
Geometric control and dynamical systems

Ludovic Rifford
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Control of an inverted pendulum
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Control systems

A general control system has the form

ẋ = f (x , u)

where
x is the state in M
u is the control in U

Proposition

Under classical assumptions on the datas, for every x ∈ M and
every measurable control u : [0,T ]→ U the Cauchy problem{

ẋ(t) = f
(
x(t), u(t)

)
a.e. t ∈ [0,T ],

x(0) = x

admits a unique solution

x(·) = x(·; x , u) : [0,T ] 7−→ M .
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Controllability issues

Given two points x1, x2 in the state space M and T > 0, can
we find a control u such that the solution of{

ẋ(t) = f
(
x(t), u(t)

)
a.e. t ∈ [0,T ]

x(0) = x1

satisfies
x(T ) = x2 ?

b
x1

b
x2
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The Kupka-Smale Theorem for vector fields

Theorem (Kupka ’63, Smale ’63)

Let M be a smooth compact manifold . For C k (k ≥ 1) vector
fields on M, the following properties are generic:

1. All closed orbits are hyperbolic.

2. Heteroclinic orbits are transversal, i.e. the intersections of
stable and unstable manifolds of closed hyperbolic orbits
are transversal.

b
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Mañé generic Hamiltonians

Let M be a smooth compact manifold and let T ∗M be its
cotangent bundle equipped with the canonical symplectic form.

Let H : T ∗M → R be an Hamiltonian of class at least C 2 and
XH be the associated Hamiltonian vector field which reads (in
local coordinates)

XH(x , p) =

(
∂H

∂p
(x , p),−∂H

∂x
(x , p)

)
.

Definition

Given an Hamiltonian H : T ∗M → R, a property is called C k

Mañé generic if there is a residual set G in C k(M ; R) such
that the property holds for any H + V with V ∈ G.
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Statement of the result

Theorem (Rifford-Ruggiero ’10)

Let H : T ∗M → R be a Tonelli Hamiltonian of class C k with
k ≥ 2. The following properties are C k Mañé generic:

1. Each closed orbit is either hyperbolic or no eigenvalue of
the Poincaré transform of any closed orbit is a root of
unity.

2. Heteroclinic orbits are trasnversal, i.e. the intersections of
stable and unstable manifolds of closed hyperbolic orbits
are transversal.

Recall that H is Tonelli if it is superlinear and uniformly
convex in the fibers.
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The Poincaré map

Let θ̄ = (x̄ , p̄) be a periodic point for the Hamiltonian flow of
positive period T > 0. Fix a local section Σ which is
transversal to the flow at θ̄ and contained in the energy level
of θ̄.

Then consider the Poincaré first return map

P : Σ −→ Σ
θ 7−→ φH

τ(θ)(θ),

which is a local diffeomorphism and for which θ̄ is a fixed
point.

The Poincaré map is symplectic, i.e. it preserves the restriction
of the symplectic form to TθΣ.
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The symplectic group

Let Sp(m) be the symplectic group in M2m(R) (m = n − 1),
that is the smooth submanifold of matrices X ∈ M2m(R)
satisfying

X ∗JX = J where J :=

[
0 Im
−Im 0

]
.

Choosing a convenient set of coordinates, the differential of
the Poincaré map is the symplectic matrix X (T ) where
X : [0,T ]→ Sp(m) is solution to the Cauchy problem{

Ẋ (t) = A(t)X (t) ∀t ∈ [0,T ],
X (0) = I2m,

where A(t) has the form

A(t) =

(
0 Im

−K (t) 0

)
∀t ∈ [0,T ].
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Perturbation of the Poincaré map

Let γ be the projection of the periodic orbit passing through θ̄,
we are looking for a potential

V : M −→ R

satisfying the following properties

V
(
γ(t)

)
= 0, dV

(
γ(t)

)
= 0,

with
d2V

(
γ(t)

)
free.

=⇒ d2V
(
γ(t)

)
is the control.

Ludovic Rifford Geometric control and dynamical systems



Perturbation of the Poincaré map
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A controllability problem on Sp(m)

The Poincaré map at time T associated with the new
Hamiltonian

H + V

is given by Xu(T ) where Xu : [0,T ]→ Sp(m) is solution to
the control problem{

Ẋu(t) = A(t)Xu(t) +
∑m

i≤j=1 uij(t)E(ij)Xu(t), ∀t ∈ [0,T ],

X (0) = I2m,

where the 2m × 2m matrices E(ij) are defined by

E(ij) :=

(
0 0

E (ij) 0

)
,

with

{
(E (ii))k,l := δikδil ∀i = 1, . . . ,m,

(E (ij))k,l = δikδjl + δilδjk ∀i < j = 1, . . . ,m.
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The End-Point mapping

We have to study the mapping

E : C∞
(
[0, τ ]; Rm(m+1)/2

)
−→ Sp(m)

u 7−→ Xu(T ).

If we can show that E is a submersion at u = 0, we are done.
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First-order controllability
Lemma

Assume that there is t̄ ∈ [0,T ] such that

dim
(

Span
{

[E (ij),K (t̄)] | i , j ∈ {1, . . . ,m}, i < j
})

=
m(m − 1)

2
.

Then we can reach a neighborhood of X0(T ).

Lemma

The set of matrices K ∈ S(m) such that

dim
(

Span
{

[E (ij),K ] | i , j ∈ {1, . . . ,m}, i < j
})

=
m(m − 1)

2

is open and dense in S(m).
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Thank you for your attention !!
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