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1 The Problem

Throughout this paper, M denotes a smooth manifold of dimension n. We are
given a control system on M of the form,

ẋ = f(x, u) :=

m
∑

i=1

uifi(x), (1)

where f1, · · · , fm are smooth vector fields on M and where the control

u = (u1, · · · , um)

belongs to Bm, the closed unit ball in IRm. Throughout the paper, “smooth”
means always “of class C∞”. Such a control system is said to be Globally
Asymptotically Controllable at the point O ∈ M (abbreviated GAC in the
sequel) if the following two properties are satisfied:

1. Attractivity: For each x ∈ M there exists a control u(·) : IR≥0 → Bm such
that the corresponding trajectory x(·; x, u(·)) of (1) tends to O as t tends
to infinity.

2. Lyapunov stability: For each neighborhood V of O, there exists some neigh-
borhood U of O such that if x ∈ U then the control u(·) above can be chosen
such that x(t; x, u(·)) ∈ V , ∀t ≥ 0.

Example 1. The control system in the plane defined by

ẋ = u(x2 − y2)
ẏ = u(2xy), u ∈ [−1, 1],

is GAC at the point (0, 0). In fact, as shown in Figure 1, for (x, y) 6= (0, 0) in
the plane, the set {u(x2−y2, 2xy) : u ∈ [−1, 1]} is a subinterval of the tangent
space to the circle passing through (x, y) and (0, 0) with center on the y-axis.
The GAC property becomes obvious.
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Fig. 1.

Example 2. In IR3, the nonholonomic integrator defined by

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 − x2u1

with u2
1 + u2

2 ≤ 1, is a famous example of GAC control system (at any point
of the space).

Example 3. More generally, if M is a connected manifold and if the vector
fields f1, · · · , fm satisfy the Hörmander’s bracket generating condition

∀x ∈ M, Lie {f1, · · · , fm}(x) = TxM,

then a classical result of Chow says that every two points can be joined by
a trajectory of the control system (1). Hence (1) is GAC at any point of the
manifold.

Given a GAC control system of the form (1), the purpose of the stabiliza-
tion problem is to study the possible existence of a feedback k(·) : M 7→ Bm

which makes the closed-loop system

ẋ = f(x, k(x)) =

m
∑

i=1

ki(x)fi(x), (2)

globally asymptotically stable at the point O (abreviated GAS in the sequel);
i.e. such that all the trajectories of the closed-loop system converge asymptot-
ically to the point O, and in addition such that the local property of Lyapunov
stability is satisfied.

Example 4. As shown in [19, pp. 561-562], the control system given in Ex-
ample 1 above does not admit a continuous stabilizing feedback. One proof
is by noticing that the circles defined in Figure 1 are invariant under the
closed-loop system, and that on these circles the only way for a closed-loop
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system to go to O would be to have k < 0 or k > 0 along its trajectories.
Since by Lyapunov stability, the closed-loop system should be negative (resp.
positive) on the right side (resp. on the left side) of the origin, we conclude
by connectedness of the circle that a continuous stabilizing feedback should
have another equilibrium on each invariant circle!

As we shall see in the sequel, the absence of continuous stabilizing feed-
backs for general GAC control systems motivated many authors to define
new kinds of stabilizing feedbacks. The main contributions in that direction
have been Sussmann [21], Artstein [3], Brockett [4], Sontag [18], Coron [7, 8],
Clarke, Ledyaev, Sontag and Subbotin [6], and Ancona and Bressan [2].

2 The Kurzweil Theorem

Given a continuous vector field X on the manifold M which has an equilibrium
at O ∈ M , the classical Lyapunov function method asserts that if there exists
some function V : M → IR that satisfies the following properties:

(i) V is smooth on M \ {0} and continuous at the origin,
(ii) V ≥ 0 and V (x) = 0 ⇐⇒ x = O,
(iii) ∀x ∈ M \ {O}, (LgV )x < 0,

then the dynamical system given by

ẋ = X(x(t)) (3)

is GAS at the point O. Such a function is called a Lyapunov function for
the dynamical system (3). The Kurzweil Theorem establishes the converse
result; it asserts that if the dynamical system is GAS (at O) on the manifold
M , then it admits a Lyapunov function on M . This result has an important
consequence for GAC control systems.

If the control system (1) admits a continuous stabilizing feedback k : M →
Bm then the dynamical system given by the closed-loop system (2) is GAS,
and as a consequence it admits a Lyapunov function. Thus there exists some
function V : M → IR which satisfies the following properties:

(i) V is smooth on M \ {0} and continuous at the origin,
(ii) V ≥ 0 and V (x) = 0 ⇐⇒ x = O,
(iii) ∀x ∈ M \ {O}, there exists u ∈ Bm such that (Lf(·,u)V )x < 0.

Such a function is called a smooth control-Lyapunov function for (1). To sum-
marize, using the Kurzweil Theorem, we prove that if a control system has
a continuous stabilizing feedback, then it admits a smooth control Lyapunov
function.

Example 5. This result allows us to give another proof of the nonexistence of
continuous stabilizing feedback for the control system given in Example 1.
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If such a stabilizing feedback existed then the control system would admit
a smooth control-Lyapunov. But such a function would attain its maximum
over any compact circle of Figure 1, that is, there would be some point where
the gradient of V and the tangent space to the circle are orthogonal, which
contradicts (iii).

The converse of this result is true (for the type of control systems that we
consider, that is, affine in the control and without drift). Artstein proved in
[3] that if the control system admits a smooth control-Lyapunov function then
there exists a continuous stabilizing feedback (and the feedback can indeed
be taken to be smooth outside O). This gives the following characterization
of control systems that admit continuous stabilizing feedbacks:

Theorem 1. The control system (1) has a continuous stabilizing feedback on
M if and only if it admits a smooth control-Lyapunov function on M .

This classical result leads us to the consideration of two major obstruc-
tions to the existence of continuous stabilizing feedbacks. We consider these
obstructions next.

3 Two obstructions

3.1 A local obstruction: The Brockett condition

Since the obstruction we are talking about is local, let us assume that we work
in IRn. If there exists a continuous vector field X defined in some neighborhood
U of O which is locally GAS, then for all ǫ small enough,

∃δ > 0 such that δB ⊂ X(ǫB).

This result, of topological nature, can indeed be seen as a consequence of
Kurzweil Theorem. We refer the reader to the monograph of Sontag [19] for
its proof based on Kurzweil and Brouwer theorems. This property enables us
to deduce the Brockett’s necessary condition.

If there exists a continuous feedback k : U → IRm (k(O) = 0) such that
the closed-loop system (2) is locally GAS, then the result above applies to the
dynamics ẋ = f(x, k(x)), and then we deduce that for all ǫ small enough,

∃δ > 0 such that δB ⊂ f(ǫB, Bm).

This necessary condition gives us an easy way to verify if a given GAC control
system possesses continuous stabilizing feedbacks.

Example 6. The Brockett necessary condition is not satisfied for the nonholo-
nomic integrator defined by (2). It is easy to see that the vector (0, 0, ǫ) is the
set f(x, B2) for x in a neighborhood of the origin.

Example 7. More generally, if the tangent vectors f1(O), · · · , fm(O) are inde-
pendent in TOM (with m < n), then the control system (1) does not satisfy
the Brockett necessary condition.
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3.2 A Global Obstruction

If (1) has a continuous stabilizing feedback, then it admits a smooth control-
Lyapunov function. In fact, this function can be seen as a Morse function
on M with a unique (possibly degenerate) critical point. Indeed, by a result
of Milnor (see [10]), if a manifold M admits such a Morse function, then it
is diffeomorphic to IRn. Therefore, we proved that if a control system has a
continuous stabilizing feedback on M , then the manifold M must be diffeo-
morphic to IRn.

3.3 Consequences

The obstructions above make it impossible to prove the existence of continuous
stabilizing feedbacks for general GAC control systems. Actually, they motivate
the design of new kinds of stabilizing feedbacks and moreover, as we shall see,
it turns out to be essential to consider nonsmooth control-Lyapunov functions.

In order to simplify the statements of the results, we assume from now
that the manifold M is the Euclidean space IRn. Of course, all the results
remain on smooth manifolds.

4 Semiconcave Control-Lyapunov Functions

Let Ω be an open set in IRn. A function g : Ω → IR is said to be semiconcave
on Ω provided it is continuous on Ω and for any x0 ∈ Ω there are constants
ρ, C > 0 such that

1

2
(g(x) + g(y)) − g

(

x + y

2

)

≤ C‖x − y‖2, ∀x, y ∈ x0 + ρBn. (4)

Equivalently, this means that the function g can be written locally as the sum
of a concave function and a smooth (quadratic) function:

g(x) = [g(x) − 4C‖x‖2] + 4C‖x‖2.

Observe that any function of class C2 is semiconcave. Also, any semiconcave
function is locally Lipschitz, since both concave functions and smooth func-
tions have that property. Other classical types of semiconcave functions are
given by the following examples:

Example 8. If S denotes some closed subset of IRn, then the distance function
to the set S is semiconcave on IRn \ S.

Example 9. If φ1, · · · , φp : Ω → IR is a finite family of smooth, then the
function defined by g(x) := min{φ1(x), · · · , φp(x)} is semiconcave on Ω.
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We next consider the notion of a nonsmooth control-Lyapunov function. A
continuous function V : IRn → IR is said to be a control-Lyapunov function
for the control system (1) provided it is a positive definite proper viscosity
supersolution of the Hamilton-Jacobi equation

max
u∈Bm

{−〈f(x, u), DV (x)〉} − V (x) ≥ 0. (5)

In [13] we proved the following result:

Theorem 2. If the control system (1) is GAC, then there exists a control-
Lyapunov function V : M → IR which is continuous on M and semiconcave
on M \ {O}.

Notice that Sontag introduced in his seminal paper [18] a similar notion of
nonsmooth control-Lyapunov function, and proved the equivalence of global
asymptotic controllability and the existence of continuous control-Lyapunov
function. The converse of this result is true. Furthermore, we notice that
whenever a continuous function V : M → IR is semiconcave on M \ {O}, it is
a control-Lyapunov function if and only if it is positive definite, proper and
such that for every x ∈ M \ {0} where V is differentiable, we have

min
u∈Bm

〈∇V (x), f(x, u)〉 ≤ −V (x).

(Note that since V is locally Lipschitz on M \ {O}, it is differentiable almost
everywhere in M .) Let us show, in the following sections, the relevance of the
semiconcave property to the construction of stabilizing feedbacks.

5 Stabilizing Feedbacks

Clarke et al. [6] proved that any GAC control system can be stabilized by
means of a discontinuous stabilizing feedback. Later in [13], we showed that
a semiconcave control-Lyapunov function generates this kind of stabilizing
feedback in a very simple and natural way. (We refer the reader to the Clarke’s
article elsewhere in this volume for the presentation of the construction.) In
the case of control systems that are affine in the control, we proved that in
fact the method that we developed leads to the following result:

Theorem 3. If the control system (1) is GAC, then there exists D an open
dense set of full measure in M \ {O} and a feedback k : M → IRm such that

(i) k is smooth on D; and
(ii) the closed-loop system (2) is GAS in the sense of Carathéodory.

Recall that the closed-loop system (2) is said to be GAS in the sense of
Carathéodory if for every x ∈ IRN the solutions (which are called Carathódory
solutions) of
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ẋ(t) = f(x(t), α(x(t)) a.e. , x(0) = x0,

exist, converge to the origin as t → ∞ and satisfy the property of Lyapunov
stability. This result has been initially proven by Ancona and Bressan (see
[2]) who do not make use of control-Lyapunov functions but paste together
different stabilizing open-loops into what they call a patchy feedback. Al-
though Theorem 3 provides an easy way to design stabilizing feedbacks (in
the sense of Carathéodory), it does not explicitly detail the behavior of the
closed-loop system near the singularities (i.e. the points where the feedback
is not continuous). From now, our aim is to explain how further regularity of
the control-Lyapunov function can improve the above result.

6 A Classification of Singularities in the Plane

In [14], we proved that the nature of the singularities of the stabilizing feedback
given by Theorem 3 can be described very precisely, whenever we work on
surfaces. In this case, we demonstrated that a part of the singular set of a
semiconcave function (that is, the set of points where the function is not
differentiable) can be “stratified” by Lipschitz submanifolds of dimension 1
and by isolated points. This permitted us to achieve the following result (and
then to answer a conjecture of Bressan):

Theorem 4. If M is a smooth manifold of dimension 2 and if the control
system (1) is GAC, then there exists a Carathéodory stabilizing feedback k :
M → IRm with singularities as shown in Figure 2.

Fig. 2. Different types of singularities on surfaces

Unfortunately, the “natural” stratification that appeared in dimension two
cannot be achieved in higher dimensions. Hence, if we want to better under-
stand the behavior of the closed-loop system near its singularities, we have to
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consider nonsmooth control-Lyapunov functions with a stronger property of
semiconcavity.

7 Stratified Semiconcave Control-Lyapunov Functions

Let Ω be an open set of IRn and let g : Ω → IR be a semiconcave function. By
Rademacher’s theorem, we know that g is differentiable almost everywhere in
Ω. Let us denote by Σ(g) the singular set of g, i.e. the set of points of Ω where
g is not differentiable. We can also view Σ(g) as the set of x ∈ Ω such that
dim(∂g(x)) ≥ 1; this point of view leads to a natural partition of the singular
set. As a matter of fact, following more or less the seminal work of Alberti,
Ambrosio and Cannarsa [1], Σ(g) can be written as the disjoint union of n

sets Σk(g) (for k ∈ {1, · · · , N}) defined by

Σk(g) := {x ∈ Ω : dim(∂g(x)) = k}.

Alberti et al. proved that for any k ∈ {1, · · · , N}, the set Σk(u) is countably
Hn−k-rectifiable, i.e. it is contained (up to a Hn−k-negligible set) in a count-
able union of C1 hypersurfaces of dimension N − k. But each set Σk(u) is
certainly not an exact hypersurface (or submanifold) of Ω. That is why we
introduce the concept of stratified semiconcave function.

The semiconcave function g : Ω → IR is said to be stratified semiconcave
(in Ω) if the following conditions are satisfied:

(1) The set Σ(g) is a Whitney stratification1 such that the strata of dimension
N − k are the connected components of Σk(g);

(2) For every stratum S of Σ(g), the set S is a smooth submanifold with
boundary;

(3) For every stratum S of Σ(g), the function g is smooth on S; and
(4) For every x ∈ Σk(g), the set ∂g(x) is a compact convex set of dimension k

with exactly k+1 extreme points ζ1(x), · · · , ζk+1(x). In addition, the maps
ζ1(·), · · · , ζk+1(·) are smooth on Σk(g) and for any stratum S of Σk(g),
they can be smoothly extended to S.

Example 10. Let be given (hi)i∈I a finite family of affine functions in IRN . If
u : IRN → IR is defined by

u := min
i∈I

{hi},

then it is a stratified semiconcave function and moreover it satisfies:

(i) For every k ∈ {1, · · · , N}, the set Σk(u) is a finite disjoint union of open
polyhedra of dimension N − k.

(ii) For every k ∈ {1, · · · , N}, the multivalued map x 7→ ∂u(x) = ∂P u(x) is
constant on each connected component of Σk(u).

1 We refer the reader to our paper [15] for the precise definition of a Whitney
stratification.
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In [15], we showed that every semiconcave function can be approximated
locally by a stratified semiconcave function, in such a way that the proximal
subdifferentials of both functions are very close. Furthermore, by transversal-
ity arguments, we managed to paste together different approximations and to
get the following:

Theorem 5. If the control system (1) is GAC, then there exists a control-
Lyapunov function which is stratified semiconcave on M \ {O}.

Theorem 5 has its own importance, but in fact it appeared to be the
key tool in the construction of AGAS feedbacks. We turn to this feedback
construction next.

8 AGAS Feedbacks

A smooth dynamical system of the form ẋ = X(x) is said to be almost globally
asymptotically stable at the point O (abreviated AGAS) if the two following
properties are satisfied:

1. Almost attractivity: For almost every x ∈ M , the solution of ẋ = X(x)
starting at x converges to O;

2. Lyapunov stability: For each neighborhood V of O, there exists some neigh-
borhood U of O such that if x ∈ U then the solution of ẋ = X(x) starting
at x satisfies x(t) ∈ V , ∀t ≥ 0.

This particular property of stability has been introduced by Rantzer in [11].
The “very” regular control-Lyapunov function given by Theorem 5 permits
us to prove the following result:

Theorem 6. If the control system (1) is GAC, then there exists a continuous
feedback k : M → IRm which is smooth outside the origin, and such that the
closed-loop system (2) is AGAS.

Knowing this theorem, we can wonder if it is possible to detail the nature of
the set (of measure zero) of points which are not stabilized by our smooth
feedback. This set can be proved to be closed and repulsive in some cases.

9 SRS Feedbacks

The feedback k : M → IRm is said to be a smooth repulsive stabilizing feed-
back (called SRS feedback) if the following properties are satisfied:

1. There exists a set S ⊂ M \{O} which is closed in M \{O} and of measure
zero;

2. The feedback k is smooth outside the set S ∪ {O}; and
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3. The closed-loop system (2) is GAS in the sense of Carathéodory;
4. for all t > 0, the trajectories of the closed-loop system do not belong to

the set S.

The first result of existence of SRS feedbacks is a classical fact in sub-
Riemannian geometry. We refer the reader to [9] and [20] for its proof and for
the definition of fat distribution.

Theorem 7. If the distribution defined by the control system (1) is fat, then
the control system admits a SRS feedback.

This theorem applies for instance in the case of the nonholonomic inte-
grator. The second result that we want to highlight is concerned with control
system in dimension three. In [17] we prove the following:

Theorem 8. Assume that n = 3. If the control system (1) satisfies the
Hörmander’s condition at the origin,

Lie {f1, · · · , fm}(0) = IR3,

then there exists a local SRS feedback.

The proof of this result is based on the classification of the singularities
given in Section 6; it does not appear to extendable in greater dimension.
Actually, we do not know if this result hold in dimension greater than three
(or even globally).
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