Generic Aubry sets on surfaces

Ludovic Rifford

Université de Nice - Sophia Antipolis & Institut Universitaire de France

Nanjing University (June 10th, 2013)

Let M be a smooth compact manifold of dimension $n \ge 2$ be fixed. Let $\mathbb{H} : T^*M \to \mathbb{R}$ be a Hamiltonian of class C^k , with $k \ge 2$, satisfying the following properties:

- (H1) Superlinear growth: For every $K \ge 0$, there is $C^*(K) \in \mathbb{R}$ such that $H(x,p) \ge K|p| + C^*(K) \quad \forall (x,p) \in T^*M.$
- (H2) **Uniform convexity:** For every $(x, p) \in T^*M$, $\frac{\partial^2 H}{\partial p^2}(x, p)$ is positive definite.

Critical value of H

Definition

We call **critical value** of *H* the constant c = c[H] defined as

$$c[H] := \inf_{u \in C^1(M;\mathbb{R})} \Big\{ \max_{x \in M} \big\{ H\big(x, du(x)\big) \big\} \Big\}.$$

In other terms, c[H] is the infimum of numbers $c \in \mathbb{R}$ such that there is a C^1 function $u: M \to \mathbb{R}$ satisfying

$$H(x, du(x)) \leq c \qquad \forall x \in M.$$

Critical value of H

Definition

We call **critical value** of *H* the constant c = c[H] defined as

$$c[H] := \inf_{u \in C^1(M;\mathbb{R})} \Big\{ \max_{x \in M} \big\{ H\big(x, du(x)\big) \big\} \Big\}.$$

In other terms, c[H] is the infimum of numbers $c \in \mathbb{R}$ such that there is a C^1 function $u: M \to \mathbb{R}$ satisfying

$$H(x, du(x)) \leq c \qquad \forall x \in M.$$

Note that

$$\min_{x\in M} \left\{ H(x,0) \right\} \le c[H] \le \max_{x\in M} \left\{ H(x,0) \right\}.$$

Critical subsolutions

Definition

We call **critical subsolution** any Lipschitz function $u: M \to \mathbb{R}$ such that $H(x, du(x)) \leq c[H]$ for a.e. $x \in M$.

Critical subsolutions

Definition

We call **critical subsolution** any Lipschitz function $u: M \to \mathbb{R}$ such that $H(x, du(x)) \leq c[H]$ for a.e. $x \in M$.

Let $L: TM \to \mathbb{R}$ be the Tonelli Lagrangian associated with H by Legendre-Fenchel duality, that is

$$L(x, v) := \max_{p \in T_x^* M} \Big\{ p \cdot v - H(x, p) \Big\} \quad \forall (x, v) \in TM.$$

Proposition

A Lipschitz function $u : M \to \mathbb{R}$ is a critical subsolution if and only if for every Lipschitz curve $\gamma : [a, b] \to M$,

$$u(\gamma(b)) - u(\gamma(a)) \leq \int_a^b L(\gamma(t), \dot{\gamma}(t)) ds + c[H](b-a).$$

The weak KAM Theorem

Definition

Given $u: M \to \mathbb{R}$ and $t \ge 0$, $\mathcal{T}_t u: M \to \mathbb{R}$ is defined by

$$\mathcal{T}_t u(x) := \min_{y \in M} \left\{ u(y) + A_t(y, x) \right\},$$

with
$$A_t(z,z') := \inf \left\{ \int_0^t L(\gamma(s),\dot{\gamma}(s)) ds + c[H] t \right\}$$

where the infimum is taken over the Lipschitz curves $\gamma : [0, t] \to M$ such that $\gamma(0) = z$ and $\gamma(t) = z'$.

The weak KAM Theorem

Definition

Given $u: M \to \mathbb{R}$ and $t \geq 0$, $\mathcal{T}_t u: M \to \mathbb{R}$ is defined by

$$\mathcal{T}_t u(x) := \min_{y \in M} \left\{ u(y) + A_t(y, x) \right\},$$

with
$$A_t(z,z') := \inf \left\{ \int_0^t L(\gamma(s),\dot{\gamma}(s)) ds + c[H] t \right\}$$

where the infimum is taken over the Lipschitz curves $\gamma : [0, t] \to M$ such that $\gamma(0) = z$ and $\gamma(t) = z'$.

Theorem (Fathi, 1997)

There is a critical subsolution $u: M \to \mathbb{R}$ such that

$$\mathcal{T}_t u = u \qquad \forall t \geq 0.$$

It is called a critical or a weak KAM solution of H.

More on critical solutions

Given a critical solution $u: M \to \mathbb{R}$, for every $x \in M$, there is a curve

$$\gamma: (-\infty, 0] \rightarrow M$$
 with $\gamma(0) = x$

such that, for any $a < b \leq 0$,

$$u(\gamma(b)) - u(\gamma(a)) = \int_a^b L(\gamma(s), \dot{\gamma}(s)) ds + c(b-a).$$

Therefore, any restriction of γ minimizes the action between its end-points. Then, it satisfies the Euler-Lagrange equations.

Definition and Proposition

• The projected Aubry set of H defined as

$$\mathcal{A}(H) = \{x \in M \,|\, A_t(x, x) = 0\}.$$

is compact and nonempty.

Definition and Proposition

• The projected Aubry set of H defined as

$$A(H) = \{x \in M \mid A_t(x, x) = 0\}.$$

is compact and nonempty.

• Any critical subsolution u is C^1 at any point of $\mathcal{A}(H)$ and satisfies $H(x, du(x)) = c[H], \forall x \in \mathcal{A}(H)$.

Definition and Proposition

• The projected Aubry set of H defined as

$$\mathcal{A}(H) = \{x \in M \,|\, A_t(x, x) = 0\}.$$

is compact and nonempty.

- Any critical subsolution u is C^1 at any point of $\mathcal{A}(H)$ and satisfies $H(x, du(x)) = c[H], \forall x \in \mathcal{A}(H)$.
- For every x ∈ A(H), the differential of a critical subsolution at x does not depend on u.

Definition and Proposition

• The **projected Aubry set** of *H* defined as

$$\mathcal{A}(H) = \{x \in M \,|\, A_t(x, x) = 0\}.$$

is compact and nonempty.

- Any critical subsolution u is C^1 at any point of $\mathcal{A}(H)$ and satisfies $H(x, du(x)) = c[H], \forall x \in \mathcal{A}(H)$.
- For every x ∈ A(H), the differential of a critical subsolution at x does not depend on u.
- The Aubry set of H defined by

 $ilde{\mathcal{A}}(H) := ig\{ ig(x, du(x)ig) \, | \, x \in \mathcal{A}(H), u ext{ crit. subsol.} ig\} \subset T^*M$

is compact, invariant by ϕ_t^H , and is a Lipschitz graph over $\mathcal{A}(H)$.

- Uniqueness (up to constants) of critical solutions ?
- Regularity of critical solutions ?
- Structure of the Aubry sets ?
- Size of the (quotiented) Aubry set ?
- Dynamics of the Aubry set ?

Conjecture (Mañé, 96)

For every Tonelli Hamiltonian $H : T^*M \to \mathbb{R}$ of class C^k (with $k \ge 2$), there is a residual subset (i.e., a countable intersection of open and dense subsets) \mathcal{G} of $C^k(M)$ such that, for every $V \in \mathcal{G}$, the Aubry set of the Hamiltonian $H_V := H + V$ is either an equilibrium point or a periodic orbit.

Conjecture (Mañé, 96)

For every Tonelli Hamiltonian $H : T^*M \to \mathbb{R}$ of class C^k (with $k \ge 2$), there is a residual subset (i.e., a countable intersection of open and dense subsets) \mathcal{G} of $C^k(M)$ such that, for every $V \in \mathcal{G}$, the Aubry set of the Hamiltonian $H_V := H + V$ is either an equilibrium point or a periodic orbit.

Strategy of proof:

- Density result.
- Stability result.

Theorem (Figalli-LR, 2011)

Let $H : T^*M \to \mathbb{R}$ be a Tonelli Hamiltonian of class C^2 . If there is a critical subsolution sufficiently regular on a neighborhood of $\mathcal{A}(H)$, then for every $\epsilon > 0$, there exists $V \in C^2(M)$, with $||V||_{C^2} < \epsilon$ such that the Aubry set of H + V is a hyperbolic periodic orbit.

Theorem (Figalli-LR, 2011)

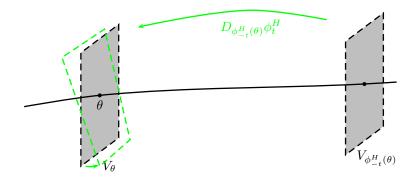
Let $H : T^*M \to \mathbb{R}$ be a Tonelli Hamiltonian of class C^2 . If there is a critical subsolution sufficiently regular on a neighborhood of $\mathcal{A}(H)$, then for every $\epsilon > 0$, there exists $V \in C^2(M)$, with $||V||_{C^2} < \epsilon$ such that the Aubry set of H + V is a hyperbolic periodic orbit.

Theorem (Contreras-Figalli-LR, 2013)

Let $H : T^*M \to \mathbb{R}$ be a Tonelli Hamiltonian of class C^2 , and assume that dim M = 2. Then there is an open dense set of potentials $\mathcal{V} \subset C^2(M)$ such that, for every $V \in \mathcal{V}$, the Aubry set of H + V is hyperbolic in its energy level.

- Green bundles
- Nonsmooth analysis
- Techniques from closing lemmas
- Geometric control theory
- Geometric measure theory

Green bundles I



For every $\theta \in T^*M$ and every $t \in \mathbb{R}$, we define the Lagrangian subspace $G_{\theta}^t \subset T_{\theta}T^*M$ by

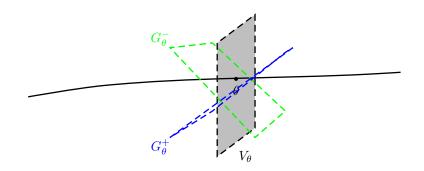
$$G_{\theta}^{t} := \left(\phi_{t}^{H}\right)_{*} \left(V_{\phi_{-t}^{H}(\theta)}\right).$$

Green bundles II

Definition

For every $\theta \in \tilde{\mathcal{A}}(H)$, we define the positive and negative Green bundles at θ as

$$G^+_ heta := \lim_{t o +\infty} G^t_ heta$$
 and $G^-_ heta := \lim_{t o -\infty} G^t_ heta$



Two cases may appear:

• For every $\theta \in \tilde{\mathcal{A}}(H)$ the Green bundles G_{θ}^{-} and G_{θ}^{+} are transverse

• There is
$$ar{ heta}\in ilde{\mathcal{A}}(H)$$
 such that $G^-_{ar{ heta}}=G^+_{ar{ heta}}$

Two cases may appear:

For every θ ∈ Ã(H) the Green bundles G⁻_θ and G⁺_θ are transverse → hyperbolicity of Ã(H)

• There is
$$ar{ heta}\in ilde{\mathcal{A}}(H)$$
 such that $G^-_{ar{ heta}}=G^+_{ar{ heta}}$

Two cases may appear:

- For every θ ∈ Ã(H) the Green bundles G⁻_θ and G⁺_θ are transverse → hyperbolicity of Ã(H)
- There is $\bar{\theta} \in \tilde{\mathcal{A}}(H)$ such that $G_{\bar{\theta}}^- = G_{\bar{\theta}}^+$ \rightsquigarrow further regularity for critical solutions

Further regularity (after Arnaud)

Definition

Let $S \subset \mathbb{R}^k$ be a compact set which has the origin as a cluster point. The **paratingent cone** to *S* at 0 is the cone defined as

$$C_0(S) := \left\{ \lambda \lim_{i \to \infty} \frac{x_i - y_i}{|x_i - y_i|} \mid \lambda \in \mathbb{R}, x_i \neq y_i \xrightarrow{S} 0 \right\}.$$

Further regularity (after Arnaud)

Definition

Let $S \subset \mathbb{R}^k$ be a compact set which has the origin as a cluster point. The **paratingent cone** to *S* at 0 is the cone defined as

$$C_0(S) := \left\{ \lambda \lim_{i \to \infty} \frac{x_i - y_i}{|x_i - y_i|} \mid \lambda \in \mathbb{R}, x_i \neq y_i \xrightarrow{S} 0 \right\}.$$

Proposition

For every $\theta \in \tilde{\mathcal{A}}(H)$, there holds

$$G_{\theta}^{-} \preceq C_{\theta} \left(\tilde{\mathcal{A}}(H) \right) \preceq G_{\theta}^{+}.$$

Further regularity (after Arnaud)

Definition

Let $S \subset \mathbb{R}^k$ be a compact set which has the origin as a cluster point. The **paratingent cone** to S at 0 is the cone defined as

$$C_0(S) := \left\{ \lambda \lim_{i \to \infty} \frac{x_i - y_i}{|x_i - y_i|} \mid \lambda \in \mathbb{R}, x_i \neq y_i \xrightarrow{S} 0 \right\}.$$

Proposition

For every $\theta \in \tilde{\mathcal{A}}(H)$, there holds

$$G_{\theta}^{-} \preceq C_{\theta} \left(\widetilde{\mathcal{A}}(H) \right) \preceq G_{\theta}^{+}.$$

As a consequence, if $G_{\theta}^{-} = G_{\theta}^{+}$ for some $\theta \in \tilde{\mathcal{A}}(H)$, then $\tilde{\mathcal{A}}(H)$ is locally contained in the graph of a Lipschitz 1-form which is C^{1} at θ .

Under this additional regularity, given $\epsilon > 0$, we are able to

- a C^2 potential $V: M \to \mathbb{R}$ with $||V||_{C^2} < \epsilon$,
- a periodic orbit $\gamma : [0, T] \rightarrow M \ (\gamma(0) = \gamma(T)),$
- a Lipschitz function $v: M \to \mathbb{R}$,

in such a way that the following properties are satisfied:

•
$$H(x, dv(x)) + V(x) \le 0$$
 for a.e. $x \in M$
• $\int_0^T L(\gamma(t), \dot{\gamma}(t)) - V(\gamma(t)) dt = 0.$

Under this additional regularity, given $\epsilon > 0$, we are able to

- a C^2 potential $V: M \to \mathbb{R}$ with $\|V\|_{C^2} < \epsilon$,
- a periodic orbit $\gamma : [0, T] \to M \ (\gamma(0) = \gamma(T)),$
- a Lipschitz function $v: M \to \mathbb{R}$,

in such a way that the following properties are satisfied:

•
$$H(x, dv(x)) + V(x) \le 0$$
 for a.e. $x \in M$,
• $\int_0^T L(\gamma(t), \dot{\gamma}(t)) - V(\gamma(t)) dt = 0.$

This shows that the Aubry set of H + V contains a periodic orbit.

Thank you for your attention !!