimizes the quadratic transport cost
(c = d2/2) ∫

M

c(x ,T (x))dµ0(x).

Theorem (McCann ’01)

If µ0 is absolutely continuous with respect to the Lebesgue
measure, then there is a unique optimal transport map from
µ0 to µ1 for the quadratic cost.
There exists a c-convex function ϕ : M → R such that

T (x) = expx (∇ϕ(x)) µ0 a.e. x ∈ M .
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The TCP property

We say that the surface M ⊂ Rn satisfies the Transport
Continuity Property (TCP) if the following property is
satisfied:

For any pair of probability measures µ0, µ1 associated locally
with continuous positive densities ρ0, ρ1, that is

µ0 = ρ0volg , µ1 = ρ1volg ,

the optimal transport map from µ0 to µ1 is continuous.
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Flat tori

on T2 = R2/Z2, there holds d(x , y) = inf
p∈Z2
|x − y + p|.

We can ”lift” a transport problem on T2 to R2 and apply the
Caffarelli regularity theory.

Theorem (Cordero-Erausquin ’99)

Flat tori satisfy TCP.
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Characterization of TCP sur les surfaces

Theorem (Figalli-R-Villani ’10)

Let M be a surface in Rn. It satisfies TCP if and only if the
following properties hold:

all the injectivity domains are convex,

the cost c = 1
2
d2 is regular.
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Exponential mapping and injectivity domains

Let x ∈ M be fixed.

For every v ∈ TxM , we define the exponential of v by

expx(v) = γx ,v (1),

where γx ,v : [0, 1]→ M is the unique geodesic starting at
x with velocity v .

We call injectivity domain of x , the subset of TxM
defined as

I(x) :=

{
v ∈ TxM

∣∣∣ ∃t > 1 s.t. γtv is the unique minim.
geod. between x and expx(tv)

}
.

It is a star-shaped (w.r.t. 0 ∈ TxM) domain with
Lipschitz boundary.
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Injectivity domains : Examples...

Flat tori : all the injectivity domains are convex.
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Injectivity domains : Examples...

Torus of revolution: the injectivity domains are not necessarily
convex.
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Injectivity domains : Examples...

Spheres : all the injectivity domains are balls.
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Injectivity domains : Examples...

C 4 perturbations of round spheres:

Theorem (Figalli-R ’09)

Any small deformation of the round sphere S2 in C 4 topology
has all its injectivity domains uniformly convex.
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Injectivity domains : Examples...

Ellipsoids of revolution (oblate case):

Eµ : x2 + y 2 +

(
z

µ

)2

= 1 µ ∈ (0, 1].

Theorem (Bonnard-Caillau-R ’10)

The injectivity domains of an oblate ellipsoid of revolution are
all convex if and only if and only if the ratio between the
minor and the major axis is greater or equal to 1/

√
3(' 0.58).
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Characterization of TCP on surfaces

Theorem (Figalli-R-Villani ’10)

Let M be a surface in Rn. It satisfies TCP if and only if the
following properties hold:

all injectivity domains are convex,

the cost c = 1
2
d2 is regular.
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Regular costs

The cost c = 1
2
d2/2 : M ×M → R is called regular, if for

every x ∈ M and every v0, v1 ∈ I(x), there holds

c
(
x , yt

)
− c(x ′, yt) ≤

max
(

c
(
x , y0

)
− c
(
x ′, y0

)
, c
(
x , y1

)
− c
(
x ′, y1

))
,

for every x ′ ∈ M and every t ∈ [0, 1], where

yt := expx vt and vt := (1− t)v0 + tv1 (∈ I(x)).
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An obvious remark

Remark

Assume that all the injectivity domains of M are convex. Then
the cost c is regular if and only if for any x , x ′ ∈ M, the
function

Fx ,x ′ : v ∈ I(x) 7−→ c
(
x , expx(v)

)
− c
(
x ′, expx(v)

)
is quasiconvex (its sublevels sets are always convex).
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An easy lemma

Lemma

Let U ⊂ Rn be an open convex set and F : U → R be a
function of class C 2. Assume that for every v ∈ U and every
w ∈ Rn \ {0} the following property holds :

〈∇vF ,w〉 = 0 =⇒ 〈∇2
vF w ,w〉 > 0.

Then F is quasiconvex.
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Proof of the easy lemma

Proof.

Let v0, v1 ∈ U be fixed. Set vt := (1− t)v0 + tv1, for every
t ∈ [0, 1].

Define h : [0, 1]→ R by

h(t) := F (vt) ∀t ∈ [0, 1].

If h � max{h(0), h(1)}, there is τ ∈ (0, 1) such that

h(τ) = max
t∈[0,1]

h(t) > max{h(0), h(1)}.

There holds

ḣ(τ) = 〈∇vτ F , v̇τ 〉 et ḧ(τ) = 〈∇2
vτ

F v̇τ , v̇τ 〉.

Since τ is a local maximum, one has ḣ(τ) = 0. Contradiction
!!
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Exercise 1

The following lemma is FALSE !!

False Lemma

Let U ⊂ Rn be an open convex set and F : U → R be a
function of class C 2. Assume that for every v ∈ U and every
w ∈ Rn, the following property holds:

〈∇vF ,w〉 = 0 =⇒ 〈∇2
vF w ,w〉 ≥ 0.

Then F is quasiconvex.
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Exercise 2

However the following result holds true.

Lemma

Let U ⊂ Rn be an open convex set and F : U → R be a
function of class C 2. Assume that there is a constant C > 0
such that

〈∇2
vF w ,w〉 ≥ −C |〈∇vF ,w〉| |w | ∀v ∈ U ,∀w ∈ Rn,

then F is quasiconvex.
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Back to our problem

Recall that F (v) = Fx ,x ′(v) = c
(
x , expx(v)

)
− c
(
x ′, expx(v)

)

Hence

∂F

∂v
(v) · h =

∂c

∂y

(
x , expx(v)

)
· ∂ expx

∂v
(v) · h

− ∂c

∂y

(
x ′, expx(v)

)
· ∂ expx

∂v
(v) · h,

∂2F

∂v 2
(v)·(h, h) =

∂2c

∂y 2

(
x , expx(v)

)
·
(
∂ expx

∂v
(v) · h, ∂ expx

∂v
(v) · h

)
− ∂2c

∂y 2

(
x ′, expx(v)

)
·
(
∂ expx

∂v
(v) · h, ∂ expx

∂v
(v) · h

)
+

(
∂c

∂y

(
x , expx(v)

)
− ∂c

∂y

(
x ′, expx(v)

))
· ∂

2 expx

∂v 2
(v) · (h, h)
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..

Set y := expx(v), q := ∂c
∂y

(x , y), q′ := ∂c
∂y

(x ′, y). There holds

∂2F

∂v 2
(v) · (h, h) =

∂2c

∂y 2

(
expy (−q), y

)
·
(

h̃, h̃
)

− ∂2c

∂y 2

(
expy (−q′), y

)
·
(

h̃, h̃
)

+ (q − q′) · ∂
2 expx

∂v 2
(v) · (h, h)

But ∂c
∂x

(x , expx(v)) = −v , then

∂2 expx

∂v 2
(v) · (h, h) = −

(
∂2c

∂x∂y
(x , y)

)−1
∂3c

∂x∂y 2
(x , y) ·

(
h̃, h̃
)

Ludovic Rifford Mass Transportation on surfaces



..

Set y := expx(v), q := ∂c
∂y

(x , y), q′ := ∂c
∂y

(x ′, y). There holds

∂2F

∂v 2
(v) · (h, h) =

∂2c

∂y 2

(
expy (−q), y

)
·
(

h̃, h̃
)

− ∂2c

∂y 2

(
expy (−q′), y

)
·
(

h̃, h̃
)

+ (q − q′) · ∂
2 expx

∂v 2
(v) · (h, h)

But ∂c
∂x

(x , expx(v)) = −v , then

∂2 expx

∂v 2
(v) · (h, h) = −

(
∂2c

∂x∂y
(x , y)

)−1
∂3c

∂x∂y 2
(x , y) ·

(
h̃, h̃
)
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..

Setting

Φ(p) = Φx ,y ,h(p) = −∂
2c

∂y 2

(
expy (−p), y

)
·
(

h̃, h̃
)
,

we get

∂2F

∂v 2
(v) · (h, h)

= −Φ(q) + Φ(q′)− DΦ(q) · (q′ − q)

=

∫ 1

0

(1− t)D2Φ(tq′ + (1− t)q) (q′ − q, q′ − q) dt.
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The Ma-Trudinger-Wang tensor

The MTW tensor S is defined as

S(x ,v)(ξ, η) = −3

2

d2

ds2

∣∣∣∣
s=0

d2

dt2

∣∣∣∣
t=0

c (expx(tξ), expx(v + sη)) ,

for every x ∈ M , v ∈ I(x), and ξ, η ∈ TxM .

Proposition (Villani ’09, Figalli-R-Villani ’10)

Let M be a surface all of whose injectivity domains are convex.
Then the following properties are equivalent:

The cost c = 1
2
d2 is regular.

The MTW tensor is � 0, that is for any
x ∈ M , v ∈ I(x), and ξ, η ∈ TxM,

〈ξ, η〉x = 0 =⇒ S(x ,v)(ξ, η) ≥ 0.
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Caracterization of TCP on surfaces

Theorem (Figalli-R-Villani ’10)

Let M be a surface in Rn. It satisfies TCP if and only if the
two following properties holds:

all the injectivity domains are convex,

S � 0.

Loeper notices that for every x ∈ M and for any pair of unit
orthogonal tangent vectors ξ, η ∈ TxM , there holds

S(x ,0)(ξ, η) = σx ,

where σx denote the gaussian curvature of M at x . As a
consequence,

TCP =⇒ σ ≥ 0.

Therefore, if M ⊂ R3 satisfies TCP, then it is convex.
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Spheres

Loeper checked that the MTW tensor of the round sphere S2

satisfies for any x ∈ S2, v ∈ I(x) and ξ, η ∈ TxS2,

〈ξ, η〉x = 0 =⇒ S(x ,v)(ξ, η) ≥ |ξ|2|η|2.

Theorem (Loeper ’06)

The round sphere S2 satisifes TCP.
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Small deformations of S2

On S2, the MTW tensor is given by

S(x ,v)

(
ξ, ξ⊥

)
= 3

[
1

r 2
− cos(r)

r sin(r)

]
ξ4

1 + 3

[
1

sin2(r)
− r cos(r)

sin3(r)

]
ξ4

2

+
3

2

[
− 6

r 2
+

cos(r)

r sin(r)
+

5

sin2(r)

]
ξ2

1ξ
2
2 ,

with x ∈ S2, v ∈ I(x), r := |v |, ξ = (ξ1, ξ2), ξ⊥ = (−ξ2, ξ1).

Theorem (Figalli-R ’09)

Any small deformation of S2 in C 4 topology satisfies TCP.
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Ellipsoids

The ellipsoid of revolution (Eε) ⊂ R3

x2

ε2
+ y 2 + z2 = 1, with ε = 0.29,

does not satisfy MTW � 0.

Consequently, (Eε) cannot satisfy TCP.
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Curvature jumps

The surface made by two hemispheres glued at the ends of a
cylinder with same radius does not have a regular cost.

Then, it does not satisfy TCP.
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Perspectives
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Conjectures

Conjecture

MTW � 0 =⇒ convexity of all injectivity domains.

Conjecture

A satisfies TCP if and only if S � 0.
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Greater dimensions

Let (M , g) be a smooth connected compact Riemannian
manifold of dimension n ≥ 2.

Theorem (Figalli-R-Villani ’10)

Assume that (M , g) satisfies (TCP). Then

all its injectivity domains are convex,

the MTW tensor is � 0.

Theorem (Figalli-R-Villani ’10)

Assume that (M , g) satisfies the two following properties:

all its injectivity domains are strictly convex,

the MTW tensor is � 0,

Then, it satisfies TCP.

Ludovic Rifford Mass Transportation on surfaces



Greater dimensions

Let (M , g) be a smooth connected compact Riemannian
manifold of dimension n ≥ 2.

Theorem (Figalli-R-Villani ’10)

Assume that (M , g) satisfies (TCP). Then

all its injectivity domains are convex,

the MTW tensor is � 0.

Theorem (Figalli-R-Villani ’10)

Assume that (M , g) satisfies the two following properties:

all its injectivity domains are strictly convex,

the MTW tensor is � 0,

Then, it satisfies TCP.

Ludovic Rifford Mass Transportation on surfaces



Thank you for your attention !!
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