Nearly round spheres look convex

Ludovic Rifford

Université de Nice - Sophia Antipolis
(Joint work with A. Figalli and C. Villani)

The statement

Theorem (Figalli, R, Villani '09)

Let (M, g) be a C^{4} perturbation of the round sphere \mathbb{S}^{n}. Then all injectivity domains of M are uniformly convex.

Injectivity domains

Let (M, g) be a smooth compact Riemannian manifold and $x \in M$ be fixed. We call exponential mapping from x, the mapping defined as

$$
\begin{aligned}
\exp _{x}: T_{x} M & \longrightarrow M \\
v & \longmapsto \exp _{x}(v):=\gamma_{v}(1)
\end{aligned}
$$

where $\gamma_{v}:[0,1] \rightarrow M$ is the unique geodesic starting at x with speed $\dot{\gamma}_{v}(0)=v$.

Injectivity domains

Let (M, g) be a smooth compact Riemannian manifold and $x \in M$ be fixed. We call exponential mapping from x, the mapping defined as

$$
\begin{aligned}
\exp _{x}: T_{x} M & \longrightarrow M \\
v & \longmapsto \exp _{x}(v):=\gamma_{v}(1)
\end{aligned}
$$

where $\gamma_{v}:[0,1] \rightarrow M$ is the unique geodesic starting at x with speed $\dot{\gamma}_{v}(0)=v$. We call injectivity domain of x the set
$\mathcal{I}(x):=\left\{v \in T_{x} M \left\lvert\, \begin{array}{c}\exists t>1 \text { s.t. } \gamma_{t v} \text { is the unique minimizing } \\ \text { geodesic between } x \text { and } \exp _{x}(t v)\end{array}\right.\right\}$.

Injectivity domains

Let (M, g) be a smooth compact Riemannian manifold and $x \in M$ be fixed. We call exponential mapping from x, the mapping defined as

$$
\begin{aligned}
\exp _{x}: T_{x} M & \longrightarrow M \\
v & \longmapsto \exp _{x}(v):=\gamma_{v}(1)
\end{aligned}
$$

where $\gamma_{v}:[0,1] \rightarrow M$ is the unique geodesic starting at x with speed $\dot{\gamma}_{v}(0)=v$. We call injectivity domain of x the set
$\mathcal{I}(x):=\left\{v \in T_{x} M \left\lvert\, \begin{array}{c}\exists t>1 \text { s.t. } \gamma_{t v} \text { is the unique minimizing } \\ \text { geodesic between } x \text { and } \exp _{x}(t v)\end{array}\right.\right\}$.
It is a bounded open set which is star-shaped w.r.t. $0 \in T_{x} M$.

The Itoh-Tanaka Theorem

Theorem (Itoh, Tanaka '01)
Let (M, g) be a smooth compact Riemannian manifold. Then all injectivity domains of M have Lipschitz boundaries.

The Itoh-Tanaka Theorem

Theorem (Itoh, Tanaka '01)

Let (M, g) be a smooth compact Riemannian manifold. Then all injectivity domains of M have Lipschitz boundaries.

Fix $x \in M$, we call distance function to the cut locus, the function $t_{\text {cut }}(x ; \cdot): U_{x} M \rightarrow(0, \infty)$ defined by

$$
t_{\text {cut }}(x ; v):=\inf \{t>0 \mid t v \notin \mathcal{I}(x)\} .
$$

The Itoh-Tanaka Theorem

Theorem (Itoh, Tanaka '01)

Let (M, g) be a smooth compact Riemannian manifold. Then all injectivity domains of M have Lipschitz boundaries.

Fix $x \in M$, we call distance function to the cut locus, the function $t_{\text {cut }}(x ; \cdot): U_{x} M \rightarrow(0, \infty)$ defined by

$$
t_{\text {cut }}(x ; v):=\inf \{t>0 \mid t v \notin \mathcal{I}(x)\} .
$$

The boundary $\mathrm{TCL}(x)$ of $\mathcal{I}(x)$ may be seen as the graph of the function $t_{\text {cut }}(x ; \cdot)$:

$$
\mathrm{TCL}(x)=\left\{t_{c u t}(x ; v) v \mid v \in U_{x} M\right\} .
$$

Sketch of proof

It is enough to show that there is $K>0$ such for every $v \in U_{x} M$, there is a neighborhood \mathcal{V} of v in $U_{x} M$ together with a Lipschitz function $\tau: \mathcal{V} \rightarrow \mathbb{R}$ such that

$$
t_{\text {cut }}(x ; v)=\tau(v), \quad t_{\text {cut }}(x ; \cdot) \leq \tau, \quad \operatorname{Lip}(\tau) \leq K
$$

Sketch of proof

It is enough to show that there is $K>0$ such for every $v \in U_{x} M$, there is a neighborhood \mathcal{V} of v in $U_{x} M$ together with a Lipschitz function $\tau: \mathcal{V} \rightarrow \mathbb{R}$ such that

$$
t_{\text {cut }}(x ; v)=\tau(v), \quad t_{\text {cut }}(x ; \cdot) \leq \tau, \quad \operatorname{Lip}(\tau) \leq K
$$

Let $v \in U_{x} M$ be fixed, set $t_{v}:=t_{\text {cut }}(x ; v)$.
Three cases appear:

- Case 1: $t_{v} v$ is a cut speed.
- Case 2: $t_{v} v$ is not a cut speed (we call it purely focal).
- Case 3: $t_{v} v$ is a cut speed not far from being purely focal.

Case I: $t_{v} v$ cut speed

Let $v^{\prime} \neq v \in U_{x} M$ be such that $\exp _{x}\left(t_{v} v\right)=\exp _{x}\left(t_{v} v^{\prime}\right)$.

Case I: $t_{v} v$ cut speed

Let $v^{\prime} \neq v \in U_{x} M$ be such that $\exp _{x}\left(t_{v} v\right)=\exp _{x}\left(t_{v} v^{\prime}\right)$. By semiconcavity of $z \mapsto d_{g}(x, z)$, there is a C^{2} function $g: \mathcal{O} \rightarrow \mathbb{R}$ such that (we set $y:=\exp \left(t_{v} v\right)$)

$$
d_{g}(x, y)=g(y), d_{g}(x, \cdot)<g(\cdot) \text { on } \mathcal{O} \backslash\{y\}, \nabla^{g} g(y)=\dot{\gamma}_{v^{\prime}}\left(t_{v}\right)
$$

Case I: $t_{v} v$ cut speed

Let $v^{\prime} \neq v \in U_{x} M$ be such that $\exp _{x}\left(t_{v} v\right)=\exp _{x}\left(t_{v} v^{\prime}\right)$. By semiconcavity of $z \mapsto d_{g}(x, z)$, there is a C^{2} function $g: \mathcal{O} \rightarrow \mathbb{R}$ such that (we set $y:=\exp \left(t_{v} v\right)$) $d_{g}(x, y)=g(y), d_{g}(x, \cdot)<g(\cdot)$ on $\mathcal{O} \backslash\{y\}, \nabla^{g} g(y)=\dot{\gamma}_{v^{\prime}}\left(t_{v}\right)$.

Set for any $t>0, w \in U_{x} M$ close to t_{v}, v,

$$
\Psi(t, w):=g\left(\exp _{x}(t w)\right)-t
$$

Case I: $t_{v} v$ cut speed

Let $v^{\prime} \neq v \in U_{x} M$ be such that $\exp _{x}\left(t_{v} v\right)=\exp _{x}\left(t_{v} v^{\prime}\right)$. By semiconcavity of $z \mapsto d_{g}(x, z)$, there is a C^{2} function $g: \mathcal{O} \rightarrow \mathbb{R}$ such that (we set $y:=\exp \left(t_{v} v\right)$)
$d_{g}(x, y)=g(y), d_{g}(x, \cdot)<g(\cdot)$ on $\mathcal{O} \backslash\{y\}, \nabla^{g} g(y)=\dot{\gamma}_{v^{\prime}}\left(t_{v}\right)$.
Set for any $t>0, w \in U_{x} M$ close to t_{v}, v,

$$
\Psi(t, w):=g\left(\exp _{x}(t w)\right)-t
$$

The function Ψ is C^{2} and there holds

$$
\Psi\left(t_{v}, v\right)=0, \quad \frac{\partial \Psi}{\partial t}\left(t_{v}, v\right)=\left\langle\nabla^{g} g(y), \dot{\gamma}_{v}\left(t_{v}\right)\right\rangle_{y}-1 \neq 0
$$

Case I: $t_{v} v$ cut speed

Let $v^{\prime} \neq v \in U_{x} M$ be such that $\exp _{x}\left(t_{v} v\right)=\exp _{x}\left(t_{v} v^{\prime}\right)$. By semiconcavity of $z \mapsto d_{g}(x, z)$, there is a C^{2} function $g: \mathcal{O} \rightarrow \mathbb{R}$ such that (we set $\left.y:=\exp \left(t_{v} v\right)\right)$
$d_{g}(x, y)=g(y), d_{g}(x, \cdot)<g(\cdot)$ on $\mathcal{O} \backslash\{y\}, \nabla^{g} g(y)=\dot{\gamma}_{v^{\prime}}\left(t_{v}\right)$.
Set for any $t>0, w \in U_{x} M$ close to t_{v}, v,

$$
\Psi(t, w):=g\left(\exp _{x}(t w)\right)-t
$$

The function Ψ is C^{2} and there holds

$$
\Psi\left(t_{v}, v\right)=0, \quad \frac{\partial \Psi}{\partial t}\left(t_{v}, v\right)=\left\langle\nabla^{g} g(y), \dot{\gamma}_{v}\left(t_{v}\right)\right\rangle_{y}-1 \neq 0
$$

By the Implicit Function Theorem, there is a C^{2} function $\tau(\cdot)$ such that $\tau(v)=t_{v}$ and $\Psi(\tau(\cdot), \cdot)=0$.

Case I: $t_{v} v$ cut speed

Let $v^{\prime} \neq v \in U_{x} M$ be such that $\exp _{x}\left(t_{v} v\right)=\exp _{x}\left(t_{v} v^{\prime}\right)$. By semiconcavity of $z \mapsto d_{g}(x, z)$, there is a C^{2} function $g: \mathcal{O} \rightarrow \mathbb{R}$ such that (we set $\left.y:=\exp \left(t_{v} v\right)\right)$
$d_{g}(x, y)=g(y), d_{g}(x, \cdot)<g(\cdot)$ on $\mathcal{O} \backslash\{y\}, \nabla^{g} g(y)=\dot{\gamma}_{v^{\prime}}\left(t_{v}\right)$.
Set for any $t>0, w \in U_{x} M$ close to t_{v}, v,

$$
\Psi(t, w):=g\left(\exp _{x}(t w)\right)-t .
$$

The function Ψ is C^{2} and there holds

$$
\Psi\left(t_{v}, v\right)=0, \quad \frac{\partial \Psi}{\partial t}\left(t_{v}, v\right)=\left\langle\nabla^{g} g(y), \dot{\gamma}_{v}\left(t_{v}\right)\right\rangle_{y}-1 \neq 0
$$

By the Implicit Function Theorem, there is a C^{2} function $\tau(\cdot)$ such that $\tau(v)=t_{v}$ and $\Psi(\tau(\cdot), \cdot)=0$. By construction, $t_{\text {cut }}(x ; \cdot) \leq \tau$ and $\operatorname{Lip}(\tau)$ is controlled by $\left\|\frac{\partial \Psi}{\partial w}\right\|, /\left|\frac{\partial \Psi}{\partial t}\right|$.

Case II : $t_{v} v$ focal speed

We call distance function to the conjugate locus, the function $t_{\text {conj }}(x ; \cdot): U_{x} M \rightarrow(0, \infty)$ defined by

$$
t_{\text {conj }}(x ; w):=\inf \left\{t>0 \mid \exp _{x} \text { is not a submersion at } t w\right\} .
$$

We have

$$
t_{c u t}(x ; \cdot) \leq t_{\text {conj }}(x ; \cdot)
$$

If $t_{v} v$ is purely focal, then $t_{\text {cut }}(x ; \cdot)=t_{\text {conj }}(x ; \cdot)$.

Theorem (Castelpietra, R '08)

The function $t_{\text {conj }}(x ; \cdot)$ is locally semiconcave on its domain.

Case III : $t_{v} v$ almost focal speed

We can indeed control the Lipschitz constant of τ when v approaches the set of (purely) focal speeds.

Perturbation result for the focal domain

Given $x \in M$, we call nonfocal domain of x the set

$$
\operatorname{NF}(x):=\left\{t v \mid v \in U_{x} M, t<t_{\text {conj }}(x ; v)\right\} .
$$

Perturbation result for the focal domain

Given $x \in M$, we call nonfocal domain of x the set

$$
\operatorname{NF}(x):=\left\{t v \mid v \in U_{x} M, t<t_{c o n j}(x ; v)\right\} .
$$

Theorem

If (M, g) is C^{4} close to the round sphere, then all nonfocal domains are uniformly convex.

Define for every $x \in M, h_{x}: N F(x) \rightarrow \mathbb{R}$ by

$$
h_{x}(v)=|v|_{x}^{2}-d_{g}\left(x, \exp _{x}(v)\right)^{2} \quad \forall v \in N F(x)
$$

Lemma

- $v \in \overline{\mathcal{I}(x)} \Longrightarrow h_{x}(v)=0$.
- $h_{x}(v) \leq 0 \Longrightarrow v \in \overline{\mathcal{I}(x)}$.

Define for every $x \in M, h_{x}: N F(x) \rightarrow \mathbb{R}$ by

$$
h_{x}(v)=|v|_{x}^{2}-d_{g}\left(x, \exp _{x}(v)\right)^{2} \quad \forall v \in N F(x)
$$

Lemma

- $v \in \overline{\mathcal{I}(x)} \Longrightarrow h_{x}(v)=0$.
- $h_{x}(v) \leq 0 \Longrightarrow v \in \overline{\mathcal{I}(x)}$.

As a consequence,

$$
\overline{\mathcal{I}(x)}=\left\{v \in \mathrm{NF}(x) \mid h_{x}(v) \leq 0\right\}
$$

Define for every $x \in M, h_{x}: N F(x) \rightarrow \mathbb{R}$ by

$$
h_{x}(v)=|v|_{x}^{2}-d_{g}\left(x, \exp _{x}(v)\right)^{2} \quad \forall v \in N F(x)
$$

Lemma

- $v \in \overline{\mathcal{I}(x)} \Longrightarrow h_{x}(v)=0$.
- $h_{x}(v) \leq 0 \Longrightarrow v \in \overline{\mathcal{I}(x)}$.

As a consequence,

$$
\overline{\mathcal{I}(x)}=\left\{v \in \mathrm{NF}(x) \mid h_{x}(v) \leq 0\right\}
$$

From now on, the strategy is to show that all the h_{x} are quasiconvex.

An easy lemma

Lemma

Let $U \subset \mathbb{R}^{n}$ be an open convex set and $F: U \rightarrow \mathbb{R}$ be a function of class C^{2}. Assume that for every $v \in U$ and every $w \in \mathbb{R}^{n} \backslash\{0\}$, the following property holds

$$
\left\langle\nabla_{v} F, w\right\rangle=0 \Longrightarrow\left\langle\nabla_{v}^{2} F w, w\right\rangle>0
$$

Then F is quasiconvex.

Proof of the easy lemma

Proof.

Let $v_{0}, v_{1} \in U$ be fixed.

Proof of the easy lemma

Proof.

Let $v_{0}, v_{1} \in U$ be fixed. Set $v_{t}:=(1-t) v_{0}+t v_{1}$, for every $t \in[0,1]$,

Proof of the easy lemma

Proof.

Let $v_{0}, v_{1} \in U$ be fixed. Set $v_{t}:=(1-t) v_{0}+t v_{1}$, for every $t \in[0,1]$, and define $h:[0,1] \rightarrow \mathbb{R}$ by

$$
h(t):=F\left(v_{t}\right) \quad \forall t \in[0,1] .
$$

Proof of the easy lemma

Proof.

Let $v_{0}, v_{1} \in U$ be fixed. Set $v_{t}:=(1-t) v_{0}+t v_{1}$, for every $t \in[0,1]$, and define $h:[0,1] \rightarrow \mathbb{R}$ by

$$
h(t):=F\left(v_{t}\right) \quad \forall t \in[0,1] .
$$

If $h \not \leq \max \{h(0), h(1)\}$, there is $\tau \in(0,1)$ such that

$$
h(\tau)=\max _{t \in[0,1]} h(t)>\max \{h(0), h(1)\} .
$$

Proof of the easy lemma

Proof.

Let $v_{0}, v_{1} \in U$ be fixed. Set $v_{t}:=(1-t) v_{0}+t v_{1}$, for every $t \in[0,1]$, and define $h:[0,1] \rightarrow \mathbb{R}$ by

$$
h(t):=F\left(v_{t}\right) \quad \forall t \in[0,1] .
$$

If $h \not \leq \max \{h(0), h(1)\}$, there is $\tau \in(0,1)$ such that

$$
h(\tau)=\max _{t \in[0,1]} h(t)>\max \{h(0), h(1)\} .
$$

There holds

$$
\dot{h}(\tau)=\left\langle\nabla_{v_{\tau}} F, \dot{v}_{\tau}\right\rangle \quad \text { and } \quad \ddot{h}(\tau)=\left\langle\nabla_{v_{\tau}}^{2} F \dot{v}_{\tau}, \dot{v}_{\tau}\right\rangle .
$$

Proof of the easy lemma

Proof.

Let $v_{0}, v_{1} \in U$ be fixed. Set $v_{t}:=(1-t) v_{0}+t v_{1}$, for every $t \in[0,1]$, and define $h:[0,1] \rightarrow \mathbb{R}$ by

$$
h(t):=F\left(v_{t}\right) \quad \forall t \in[0,1] .
$$

If $h \not \leq \max \{h(0), h(1)\}$, there is $\tau \in(0,1)$ such that

$$
h(\tau)=\max _{t \in[0,1]} h(t)>\max \{h(0), h(1)\} .
$$

There holds

$$
\dot{h}(\tau)=\left\langle\nabla_{v_{\tau}} F, \dot{v}_{\tau}\right\rangle \quad \text { and } \quad \ddot{h}(\tau)=\left\langle\nabla_{v_{\tau}}^{2} F \dot{v}_{\tau}, \dot{v}_{\tau}\right\rangle .
$$

Since τ is a local maximum, we get a contradiction.

The extended Ma-Trudinger-Wang tensor

There holds $\left\langle\nabla_{v} h_{x}, w\right\rangle=\langle\xi, q-\bar{q}\rangle_{x}$ and

$$
\left\langle\nabla_{v}^{2} h_{x} w, w\right\rangle=\frac{2}{3} \int_{0}^{1}(1-s) \overline{\mathfrak{S}}_{(y,(1-s) \bar{q}+s q)}(\xi, q-\bar{q}) d s
$$

The extended Ma-Trudinger-Wang tensor

There holds $\left\langle\nabla_{v} h_{x}, w\right\rangle=\langle\xi, q-\bar{q}\rangle_{x}$ and

$$
\left\langle\nabla_{v}^{2} h_{x} w, w\right\rangle=\frac{2}{3} \int_{0}^{1}(1-s) \overline{\mathfrak{S}}_{(y,(1-s) \bar{q}+s q)}(\xi, q-\bar{q}) d s
$$

where the MTW tensor $\overline{\mathfrak{S}}$ is defined as
$\overline{\mathfrak{S}}_{(x, v)}(\xi, \eta)=-\left.\left.\frac{3}{2} \frac{d^{2}}{d s^{2}}\right|_{s=0} \frac{d^{2}}{d t^{2}}\right|_{t=0} d_{g}^{2}\left(\exp _{x}(t \xi), \exp _{x}(v+s \eta)\right)$,
for every $x \in M, v \in \mathcal{I}(x)$, and $\xi, \eta \in T_{x} M$, and by
$\overline{\mathfrak{S}}_{(x, v)}(\xi, \eta)=-\left.\left.\frac{3}{2} \frac{d^{2}}{d s^{2}}\right|_{s=0} \frac{d^{2}}{d t^{2}}\right|_{t=0}{\overline{d_{g}}}^{2}\left(\exp _{x}(t \xi), \exp _{x}(v+s \eta)\right)$,
for every $x \in M, v \in \operatorname{NF}(x)$, and $\xi, \eta \in T_{x} M$, where $\overline{d_{g}}$ denotes a extended distance on a neighborhood of $\left(x, \exp _{x}(v)\right)$.

The MTW tensor on $\left(\mathbb{S}^{2}, g^{0}\right)$

On $\left(\mathbb{S}^{2}, g^{0}\right)$, the MTW tensor is given by

$$
\begin{aligned}
& \mathfrak{S}_{(x, v)}\left(\xi, \xi^{\perp}\right) \\
& =3\left[\frac{1}{r^{2}}-\frac{\cos (r)}{r \sin (r)}\right] \xi_{1}^{4}+3\left[\frac{1}{\sin ^{2}(r)}-\frac{r \cos (r)}{\sin ^{3}(r)}\right] \xi_{2}^{4} \\
& +\quad+\frac{3}{2}\left[-\frac{6}{r^{2}}+\frac{\cos (r)}{r \sin (r)}+\frac{5}{\sin ^{2}(r)}\right] \xi_{1}^{2} \xi_{2}^{2},
\end{aligned}
$$

with $x \in \mathbb{S}^{2}, v \in \mathcal{I}(x), r:=|v|_{x}, \xi=\left(\xi_{1}, \xi_{2}\right), \xi^{\perp}=\left(-\xi_{2}, \xi_{1}\right)$.

Theorem (Figalli, R, Villani '09)

If (M, g) is a C^{4} perturbation of the round sphere, then it satisfies an extended uniform Ma-Trudinger-Wang condition of the form

$$
\begin{gathered}
\forall x \in M, \forall v \in \mathrm{NF}(x) \backslash\{0\}, \\
\mathfrak{S}_{(x, v)}(\xi, \eta) \geq \kappa\left(|\xi|_{x}^{2}+\left|\Lambda^{-1} \xi\right|_{x}^{2}\right)|\eta|_{x}^{2}-c<\xi, \eta>_{x}^{2},
\end{gathered}
$$

where κ, c are positive constants, and Λ^{-1} is a symmetric nonnegative matrix.

In conclusion,

$$
\left\langle\nabla_{v} h_{x}, w\right\rangle=0 \quad \Longrightarrow \quad\left\langle\nabla_{v}^{2} h_{x} w, w\right\rangle>0
$$

Which gives the quasiconvexity of the h_{x} 's.

In conclusion,

$$
\left\langle\nabla_{v} h_{x}, w\right\rangle=0 \quad \Longrightarrow \quad\left\langle\nabla_{v}^{2} h_{x} w, w\right\rangle>0 .
$$

Which gives the quasiconvexity of the h_{x} 's.

Be careful with the regularity oh h_{x} !!!

Thank you for your attention!

Sufficient conditions for TCP

Theorem (Figalli, R, Villani '10)

Assume that (M, g) satisfies the following properties:

- all the injectivity domains are strictly convex,
- the MTW tensor \mathfrak{S} is $\succ 0$, that is, for every $x \in M, v \in \mathcal{I}(x)$, and $\xi, \eta \in T_{x} M \backslash\{0\}$,

$$
\langle\xi, \eta\rangle_{x}=0 \Longrightarrow \mathfrak{S}_{(x, v)}(\xi, \eta)>0
$$

Then (M, g) satisfies TCP.

Necessary conditions for TCP

Theorem (Figalli, R, Villani '10)

Assume that (M, g) satisfies (TCP) then the following properties hold:

- all the injectivity domains are convex,
- the cost c is regular,
- the MTW tensor \mathfrak{S} is $\succeq 0$.

