The Sard Conjecture on Martinet Surfaces

Ludovic Rifford

Université Nice Sophia Antipolis & CIMPA

Pan African Congress of Mathematicians 2017 Mohammed V University in Rabat July 3-7, 2017

Sub-Riemannian structures

Let M be a smooth connected manifold of dimension n.

Definition

A sub-Riemannian structure of rank m in M is given by a pair (Δ, g) where:

 ∆ is a totally nonholonomic distribution of rank m ≤ n on M which is defined locally by

$$\Delta(x) = {\sf Span}\Big\{X^1(x),\ldots,X^m(x)\Big\} \subset T_xM,$$

where X^1, \ldots, X^m is a family of *m* linearly independent smooth vector fields satisfying the **Hörmander** condition.

• g_x is a scalar product over $\Delta(x)$.

The Hörmander condition

We say that a family of smooth vector fields X^1, \ldots, X^m , satisfies the **Hörmander condition** if

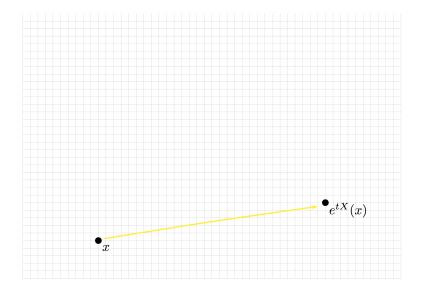
 $\operatorname{Lie}\left\{X^{1},\ldots,X^{m}\right\}(x)=T_{x}M\qquad\forall x,$

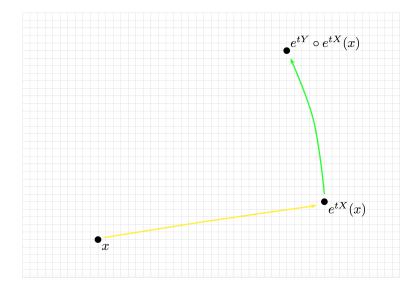
where Lie $\{X^1, \ldots, X^m\}$ denotes the Lie algebra generated by X^1, \ldots, X^m , *i.e.* the smallest subspace of smooth vector fields that contains all the X^1, \ldots, X^m and which is stable under Lie brackets.

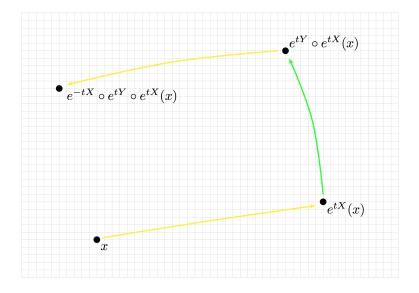
Reminder

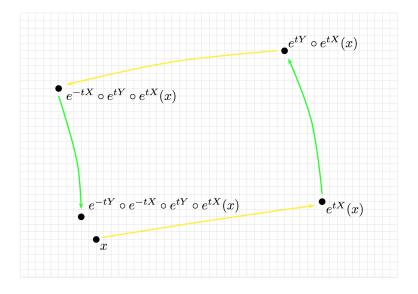
Given smooth vector fields X, Y in \mathbb{R}^n , the Lie bracket [X, Y]at $x \in \mathbb{R}^n$ is defined by

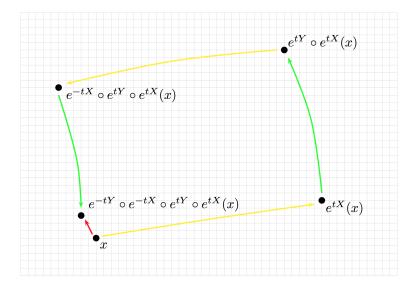
$$[X, Y](x) = DY(x)X(x) - DX(x)Y(x).$$







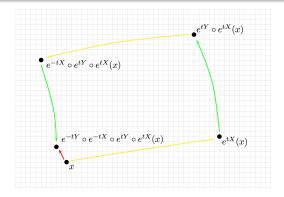




Exercise

There holds

$$[X,Y](x) = \lim_{t\downarrow 0} \frac{\left(e^{-tY} \circ e^{-tX} \circ e^{tY} \circ e^{tX}\right)(x) - x}{t^2}.$$



The Chow-Rashevsky Theorem

Definition

We call **horizontal path** any $\gamma \in W^{1,2}([0,1]; M)$ such that

$$\dot{\gamma}(t)\in\Delta(\gamma(t))$$
 a.e. $t\in[0,1].$

The Chow-Rashevsky Theorem

Definition

We call **horizontal path** any $\gamma \in W^{1,2}([0,1]; M)$ such that

 $\dot{\gamma}(t)\in\Delta(\gamma(t))$ a.e. $t\in[0,1].$

The following result is the cornerstone of the sub-Riemannian geometry. (Recall that M is assumed to be connected.)

Theorem (Chow-Rashevsky, 1938)

Let Δ be a totally nonholonomic distribution on M, then every pair of points can be joined by an horizontal path.

The Chow-Rashevsky Theorem

Definition

We call **horizontal path** any $\gamma \in W^{1,2}([0,1]; M)$ such that

 $\dot{\gamma}(t)\in\Delta(\gamma(t))$ a.e. $t\in[0,1].$

The following result is the cornerstone of the sub-Riemannian geometry. (Recall that M is assumed to be connected.)

Theorem (Chow-Rashevsky, 1938)

Let Δ be a totally nonholonomic distribution on M, then every pair of points can be joined by an horizontal path.

Since the distribution is equipped with a metric, we can measure the lengths of horizontal paths and consequently we can associate a metric with the sub-Riemannian structure.

Example (Riemannian case)

Every Riemannian manifold (M, g) gives rise to a sub-Riemannian structure with $\Delta = TM$.

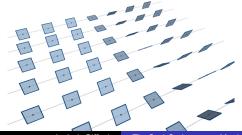
Example (Riemannian case)

Every Riemannian manifold (M,g) gives rise to a sub-Riemannian structure with $\Delta = TM$.

Example (Heisenberg)

In
$$\mathbb{R}^3$$
, $\Delta = Span\{X^1, X^2\}$ with

$$X^1 = \partial_x, \quad X^2 = \partial_y + x \partial_z \quad et \quad g = dx^2 + dy^2.$$



Ludovic Rifford The Sard Conjecture on Martinet Surfaces

Example (Martinet)

In \mathbb{R}^3 , $\Delta = Span\{X^1, X^2\}$ with

$$X^1 = \partial_x, \quad X^2 = \partial_y + x^2 \partial_z.$$

Since $[X^1, X^2] = 2x\partial_z$ and $[X^1, [X^1, X^2]] = 2\partial_z$, only one bracket is sufficient to generate \mathbb{R}^3 if $x \neq 0$, however we needs two brackets if x = 0.

Example (Martinet)

In \mathbb{R}^3 , $\Delta = Span\{X^1, X^2\}$ with

$$X^1 = \partial_x, \quad X^2 = \partial_y + x^2 \partial_z.$$

Since $[X^1, X^2] = 2x\partial_z$ and $[X^1, [X^1, X^2]] = 2\partial_z$, only one bracket is sufficient to generate \mathbb{R}^3 if $x \neq 0$, however we needs two brackets if x = 0.

Example (Rank 2 distribution in dimension 4)

In \mathbb{R}^4 , $\Delta = Span\{X^1, X^2\}$ with

$$X^1 = \partial_x, \quad X^2 = \partial_y + x \partial_z + z \partial_w$$

satisfies $Vect{X^1, X^2, [X^1, X^2], [[X^1, X^2], X^2]} = \mathbb{R}^4$.

The sub-Riemannian distance

The ${\bf length}$ of an horizontal path γ is defined by

$$\mathsf{length}^{g}(\gamma) := \int_{0}^{T} |\dot{\gamma}(t)|^{g}_{\gamma(t)} dt.$$

Definition

Given $x, y \in M$, the **sub-Riemannian distance** between x and y is defined by

$$d_{SR}(x,y) := \inf \Big\{ \operatorname{length}^{g}(\gamma) \, | \, \gamma \, \operatorname{hor.}, \gamma(0) = x, \gamma(1) = y \Big\}.$$

The sub-Riemannian distance

The length of an horizontal path γ is defined by

$$\mathsf{length}^{g}(\gamma) := \int_{0}^{T} |\dot{\gamma}(t)|^{g}_{\gamma(t)} dt.$$

Definition

Given $x, y \in M$, the **sub-Riemannian distance** between x and y is defined by

$$d_{SR}(x,y) := \inf \Big\{ \operatorname{length}^{g}(\gamma) \, | \, \gamma \, \operatorname{hor.}, \gamma(0) = x, \gamma(1) = y \Big\}.$$

Proposition

The manifold M equipped with the distance d_{SR} is a metric space whose topology coincides the one of M (as a manifold).

Sub-Riemannian geodesics

Definition

Given $x, y \in M$, we call **minimizing horizontal path** between x and y any horizontal path $\gamma : [0, 1] \to M$ joining x to y satisfying $d_{SR}(x, y) = \text{length}^g(\gamma)$.

Sub-Riemannian geodesics

Definition

Given $x, y \in M$, we call **minimizing horizontal path** between x and y any horizontal path $\gamma : [0, 1] \to M$ joining x to y satisfying $d_{SR}(x, y) = \text{length}^g(\gamma)$.

The **energy** of the horizontal path $\gamma : [0,1] \rightarrow M$ is given by

$$\operatorname{ener}^{g}(\gamma) := \int_{0}^{1} \left(|\dot{\gamma}(t)|_{\gamma(t)}^{g}
ight)^{2} dt.$$

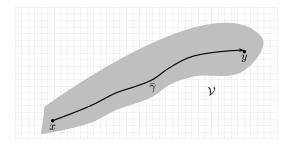
Definition

We call **minimizing geodesic** between x and y any horizontal path $\gamma : [0, 1] \rightarrow M$ joining x to y such that

$$d_{SR}(x,y)^2 = \operatorname{ener}^g(\gamma).$$

Let $x, y \in M$ and $\bar{\gamma}$ be a **minimizing geodesic** between xand y be fixed. The SR structure admits an orthonormal parametrization along $\bar{\gamma}$, which means that there exists a neighborhood \mathcal{V} of $\bar{\gamma}([0, 1])$ and an orthonomal family of mvector fields X^1, \ldots, X^m such that

 $\Delta(z) = \operatorname{Span}\left\{X^1(z), \dots, X^m(z)\right\} \quad \forall z \in \mathcal{V}.$



There exists a control $\bar{u} \in L^2([0,1];\mathbb{R}^m)$ such that

$$\dot{\bar{\gamma}}(t) = \sum_{i=1}^{m} \overline{u}_i(t) X^i(\bar{\gamma}(t))$$
 a.e. $t \in [0,1].$

There exists a control $\bar{u} \in L^2([0,1];\mathbb{R}^m)$ such that

$$\dot{\bar{\gamma}}(t) = \sum_{i=1}^{m} ar{u}_i(t) \, X^iig(ar{\gamma}(t)ig) \qquad ext{a.e.} \ t \in [0,1].$$

Moreover, any control $u \in U \subset L^2([0, 1]; \mathbb{R}^m)$ (*u* sufficiently close to \overline{u}) gives rise to a trajectory γ_u solution of

$$\dot{\gamma}_u = \sum_{i=1}^m u^i X^i (\gamma_u) \quad ext{sur } [0, T], \quad \gamma_u(0) = x.$$

There exists a control $\bar{u} \in L^2([0,1];\mathbb{R}^m)$ such that

$$\dot{ar{\gamma}}(t) = \sum_{i=1}^m ar{u}_i(t) \, X^iig(ar{\gamma}(t)ig) \qquad ext{a.e.} \ t\in[0,1].$$

Moreover, any control $u \in U \subset L^2([0, 1]; \mathbb{R}^m)$ (*u* sufficiently close to \overline{u}) gives rise to a trajectory γ_u solution of

$$\dot{\gamma}_u = \sum_{i=1}^m u^i X^i (\gamma_u) \quad \text{sur } [0, T], \quad \gamma_u(0) = x.$$

Furthermore, for every horizontal path $\gamma : [0, 1] \to \mathcal{V}$ there exists a unique control $u \in L^2([0, 1]; \mathbb{R}^m)$ for which the above equation is satisfied.

Consider the End-Point mapping

$$E^{\mathbf{x},1} : L^2([0,1]; \mathbb{R}^m) \longrightarrow M$$

defined by

$$\mathsf{E}^{\mathsf{x},1}(\mathbf{u}) := \gamma_{\mathbf{u}}(1),$$

and set $C(u) = ||u||_{L^2}^2$, then \bar{u} is a solution to the following optimization problem with constraints:

Consider the End-Point mapping

$$E^{\mathbf{x},1} : L^2([0,1]; \mathbb{R}^m) \longrightarrow M$$

defined by

$$\mathsf{E}^{\mathsf{x},1}(\mathbf{u}) := \gamma_{\mathbf{u}}(1),$$

and set $C(u) = ||u||_{L^2}^2$, then \bar{u} is a solution to the following optimization problem with constraints:

 \overline{u} minimize C(u) among all $u \in \mathcal{U}$ s.t. $E^{\times,1}(u) = y$.

Consider the End-Point mapping

$$E^{\mathbf{x},1} : L^2([0,1]; \mathbb{R}^m) \longrightarrow M$$

defined by

$$\mathsf{E}^{\mathsf{x},1}(\mathbf{u}) := \gamma_{\mathbf{u}}(1),$$

and set $C(u) = ||u||_{L^2}^2$, then \bar{u} is a solution to the following optimization problem with constraints:

 \bar{u} minimize C(u) among all $u \in \mathcal{U}$ s.t. $E^{\times,1}(u) = y$.

(Since the family X^1, \ldots, X^m is orthonormal, we have

$$\operatorname{ener}^{g}(\gamma_{u}) = C(u) \quad \forall u \in \mathcal{U}.)$$

Proposition (Lagrange Multipliers)

There exist $p \in T_y^*M \simeq (\mathbb{R}^n)^*$ and $\lambda_0 \in \{0,1\}$ with $(\lambda_0, p) \neq (0, 0)$ such that

$$p \cdot d_{\overline{u}} E^{\times,1} = \lambda_0 d_{\overline{u}} C.$$

Proposition (Lagrange Multipliers)

There exist $p \in T_y^*M \simeq (\mathbb{R}^n)^*$ and $\lambda_0 \in \{0,1\}$ with $(\lambda_0, p) \neq (0, 0)$ such that

$$p \cdot d_{\overline{u}} E^{\times,1} = \lambda_0 d_{\overline{u}} C.$$

As a matter of fact, the function given by

$$\Phi(u) := (C(u), E^{x,1}(u))$$

cannot be a submersion at \bar{u} . Otherwise $D_{\bar{u}}\Phi$ would be surjective and so open at \bar{u} , which means that the image of Φ would contain some points of the form $(C(\bar{u}) - \delta, y)$ with $\delta > 0$ small.

 \rightsquigarrow Two cases may appear: $\lambda_0 = 1$ or $\lambda_0 = 0$.

First case : $\lambda_0 = 1$

This is the good case, the Riemannian-like case. The minimizing geodesic can be shown to be solution of a geodesic equation. It is smooth, there is a "geodesic flow"...

Second case : $\lambda_0 = 0$

In this case, we have

$$p \cdot D_{\overline{u}} E^{\times,1} = 0$$
 with $p \neq 0$,

which means that \bar{u} is **singular** as a critical point of the mapping $E^{\times,1}$.

First case : $\lambda_0 = 1$

This is the good case, the Riemannian-like case. The minimizing geodesic can be shown to be solution of a geodesic equation. It is smooth, there is a "geodesic flow"...

Second case : $\lambda_0 = 0$

In this case, we have

$$p \cdot D_{\overline{u}} E^{\times,1} = 0$$
 with $p \neq 0$,

which means that \bar{u} is **singular** as a critical point of the mapping $E^{\times,1}$.

 \rightsquigarrow As shown by R. Montgomery, the case $\lambda_0=0$ cannot be ruled out.

Singular horizontal paths and Examples

Definition

An horizontal path is called **singular** if it is, through the correspondence $\gamma \leftrightarrow u$, a critical point of the End-Point mapping $E^{x,1}: L^2 \to M$.

Singular horizontal paths and Examples

Definition

An horizontal path is called **singular** if it is, through the correspondence $\gamma \leftrightarrow u$, a critical point of the End-Point mapping $E^{x,1}: L^2 \to M$.

Example 1: Riemannian case Let $\Delta(x) = T_x M$, any path in $W^{1,2}$ is horizontal. There are no singular curves.

Singular horizontal paths and Examples

Definition

An horizontal path is called **singular** if it is, through the correspondence $\gamma \leftrightarrow u$, a critical point of the End-Point mapping $E^{x,1}: L^2 \to M$.

Example 1: Riemannian case Let $\Delta(x) = T_x M$, any path in $W^{1,2}$ is horizontal. There are no singular curves.

Definition

An horizontal path is called **singular** if it is, through the correspondence $\gamma \leftrightarrow u$, a critical point of the End-Point mapping $E^{x,1}: L^2 \to M$.

Example 1: Riemannian case Let $\Delta(x) = T_x M$, any path in $W^{1,2}$ is horizontal. There are no singular curves.

Example 2: Heisenberg, fat distributions In \mathbb{R}^3 , Δ given by $X^1 = \partial_x, X^2 = \partial_y + x\partial_z$ does not admin nontrivial singular horizontal paths.

Examples

Example 3: Martinet-like distributions In \mathbb{R}^3 , let $\Delta = \text{Vect}\{X^1, X^2\}$ with X^1, X^2 of the form

$$X^1=\partial_{x_1} \quad ext{and} \quad X^2=\left(1+x_1\phi(x)
ight)\partial_{x_2}+x_1^2\partial_{x_3},$$

where ϕ is a smooth function and let g be a metric over Δ .

Examples

Example 3: Martinet-like distributions In \mathbb{R}^3 , let $\Delta = \text{Vect}\{X^1, X^2\}$ with X^1, X^2 of the form

$$X^1=\partial_{x_1} \quad ext{and} \quad X^2=\left(1+x_1\phi(x)
ight)\partial_{x_2}+x_1^2\partial_{x_3},$$

where ϕ is a smooth function and let g be a metric over Δ .

Theorem (Montgomery)

There exists $\overline{\epsilon} > 0$ such that for every $\epsilon \in (0, \overline{\epsilon})$, the singular horizontal path

$$\gamma(t) = (0, t, 0) \qquad \forall t \in [0, \epsilon],$$

is minimizing (w.r.t. g) among all horizontal paths joining 0 to $(0, \epsilon, 0)$.

Examples

Example 3: Martinet-like distributions In \mathbb{R}^3 , let $\Delta = \text{Vect}\{X^1, X^2\}$ with X^1, X^2 of the form

$$X^1=\partial_{x_1} \quad ext{and} \quad X^2=\left(1+x_1\phi(x)
ight)\partial_{x_2}+x_1^2\partial_{x_3},$$

where ϕ is a smooth function and let g be a metric over Δ .

Theorem (Montgomery)

There exists $\overline{\epsilon} > 0$ such that for every $\epsilon \in (0, \overline{\epsilon})$, the singular horizontal path

$$\gamma(t) = (0, t, 0) \qquad \forall t \in [0, \epsilon],$$

is minimizing (w.r.t. g) among all horizontal paths joining 0 to $(0, \epsilon, 0)$. Moreover, if $\{X^1, X^2\}$ is orthonormal w.r.t. g and $\phi(0) \neq 0$, then γ is not the projection of a normal extremal $(\lambda_0 = 1)$.

The Sard Conjectures

Let (Δ, g) be a SR structure on M and $x \in M$ be fixed.

 $\mathcal{S}^{x}_{\Delta,\min^{g}} = \{\gamma(1)|\gamma:[0,1] \to M, \gamma(0) = x, \gamma \text{ hor., sing., min.}\}.$

Conjecture (SR or minimizing Sard Conjecture)

The set $\mathcal{S}^{\mathsf{x}}_{\Delta,\min^{g}}$ has Lebesgue measure zero.

The Sard Conjectures

Let (Δ, g) be a SR structure on M and $x \in M$ be fixed.

 $\mathcal{S}^{\mathsf{x}}_{\Delta,\min^{g}} = \{\gamma(1)|\gamma:[0,1] \to \mathcal{M}, \gamma(0) = \mathsf{x}, \gamma \text{ hor., sing., min.}\}.$

Conjecture (SR or minimizing Sard Conjecture)

The set $\mathcal{S}^{\mathsf{x}}_{\Delta,\min^{g}}$ has Lebesgue measure zero.

 $\mathcal{S}^{\mathsf{x}}_{\Delta} = \{\gamma(1) | \gamma : [0,1] \to M, \gamma(0) = x, \gamma \text{ hor., sing.} \}.$

Conjecture (Sard Conjecture)

The set $\mathcal{S}^{\times}_{\Delta}$ has Lebesgue measure zero.

The Brown-Morse-Sard Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a function of class C^k .

Definition

- We call critical point of f any x ∈ ℝⁿ such that d_xf : ℝⁿ → ℝ^m is not surjective and we denote by C_f the set of critical points of f.
- We call **critical value** any element of $f(C_f)$. The elements of $\mathbb{R}^m \setminus f(C_f)$ are called **regular values**.

The Brown-Morse-Sard Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a function of class C^k .

Definition

- We call critical point of f any x ∈ ℝⁿ such that d_xf : ℝⁿ → ℝ^m is not surjective and we denote by C_f the set of critical points of f.
- We call **critical value** any element of $f(C_f)$. The elements of $\mathbb{R}^m \setminus f(C_f)$ are called **regular values**.

H.C. Marston Morse

(1892-1977)

Arthur B. Brown

(1905-1999)

Anthony P. Morse

Arthur Sard

(1909-1980)

Ludovic Rifford

(1911-1984)

The Sard Conjecture on Martinet Surfaces

The Brown-Morse-Sard Theorem

Theorem (Arthur B. Brown, 1935)

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be of class C^k . If $k = \infty$ (or large enough) then $f(C_f)$ has empty interior.

Theorem (Anthony P. Morse, 1939)

Assume that m = 1 and $k \ge m$, then $f(C_f)$ has Lebesgue measure zero.

Theorem (Arthur Sard, 1942)

If
$$k \geq \max\{1, n-m+1\}$$
, $\mathcal{L}^m(f(C_f)) = 0$.

Remark

Thanks to a construction by Hassler Whitney (1935), the assumption in Sard's theorem is sharp.

Infinite dimension (Bates-Moreira, 2001)

The Sard Theorem is false in infinite dimension. Let $f: \ell^2 \to \mathbb{R}$ be defined by

$$f\left(\sum_{n=1}^{\infty} x_n e_n\right) = \sum_{n=1}^{\infty} \left(3 \cdot 2^{-n/3} x_n^2 - 2x_n^3\right).$$

The function f is polynomial $(f^{(4)} \equiv 0)$ with critical set

$$C(f) = \left\{ \sum_{n=1}^{\infty} x_n e_n \, | \, x_n \in \{0, 2^{-n/3}\} \right\},\,$$

Infinite dimension (Bates-Moreira, 2001)

The Sard Theorem is false in infinite dimension. Let $f : \ell^2 \to \mathbb{R}$ be defined by

$$f\left(\sum_{n=1}^{\infty} x_n e_n\right) = \sum_{n=1}^{\infty} \left(3 \cdot 2^{-n/3} x_n^2 - 2x_n^3\right).$$

The function f is polynomial $(f^{(4)} \equiv 0)$ with critical set

$$C(f) = \left\{ \sum_{n=1}^{\infty} x_n e_n \, | \, x_n \in \{0, 2^{-n/3}\} \right\},\,$$

and critical values

$$f(C(f)) = \left\{ \sum_{n=1}^{\infty} \delta_n 2^{-n} \, | \, \delta_n \in \{0,1\} \right\} = [0,1].$$

Back to the Sard Conjecture

Let (Δ, g) be a SR structure on M and $x \in M$ be fixed. Set

$$\Delta^{\perp} := \Big\{ (x, p) \in T^*M \, | \, p \perp \Delta(x) \Big\} \subset T^*M$$

and (we assume here that Δ is generated by m vector fields X^1, \ldots, X^m) define

 $\vec{\Delta}(x,p) := \operatorname{Span}\left\{\vec{h}^{1}(x,p), \dots, \vec{h}^{m}(x,p)\right\} \quad \forall (x,p) \in T^{*}M,$ where $h^{i}(x,p) = p \cdot X^{i}(x)$ and \vec{h}^{i} is the associated Hamiltonian vector field in $T^{*}M$.

Back to the Sard Conjecture

Let (Δ,g) be a SR structure on M and $x \in M$ be fixed. Set

$$\Delta^{\perp} := \Big\{ (x, p) \in T^*M \, | \, p \perp \Delta(x) \Big\} \subset T^*M$$

and (we assume here that Δ is generated by m vector fields X^1, \ldots, X^m) define

 $ec{\Delta}(x,p) := \operatorname{\mathsf{Span}} \left\{ ec{h}^1(x,p), \dots, ec{h}^m(x,p)
ight\} \quad orall(x,p) \in T^*M,$

where $h^{i}(x, p) = p \cdot X^{i}(x)$ and \vec{h}^{i} is the associated Hamiltonian vector field in $T^{*}M$.

Proposition

An horizontal path $\gamma : [0,1] \to M$ is singular if and only if it is the projection of a path $\psi : [0,1] \to \Delta^{\perp} \setminus \{0\}$ which is horizontal w.r.t. $\vec{\Delta}$.

 $\Sigma_{\Delta} = \{x \in M \mid \Delta(x) + [\Delta, \Delta](x) \neq T_x M\}$

If Δ is generic, Σ_{Δ} is a surface in M.

 $\Sigma_{\Delta} = \{x \in M \mid \Delta(x) + [\Delta, \Delta](x) \neq T_x M\}$

If Δ is generic, Σ_{Δ} is a surface in M. If Δ is analytic then Σ_{Δ} is analytic of dimension ≤ 2 .

 $\Sigma_{\Delta} = \{x \in M \mid \Delta(x) + [\Delta, \Delta](x) \neq T_x M\}$

If Δ is generic, Σ_{Δ} is a surface in M. If Δ is analytic then Σ_{Δ} is analytic of dimension ≤ 2 .

Proposition

The singular horizontal paths are the orbits of the trace of Δ on Σ_{Δ} .

 $\Sigma_{\Delta} = \{x \in M \,|\, \Delta(x) + [\Delta, \Delta](x) \neq T_x M\}$

If Δ is generic, Σ_{Δ} is a surface in M. If Δ is analytic then Σ_{Δ} is analytic of dimension ≤ 2 .

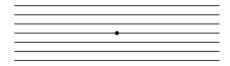
Proposition

The singular horizontal paths are the orbits of the trace of Δ on Σ_{Δ} .

 \rightsquigarrow Let us fix x on Σ_Δ and see how its orbit look like.

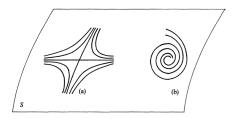
The Sard Conjecture on Martinet surfaces

Transverse case



The Sard Conjecture on Martinet surfaces

Generic tangent case (Zelenko-Zhitomirskii, 1995)



The Sard Conjecture on Martinet surfaces

Let *M* be of dimension 3 and Δ of rank 2.

 $\mathcal{S}^{\mathsf{x}}_{\Delta} = \{\gamma(1) | \gamma : [0,1] \to M, \gamma(0) = x, \gamma \text{ hor., sing.} \}.$

Conjecture (Sard Conjecture)

The set $\mathcal{S}^{\times}_{\Delta}$ has vanishing \mathcal{H}^2 -measure.

Theorem (Belotto-R, 2016)

The above conjecture holds true under one of the following assumptions:

- The Martinet surface is smooth;
- All datas are analytic and

 $\Delta(x)\cap \mathit{T}_x \mathit{Sing}(\Sigma_\Delta) = \mathit{T}_x \mathit{Sing}(\Sigma_\Delta) \quad \forall x\in \mathit{Sing}(\Sigma_\Delta) \,.$

Ingredients of the proof

• Control of the divergence of vector fields which generates the trace of Δ over Σ_{Σ} of the form

 $|\operatorname{div} \mathcal{Z}| \leq C |\mathcal{Z}|$.

Ingredients of the proof

• Control of the divergence of vector fields which generates the trace of Δ over Σ_{Σ} of the form

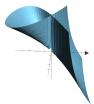
 $|\operatorname{div} \mathcal{Z}| \leq C |\mathcal{Z}|$.

• Resolution of singularities.

An example

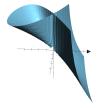
In \mathbb{R}^3 ,

$$X = \partial_y$$
 and $Y = \partial_x + \left[\frac{y^3}{3} - x^2y(x+z)\right] \partial_z$.

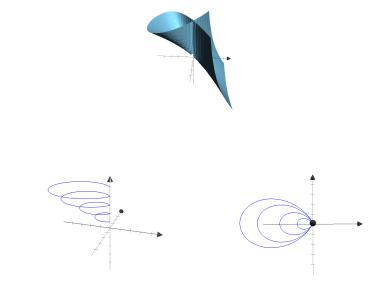


Martinet Surface:
$$\Sigma_{\Delta} = \left\{ y^2 - x^2(x+z) = 0 \right\}.$$

An example



An example



Thank you for your attention !!

Please check out regularly CIMPA's website at

cimpa.info