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Setting

Let M be a smooth compact manifold of dimension n ≥ 2 be
fixed. Let H : T ∗M → R be a Hamiltonian of class C k , with
k ≥ 2, satisfying the following properties:

(H1) Superlinear growth:
For every K ≥ 0, there is C ∗(K ) ∈ R such that

H(x , p) ≥ K |p|+ C ∗(K ) ∀(x , p) ∈ T ∗M .

(H2) Uniform convexity:
For every (x , p) ∈ T ∗M , ∂2H

∂p2 (x , p) is positive definite.
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Critical value of H

Definition

We call critical value of H the constant c = c[H] defined as

c[H] := inf
u∈C1(M;R)

{
max
x∈M

{
H
(
x , du(x)

)}}
.

In other terms, c[H] is the infimum of numbers c ∈ R such
that there is a C 1 function u : M → R satisfying

H
(
x , du(x)

)
≤ c ∀x ∈ M .

Note that

min
x∈M
{H(x , 0)} ≤ c[H] ≤ max

x∈M
{H(x , 0)} .
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Critical subsolutions

Definition

We call critical subsolution any Lipschitz function
u : M → R such that H

(
x , du(x)

)
≤ c[H] for a.e. x ∈ M .

Let L : TM → R be the Tonelli Lagrangian associated with H
by Legendre-Fenchel duality, that is

L(x , v) := max
p∈T∗

x M

{
p · v − H(x , p)

}
∀(x , v) ∈ TM .

Proposition

A Lipschitz function u : M → R is a critical subsolution if and
only if for every Lipschitz curve γ : [a, b]→ M,

u
(
γ(b)

)
− u
(
γ(a)

)
≤
∫ b

a

L
(
γ(t), γ̇(t)

)
ds + c[H] (b − a).
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The weak KAM Theorem
Definition

Given u : M → R and t ≥ 0, Ttu : M → R is defined by

Ttu(x) := min
y∈M
{u(y) + At(y , x)} ,

with At(z , z ′) := inf

{∫ t

0

L
(
γ(s), γ̇(s)

)
ds + c[H] t

}
,

where the infimum is taken over the Lipschitz curves
γ : [0, t]→ M such that γ(0) = z and γ(t) = z ′.

Theorem (Fathi, 1997)

There is a critical subsolution u : M → R such that

Ttu = u ∀t ≥ 0.

It is called a critical or a weak KAM solution of H.
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More on critical solutions

Given a critical solution u : M → R, for every x ∈ M , there is
a curve

γ : (−∞, 0]→ M with γ(0) = x

such that, for any a < b ≤ 0,

u
(
γ(b)

)
− u
(
γ(a)

)
=

∫ b

a

L
(
γ(s), γ̇(s)

)
ds + c(b − a).

Therefore, any restriction of γ minimizes the action between
its end-points. Then, it satisfies the Euler-Lagrange equations.
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Projected Aubry set and Aubry set
Definition and Proposition

The projected Aubry set of H defined as

A(H) = {x ∈ M |At(x , x) = 0} .

is compact and nonempty.

Any critical subsolution u is C 1 at any point of A(H) and
satisfies H

(
x , du(x)

)
= c[H],∀x ∈ A(H).

For every x ∈ A(H), the differential of a critical
subsolution at x does not depend on u.

The Aubry set of H defined by

Ã(H) :=
{(

x , du(x)
)
| x ∈ A(H), u crit. subsol.

}
⊂ T ∗M

is compact, invariant by φH
t , and is a Lipschitz graph over

A(H).
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Questions

Uniqueness (up to constants) of critical solutions ?

Regularity of critical solutions ?

Structure of the Aubry sets ?

Size of the (quotiented) Aubry set ?

Dynamics of the Aubry set ?
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The Mañé Conjecture

Conjecture (Mañé, 96)

For every Tonelli Hamiltonian H : T ∗M → R of class C k (with
k ≥ 2), there is a residual subset (i.e., a countable intersection
of open and dense subsets) G of C k(M) such that, for every
V ∈ G, the Aubry set of the Hamiltonian HV := H + V is
either an equilibrium point or a periodic orbit.

Strategy of proof:

Density result.

Stability result.
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Partial results

Theorem (Figalli-LR, 2011)

Let H : T ∗M → R be a Tonelli Hamiltonian of class C 2. If
there is a critical subsolution sufficiently regular on a
neighborhood of A(H), then for every ε > 0, there exists
V ∈ C 2(M) ,with ‖V ‖C2 < ε such that the Aubry set of
H + V is a hyperbolic periodic orbit.

Theorem (Contreras-Figalli-LR, 2013)

Let H : T ∗M → R be a Tonelli Hamiltonian of class C 2, and
assume that dim M = 2. Then there is an open dense set of
potentials V ⊂ C 2(M) such that, for every V ∈ V , the Aubry
set of H + V is hyperbolic in its energy level.
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Key ingredients of the proof

Green bundles

Nonsmooth analysis

Techniques from closing lemmas

Geometric control theory

Geometric measure theory
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Green bundles I

b

θ

Vθ

b

VφH
−t

(θ)

DφH
−t

(θ)φ
H
t

For every θ ∈ T ∗M and every t ∈ R, we define the Lagrangian
subspace G t

θ ⊂ TθT
∗M by

G t
θ :=

(
φH

t

)
∗

(
VφH

−t(θ)

)
.
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Green bundles II

Definition

For every θ ∈ Ã(H), we define the positive and negative Green
bundles at θ as

G +
θ := lim

t→+∞
G t
θ and G−θ := lim

t→−∞
G t
θ

b

θ

Vθ

G−θ

G+
θ

Ludovic Rifford Generic Aubry sets on surfaces



A dichotomy

Two cases may appear:

For every θ ∈ Ã(H) the Green bundles G−θ and G +
θ are

transverse

 hyperbolicity of Ã(H)

There is θ̄ ∈ Ã(H) such that G−
θ̄

= G +
θ̄

 further regularity for critical solutions
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Further regularity (after Arnaud)

Definition

Let S ⊂ Rk be a compact set which has the origin as a cluster
point. The paratingent cone to S at 0 is the cone defined as

C0(S) :=

{
λ lim

i→∞

xi − yi

|xi − yi |
| λ ∈ R, xi 6= yi

S−→ 0

}
.

Proposition

For every θ ∈ Ã(H), there holds

G−θ � Cθ
(
Ã(H)

)
� G +

θ .

As a consequence, if G−θ = G +
θ for some θ ∈ Ã(H), then

Ã(H) is locally contained in the graph of a Lipschitz 1-form
which is C 1 at θ.
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Closing the Aubry set

Under this additional regularity, given ε > 0, we are able to

a C 2 potential V : M → R with ‖V ‖C2 < ε,

a periodic orbit γ : [0,T ]→ M (γ(0) = γ(T )),

a Lipschitz function v : M → R,

in such a way that the following properties are satisfied:

H
(
x , dv(x)

)
+ V (x) ≤ 0 for a.e. x ∈ M ,∫ T

0
L
(
γ(t), γ̇(t)

)
− V (γ(t)) dt = 0.

This shows that the Aubry set of H + V contains a periodic
orbit.
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Thank you for your attention !!
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