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Abstract

Let M be a smooth connected and complete manifold of dimension n, and ∆ be a
smooth nonholonomic distribution of rank m ≤ n on M . We prove that, if there exists a
smooth Riemannian metric on ∆ for which no nontrivial singular path is minimizing, then
there exists a smooth repulsive stabilizing section of ∆ on M . Moreover, in dimension three,
the assumption of the absence of singular minimizing horizontal paths can be dropped in
the Martinet case. The proofs are based on the study, using specific results of nonsmooth
analysis, of an optimal control problem of Bolza type, for which we prove that the cor-
responding value function is semiconcave and is a viscosity solution of a Hamilton-Jacobi
equation, and establish fine properties of optimal trajectories.

1 Introduction

Throughout this paper, M denotes a smooth connected manifold of dimension n.

1.1 Stabilization of nonholonomic distributions

Let ∆ be a smooth distribution of rank m ≤ n on M , that is, a rank m subbundle of the tangent
bundle TM of M . This means that, for every x ∈ M , there exist a neighborhood Vx of x in
M , and a m-tuple (fx

1 , . . . , f
x
m) of smooth vector fields on Vx, linearly independent on Vx, such

that
∆(y) = Span {fx

1 (y), . . . , fx
m(y)} , ∀y ∈ Vx.

One says that the m-tuple of vector fields (fx
1 , . . . , f

x
m) represents locally the distribution ∆.

The distribution ∆ is said to be nonholonomic (also called totally nonholonomic e.g. in [3]) if,
for every x ∈M , there is a m-tuple (fx

1 , . . . , f
x
m) of smooth vector fields on Vx which represents

locally the distribution and such that

Lie {fx
1 , . . . , f

x
m} (y) = TyM, ∀y ∈ Vx,

that is, such that the Lie algebra spanned by fx
1 , . . . , f

x
m, is equal to the whole tangent space

TyM , at every point y ∈ Vx. This Lie algebra property is often called Hörmander’s condition.
An horizontal path joining x0 to x1 is an absolutely continuous curve γ(·) : [0, 1] → M

such that γ(0) = x0, γ(1) = x1, and such that γ̇(t) ∈ ∆(γ(t)), for almost every t ∈ [0, 1].
According to the classical Chow-Rashevsky Theorem (see [9, 19, 33, 36]), since the distribution
is nonholonomic on M , any two points of M can be joined by an horizontal path.

Let ∆ be a nonholonomic distribution and x̄ ∈ M be fixed. We recall that, for a smooth
vector field X on M , the dynamical system ẋ = X(x) is said to be globally asymptotically stable
at the point x̄, if the two following properties are satisfied:
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Lyapunov stability: for every neighborhood V of x̄, there exists a neighborhood W of x̄
such that, for every x ∈ W, the solution of ẋ(t) = X(x(t)), x(0) = x, satisfies x(t) ∈ V,
for every t ≥ 0.

Attractivity: for every x ∈ M , the solution of ẋ(t) = X(x(t)), x(0) = x, tends to x̄ as t
tends to +∞.

The stabilization problem for nonholonomic distributions consists in finding, if possible, a
smooth stabilizing section X of ∆, that is, a smooth vector field X on M satisfying X(x) ∈ ∆(x)
for every x ∈ M , such that the dynamical system ẋ = X(x) is globally asymptotically stable
at x̄.

There exist two main obstructions for a distribution to admit a stabilizing section. The
first one is of global nature: it is well-known that, if the manifold M admits such a dynamical
system, then it possesses a smooth Lyapunov function, i.e., a Morse function having only one
(possibly degenerate) critical point in M . In consequence, M must be homeomorphic to the
Euclidean space IRn (we refer the reader to [39] for further details). The second one is of local
nature: due to Brockett’s condition (see [13, Theorem 1, (iii)]; see also [23, 44]), the distribution
∆ cannot admit a smooth stabilizing section whenever m < n.

The absence of smooth stabilizing sections motivates to define a new kind of stabilizing
section. The first author has recently introduced the notion of smooth repulsive stabilizing
feedback for control systems1 (see [39, 40, 41]), whose definition can be easily translated in
terms of stabilizing section.

Let x̄ ∈ M be fixed. Let S be a closed subset of M and X be a vector field on M . The
dynamical system ẋ = X(x) is said to be smooth repulsive globally asymptotically stable at x̄
with respect to S (denoted in short SRSx̄,S) if the following properties are satisfied:

(i) The vector field X is locally bounded on M and smooth on M \ S.

(ii) The dynamical system ẋ = X(x) is globally asymptotically stable at x̄ in the sense of
Carathéodory, namely, for every x ∈M , there exists a solution of

ẋ(t) = X(x(t)), for almost every t ∈ [0,∞), x(0) = x, (1)

and, for every x ∈ M , every solution of (1) (called Carathéodory solution of ẋ = X(x))
on [0,∞) tends to x̄ as t tends to ∞. Moreover, for every neighborhood V of x̄, there
exists a neighborhood W of x̄ such that, for x ∈ W, the solutions of (1) satisfy x(t) ∈ V,
for every t ≥ 0.

(iii) For every x ∈M , the solutions of (1) satisfy x(t) /∈ S, for every t > 0.

In view of what happens whenever ∆ = TM , and having in mind the above obstructions
for the stabilization problem, a natural question is to wonder if, given a smooth nonholonomic
distribution ∆, there exists a section X of ∆ on M and a closed nonempty subset S of M such
that X is SRSx̄,S . In this paper, we provide a positive answer in a large number of situations.
To state our main results, we need to endow the distribution ∆ with a Riemannian metric,
thus encountering the framework of sub-Riemannian geometry, and we require the concept of
a singular path, recalled next.

1If one represents locally the distribution ∆ by a m-tuple of smooth vector fields (f1, · · · , fm), then the
existence of a local stabilizing section for ∆ is equivalent to the existence of a stabilizing feedback for the
associated control system ẋ =

Pm
i=1 uifi(x). There is a large literature on alternative types of stabilizing

feedbacks for control systems (see Section 1.4).
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1.2 Sub-Riemannian geometry

For x0 ∈M , let Ω∆(x0) denote the set of horizontal paths γ(·) : [0, 1] →M such that γ(0) = x0.
The set Ω∆(x0), endowed with the W 1,1-topology, inherits of a Banach manifold structure2.
For x0, x1 ∈ M , denote by Ω∆(x0, x1) the set of horizontal paths γ(·) : [0, 1] → M such that
γ(0) = x0 and γ(1) = x1. Note that Ω∆(x0, x1) = E−1

x0
(x1), where the end-point mapping

Ex0 : Ω∆(x0) →M is the smooth mapping defined by Ex0(γ(·)) := γ(1). A path γ(·) is said to
be singular if it is horizontal and if it is a critical point of the end-point mapping Ex0 .

The set Ω∆(x0, x1) is a Banach submanifold of Ω∆(x0) of codimension n in a neighborhood
of a nonsingular path, but may fail to be a manifold in a neighborhood of a singular path. It
appears that singular paths play a crucial role in the calculus of variations with nonholonomic
constraints (see [17] for details and for properties of such curves).

Let T ∗M denote the cotangent bundle of M , π : T ∗M → M the canonical projection,
and ω the canonical symplectic form on T ∗M . Let ∆⊥ denote the annihilator of ∆ in T ∗M
minus its zero section. Define ω as the restriction of ω to ∆⊥. An absolutely continuous curve
ψ(·) : [0, 1] → ∆⊥ such that ψ̇(t) ∈ kerω(ψ(t)) for almost every t ∈ [0, 1], is called an abnormal
extremal of ∆. It is well known that a path γ(·) : [0, 1] → M is singular if and only if it is the
projection of an abnormal extremal ψ(·) of ∆ (see [29] or [17]). The curve ψ(·) is said to be an
abnormal extremal lift of γ(·).

Let g be a smooth Riemannian metric defined on the distribution ∆. The triple (M,∆, g)
is called a sub-Riemannian manifold. The length of a path γ(·) ∈ Ω∆(x0) is defined by

lengthg(γ(·)) :=
∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt. (2)

The sub-Riemannian distance dSR(x0, x1) between two points x0, x1 of M is the infimum over
the lengths (for the metric g) of the horizontal paths joining x0 and x1. According to the
Chow-Rashevsky Theorem (see [9, 19, 33, 36]), since the distribution is nonholonomic on M ,
the sub-Riemannian distance is well-defined and continuous on M × M . Moreover, if the
manifold M is a complete metric space3 for the sub-Riemannian distance dSR, then, since M
is connected, for every pair (x0, x1) of points of M there exists an horizontal path γ(·) joining
x0 to x1 such that

dSR(x0, x1) = lengthg(γ(·)).

Such an horizontal path is said to be minimizing.
Define the Hamiltonian H : T ∗M → IR as follows. For every x ∈M , the restriction of H to

the fiber T ∗xM is given by the nonnegative quadratic form

p 7−→ 1
2

max
{

p(v)2

gx(v, v)
| v ∈ ∆(x) \ {0}

}
. (3)

Let
−→
H denote the Hamiltonian vector field on T ∗M associated to H, that is, ι−→

H
ω = −dH. A

normal extremal is an integral curve of
−→
H defined on [0, 1], i.e., a curve ψ(·) : [0, 1] → T ∗M

such that ψ̇(t) =
−→
H (ψ(t)), for t ∈ [0, 1]. Note that the projection of a normal extremal is a

horizontal path. The exponential mapping expx0
is defined on T ∗x0

M by expx0
(p0) := π(ψ(1)),

where ψ(·) is the normal extremal so that ψ(0) = (x0, p0) in local coordinates. Note that
H(ψ(t)) is constant along a normal extremal ψ(·), and that the length of the path π(ψ(·)) is
equal to (2H(ψ(0)))1/2.

According to the Pontryagin maximum principle (see [35]), a necessary condition for a
horizontal path to be minimizing is to be the projection either of a normal extremal or of an

2It is a straightforward adaptation of results of Bismut [10] (see also [33]).
3Note that, since the distribution ∆ is nonholonomic on M , the topology defined by the sub-Riemannian

distance dSR coincides with the original topology of M (see [9, 33]).
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abnormal extremal. In particular, singular paths satisfy this condition. However, a singular
path may also be the projection of a normal extremal. A singular path is said to be strictly
abnormal if it is not the projection of a normal extremal.

A point x ∈ expx0
(T ∗x0

M) is said conjugate to x0 if it is a critical value of the mapping
expx0

. The conjugate locus, denoted by C(x0), is defined as the set of all points conjugate to
x0. Note that Sard Theorem applied to the mapping expx0

implies that the conjugate locus
C(x0) has Lebesgue measure zero in M .

Remark 1.1. It has been established in [43] that the image of the exponential mapping expx0

is dense in M , and is of full Lebesgue measure for corank one distributions.

Remark 1.2. Let x ∈ expx0
(T ∗x0

M), let p0 ∈ T ∗x0
M such that x = expx0

(p0), and let ψ(·)
denote the normal extremal so that ψ(0) = (x0, p0) in local coordinates. If x is not conjugate
to x0, then the path x(·) := π(ψ(·)) admits a unique normal extremal lift. Indeed, if it had
two distinct normal extremals lifts ψ1(·) and ψ2(·), then the extremal ψ1(·) − ψ2(·) would be
an abnormal extremal lift of the path x(·). Hence, the path x(·) is singular, and not strictly
abnormal, and thus, in particular, the point x is conjugate to x0. This is a contradiction.

We also recall the notion of a cut point, required in this article. Let x0 ∈M ; a point x ∈M
is not a cut point with respect to x0 if there exists a minimizing path joining x0 to x, which
is the strict restriction of a minimizing path starting from x0. In other words, a cut point is a
point at which a minimizing path ceases to be optimal. The cut locus of x0, denoted by L(x0),
is defined as the set of all cut points with respect to x0. The following result is due to [45].
We provide in Section 2.2.3 a new (and selfcontained) proof of this result, using techniques of
nonsmooth analysis.

Lemma 1.1. Let M be a smooth closed connected manifold of dimension n, and ∆ be a smooth
nonholonomic distribution of rank m ≤ n on M . Let g be a metric on ∆ for which no nontrivial
singular path is minimizing, and let x0 ∈M . Then,

Cmin(x0) ⊂ L(x0),

where Cmin(x0) denotes the set of points x ∈ M \ {x0} such that there exists a critical point
p0 ∈ T ∗x0

M of the mapping expx0
, and such that the projection of the normal extremal ψ(·),

satisfying ψ(0) = (x0, p0) in local coordinates, is minimizing between x0 and x.

In other words, under the assumptions of the lemma, every (nonsingular) minimizing tra-
jectory ceases to be minimizing beyond its first conjugate point.

1.3 The main results

Theorem 1. Let M be a smooth connected manifold of dimension n, and ∆ be a smooth
nonholonomic distribution of rank m ≤ n on M . Let x̄ ∈ M . Assume that there exists a
smooth Riemannian metric g on ∆ for which M is complete and no nontrivial singular path is
minimizing. Then, there exist a section X of ∆ on M , and a closed nonempty subset S of M ,
of Hausdorff dimension lower than or equal to n− 1, such that X is SRSx̄,S .

Remark 1.3. If the manifold M , the distribution ∆, and the metric g are moreover real-analytic,
then the set S of the theorem can be chosen to be a subanalytic subset ofM\{x̄}, of codimension
greater than or equal to one (see [27, 28] for the definition of a subanalytic set). Note that,
in this case, since S is subanalytic (in M \ {x̄}), it is a stratified (in the sense of Whitney)
submanifold of M \ {x̄}.
Remark 1.4. If m = n, then obviously there exists no singular path (it is the Riemannian
situation).
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Remark 1.5. The distribution ∆ is called fat (see [33]) at a point x ∈ M if, for every vector
field X on M such that X(x) ∈ ∆(x) \ {0}, there holds

TxM = ∆(x) + Span{[X, fi](x), 1 ≤ i ≤ m},

where (f1, . . . , fm) is a m-tuple of vector fields representing locally the distribution ∆.
With the same notations, it is called medium-fat at x (see [4]) if there holds

TxM = ∆(x) + Span{[fi, fj ](x), 1 ≤ i, j ≤ m}+ Span{[X, [fi, fj ]](x), 1 ≤ i, j ≤ m}.

If ∆ is fat at every point of M , then there exists no nontrivial singular path (see [33]). On
the other part, for a generic smooth Riemannian metric g on M , every nontrivial singular path
must be strictly abnormal (see [18]); it follows from [4, Theorem 3.8] that, if ∆ is medium-fat
at every point of M , then, for generic metrics, there exists no nontrivial minimizing singular
path. Note that, if n ≤ m(m− 1) + 1, then the germ of a m-tuple of vector fields (f1, . . . , fm)
is generically (in C∞ Whitney topology) medium-fat (see [4]).

Remark 1.6. Let m ≥ 3 be a positive integer, Gm be the set of pairs (∆, g), where ∆ is a
rank m distribution on M and g is a Riemannian metric on ∆, endowed with the Whitney C∞

topology. There exists an open dense subset Wm of Gm such that every element of Wm does
not admit nontrivial minimizing singular paths (see [16, 17]). This means that, for m ≥ 3,
generically, the main assumption of Theorem 1 is satisfied.

In the following next result, we are able to remove, in the compact and orientable three-
dimensional case, the assumption on the absence of singular minimizing paths. Assume from
now on that M is a smooth closed manifold of dimension 3 which is orientable and denote
by Ω an orientation form on M . Any nonvanishing one-form α generates a smooth rank-two
distribution ∆ defined by ∆ := kerα. Assume that ∆ is nonholonomic on M . There exists a
unique smooth function f on M such that α ∧ dα = fΩ on M . Since ∆ is nonholonomic, the
set {f 6= 0} is open and dense in M . The singular set Σ∆ of ∆ is defined by

Σ∆ := {x ∈M | f(x) = 0} ,

Note that, if M and α are analytic, then the singular set is an analytic subset of M . The set
Σ∆ is said to be a Martinet surface if, for every x ∈ Σ∆, df(x) 6= 0, so that the set Σ∆ is a
smooth orientable hypersurface on M . In the sequel, we will call a Martinet distribution, any
nonholonomic distribution ∆ associated with a nonvanishing one-form as above such that Σ∆ is
a Martinet surface. In fact, it follows from the generic classification of rank two distributions on
a three-dimensional manifold (see [48], see also [11]) that, for every x ∈ Σ∆, the distribution ∆ is,
in a neighborhood of x, isomorphic to kerα, where the one-form α is defined by α := dx3−x2

2dx1,
in local coordinates (x1, x2, x3). In this neighborhood, the Martinet surface Σ∆ coincides with
the surface x2 = 0, and the singular paths are the integral curves of the vector field ∂

∂x1
restricted

to x2 = 0. This situation corresponds to the so-called Martinet case, and these singular paths
are minimizing in the context of sub-Riemannian geometry, for every smooth metric g on ∆
(see [2, 11, 32]).

Theorem 2. Let M be a smooth connected orientable compact Riemannian manifold of dimen-
sion three, and ∆ be a Martinet distribution on M . Let x̄ ∈M . Then, there exist a section X
of ∆ on M , and a closed nonempty subset S of M , of Hausdorff dimension lower than or equal
to two, such that X is SRSx̄,S .

Remark 1.7. The compactness assumption of the manifold M can actually be dropped (see
Remark 2.5). It is set to avoid technical difficulties in the proof.
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1.4 Stabilization of nonholonomic control systems

We begin this section with a remark on the local formulation of Theorem 1. Let U be an
open neighborhood of x̄ in M such that ∆|U is spanned by a m-tuple (f1, . . . , fm) of smooth
vector fields on U , which are everywhere linearly independent on U . Every horizontal path
x(·) ∈ Ω(x̄), contained in U , satisfies

q̇(t) =
m∑

i=1

ui(t)fi(q(t)) for a.e. t ∈ [0, 1], (4)

where ui ∈ L1([0, 1], IR), for i = 1, . . . ,m. The function u(·) = (u1(·), . . . , um(·)) is called the
control associated to x(·), and the system 4 is a control system. Hence, Theorem 1, translated
in local coordinates, yields a stabilization result for control systems of the form (4).

There are however slight differences between the geometric formulation adopted in Theorem
1, and the corresponding result for control systems. Indeed, when considering control systems
of the form (4), the vector fields f1, . . . , fm need not be everywhere linearly independent. More-
over, a rank m distribution ∆ on the manifold M is not necessarily globally represented by a
m-tuple of linearly independent vector fields (for example, consider a rank two distribution on
the two-dimensional sphere of IR3).

For these reasons, we derive hereafter a stabilization result, similar to Theorem 1, valuable
for control systems of the form (4), and of independent interest.

Consider on the manifold M the control system

ẋ(t) =
m∑

i=1

ui(t)fi(x(t)), (5)

where f1, . . . , fm are smooth vector fields on M (not necessarily linearly independent), and the
control u = (u1, . . . , um) takes values in IRm.

The system (5) is said to be (totally) nonholonomic if the m-tuple (f1, · · · , fm) satisfies
Hörmander’s condition everywhere on M . According to the Chow-Rashevsky Theorem, any
two points of M can be joined by a trajectory of (5).

Let x̄ ∈M be fixed. The stabilization problem consists in finding a feedback control function
k = (k1, · · · , km) : M → IRm such that the closed-loop system

ẋ =
l∑

i=1

ki(x)fi(x) (6)

is globally asymptotically stable at x̄. It results from the discussion above, and in particular
from Brockett’s condition, that smooth or even continuous stabilizing feedbacks do not exist
in general. This fact has generated a wide-ranging research with view to deriving adapted
notions for stabilization issues, such as discontinuous piecewise analytic feedbacks (see [46]),
discontinuous sampling feedbacks (see [21, 37]), continuous time varying control laws (see [24]),
patchy feedbacks (see [6]), almost globally asymptotically stabilizing feedbacks (see [38] enjoying
different properties. The notion of smooth repulsive stabilizing feedback (see [39, 40, 41]), whose
definition is recalled below, is under consideration in the present article.

Let x̄ ∈ M be fixed. Let S be a closed subset of M and k = (k1, · · · , km) : M → IRm be a
mapping on M . The feedback k is said to be smooth repulsive globally asymptotically stable at
x̄ with respect to S (denoted in short SRSx̄,S) if the following properties are satisfied:

(i) The mapping k is locally bounded on M and smooth on M \ S.

(ii) The dynamical system (6) is globally asymptotically stable at x̄ in the sense of Carathéodory.
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(iii) For every x ∈M , the Carathéodory solutions of (6) satisfy x(t) /∈ S, for every t > 0.

We next associate to the control system (5) an optimal control problem.
For x0 ∈M and T > 04, a control u ∈ L∞([0, T ], IRm) is said admissible if the solution x(·)

of (5) associated to u and starting at x0 is well defined on [0, T ]. On the set Ux0,T of admissible
controls, and with the previous notations, define the end-point mapping by Ex0,T (u) := x(T ).
It is classical that Ux0,T is an open subset of L∞([0, T ], IRm) and that Ex0,T : Ux0,T → M is a
smooth map.

A control u ∈ Ux0,T is said to be singular if u is a critical point of the end-point mapping
Ex0,T ; in this case the corresponding trajectory x(·) is said to be singular.

Let x0 and x1 be two points of M , and T > 0. Consider the optimal control problem of
determining, among all the trajectories of (5) steering x0 to x1, a trajectory minimizing the
cost

CU (T, u) =
∫ T

0

u(t)TU(x(t))u(t)dt, (7)

where U takes values in the set S+
m of symmetric positive definite m×m matrices.

Theorem 3. Assume that there exists a smooth function U : M → S+
m such that no nontrivial

singular trajectory of the control system (5) minimizes the cost (7) between its extremities.
Then, there exist a mapping k : M → IRm, and a closed nonempty subset S of M , of Hausdorff
dimension lower than or equal to n− 1, such that k is a SRSx̄,S feedback.

Remark 1.8. The same remarks as those following Theorem 1 are valuable. In particular, it
is proved in [18] that, for a fixed smooth function U : M → S+

m, if m ≥ 3, then there exists
an open and dense subset Om of the set of m-tuples of smooth vector fields on M so that
the optimal control problem (5)–(7) defined with an m-tuple of Om does not admit nontrivial
minimizing singular trajectories.

2 Proof of the main results

This section is organized as follows. In Section 2.1, we recall some tools of nonsmooth analysis
that are required to prove our main results. Section 2.2 is devoted to the proof of Theorem
1. We first define a Bolza problem, equivalent to the sub-Riemannian problem, for which we
derive some fine properties of the value function and of optimal trajectories. In particular we
prove that the value function is smooth outside a singular set which is defined using a specific
notion of subdifferential. Theorem 1 is then derived in Section 2.2.4. Theorem 2 is proved in
Section 2.3. The proof of Theorem 3 is similar to the one of Theorem 1 and thus is skipped.

2.1 Preliminaries: some tools of nonsmooth analysis

Let M be a smooth manifold of dimension n.

2.1.1 Viscosity subsolutions, supersolutions and solutions

For an introduction to viscosity solutions of Hamilton-Jacobi equations, we refer the reader to
[7, 8, 25, 31]. Assume that F : T ∗M × IR → IR is a continuous function on M . A function
u : U → IR, continuous on the open set U ⊂M , is a viscosity subsolution (resp., supersolution)
on U of

F (x, du(x), u(x)) = 0, (8)

4Note that, in what follows, the value of T is not important. It can be assumed for instance that T = 1.
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if, for every C1 function φ : U → IR (resp., ψ : U → IR) satisfying φ ≥ u (resp., ψ ≤
u), and every point x0 ∈ U satisfying φ(x0) = u(x0) (resp., ψ(x0) = u(x0)), there holds
F (x0, dφ(x0), u(x0)) ≤ 0 (resp., F (x0, dψ(x0), u(x0)) ≤ 0). A function is a viscosity solution of
(8) if it is both a viscosity subsolution and a viscosity supersolution of (8).

2.1.2 Generalized differentials

Let u : U → IR be a continuous function on an open set U ⊂ M . The viscosity subdifferential
of u at x ∈ U is the subset of T ∗xM defined by

D−u(x) :=
{
dψ(x) | ψ ∈ C1(U) and f − ψ attains a global minimum at x

}
.

Similarly, the viscosity superdifferential of u at x is the subset of T ∗xM defined by

D+u(x) :=
{
dφ(x) | φ ∈ C1(U) and f − φ attains a global maximum at x

}
.

Notice that u is a viscosity subsolution (resp., supersolution) of (8) if and only if, for every x ∈ U
and every ζ ∈ D+u(x) (resp., ζ ∈ D−u(x)), one has F (x, ζ, u(x)) ≤ 0 (resp.,F (x, ζ, u(x)) ≥ 0).

The limiting subdifferential of u at x ∈ U is the subset of T ∗xM defined by

∂Lu(x) :=
{

lim
k→∞

ζk | ζk ∈ D−u(xk), xk → x

}
.

By construction, the graph of the limiting subdifferential is closed in T ∗M . Moreover, the
function u is locally Lipschitzian on its domain if and only if the limiting subdifferential of u
at any point is nonempty and its graph is locally bounded (see [22, 42]).

Let u : U → IR be a locally Lipschitzian function. The Clarke’s generalized gradient of u at
the point x ∈ U is the subset of T ∗xM defined by

∂u(x) := co (∂Lu(x)) ,

that is, the convex hull of the limiting differential of u at x. Notice that, for every x ∈ U ,

D−u(x) ⊂ ∂Lu(x) ⊂ ∂u(x) and D+u(x) ⊂ ∂u(x).

2.1.3 Locally semiconcave functions

For an introduction to semiconcavity, we refer the reader to [15]. A function u : U → IR,
defined on the open set U ⊂ M , is locally semiconcave on U , if for every x ∈ U , there exist a
neighborhood Ux of x and a smooth diffeomorphism ϕx : Ux → ϕx(Ux) ⊂ IRn such that f ◦ϕ−1

x

is locally semiconcave on the open subset Ũx = ϕx(Ux) ⊂ IRn. For the sake of completeness,
we recall that the function u : U → IR, defined on the open set U ⊂ IRn, is locally semiconcave
on U , if for every x̄ ∈ U there exist C, δ > 0 such that

µu(y) + (1− µ)u(x)− u(µx+ (1− µ)y) ≤ µ(1− µ)C|x− y|2, (9)

for all x, y ∈ x̄ + δB (where B denotes the open unit ball in IRn) and every µ ∈ [0, 1]. This is
equivalent to say that the function u can be written locally as

u(x) =
(
u(x)− C|x|2

)
+

(
C|x|2

)
, ∀x ∈ x̄+ δB,

that is, as the sum of a concave function and a smooth function. Note that every semiconcave
function is locally Lipschitzian on its domain, and thus, by Rademacher’s Theorem, is differen-
tiable almost everywhere on its domain. The following result will be useful in the proof of our
theorems.

8



Lemma 2.1. Let u : U → IR be a function defined on an open set U ⊂ IRn. If, for every x̄ ∈ U ,
there exist a neighborhood V of x̄ and a positive real number σ such that, for every x ∈ V, there
exists px ∈ IRn such that

u(y) ≤ u(x) + 〈px, y − x〉+ σ|y − x|2, (10)

for every y ∈ V, then the function u is locally semiconcave on U .

Proof. Without loss of generality, assume that V is an open ball B. Let x, y ∈ B and µ ∈ [0, 1].
The point x̄ := µx + (1 − µ)y belongs to B by convexity. By assumption, there exists p̄ ∈ IRn

such that
u(z) ≤ u(x̄) + 〈p̄, z − x̄〉+ σ|z − x̄|2, ∀z ∈ B.

Hence,

µu(y) + (1− µ)u(x) ≤ u(x̄) + µσ|x− x̄|2 + (1− µ)σ|y − x̄|2

≤ u(x̄) +
(
µ(1− µ)2σ + (1− µ)µ2σ

)
|x− y|2

≤ u(x̄) + 2µ(1− µ)σ|x− y|2,

and the conclusion follows.

The converse result can be stated as follows.

Proposition 4. Let U be an open and convex subset of IRn and u : U → IR be a function which
is C-semiconcave on U , that is, which satisfies

µu(y) + (1− µ)u(x)− u(µx+ (1− µ)y) ≤ µ(1− µ)C|x− y|2, (11)

for every x, y ∈ U . Then, for every x ∈ U and every p ∈ D+u(x), we have

u(y) ≤ u(x) + 〈p, y − x〉+
C

2
|y − x|2, ∀y ∈ Ω, (12)

In particular, D+u(x) = ∂u(x), for every x ∈ U .

Remark 2.1. As a consequence (see [15, 42]), we obtain that, if a function u : U → IR is locally
semiconcave on an open set U ⊂M , then, for every x ∈ U ,

∂Lu(x) =
{

lim
k→∞

du(xk) | xk ∈ Du, xk → x

}
,

where Du denotes the set of points of U at which u is differentiable.

The following result is useful to obtain several characterization of the singular set of a given
locally semiconcave function. We refer the reader to [15, 42] for its proof.

Proposition 5. Let U be an open subset of M and u : U → IR be a function which is locally
semiconcave on U . Then, for every x ∈ U , u is differentiable at x if and only if ∂u(x) is a
singleton.

The next result will happen to be useful (see [15, Corollary 3.3.8]).

Proposition 6. Let u : U → IR be a function defined on an open set U ⊂M . If both functions
u and −u are locally semiconcave on U , then u is of class C1,1

loc on U .
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2.1.4 Singular sets of semiconcave functions

Let u : U → IR be a function which is locally semiconcave on the open set U ⊂ M . We recall
that since such a function is locally Lipschitzian on U , its limiting subdifferential is always
nonempty on U . We define the singular set of u as the subset of U

Σ(u) := {x ∈ U | ∂Lu(x) is not a singleton} .

Alberti, Ambrosio and Cannarsa proved in [5] the following result.5

Theorem 7. Let U be an open subset of M . The singular set of a locally semiconcave function
u : U → IR is of Hausdorff dimension lower than or equal to n− 1.

The following lemma, proved in Appendix (Section 3.1), will be useful for the proof of
Theorems 1 and 2.

Lemma 2.2. Let u : U → IR be a locally semiconcave function on an open subset U ⊂M and
γ : [a, b] → U be a locally Lipschitzian curve on the interval [a, b]. Then, for every measurable
map p : [a, b] → T ∗M verifying

p(t) ∈ D+u(γ(t)), for a.e. t ∈ [a, b],

we have

d

dt
(u(γ(t))) = p(t) (γ̇(t)) , for a.e. t ∈ [a, b].

2.2 Proof of Theorem 1

From now on, assume that the assumptions of Theorem 1 hold. In particular, assume that
there exists no nontrivial singular minimizing path for the metric g.

2.2.1 An equivalent optimal control problem

Define the running cost Lg by
Lg(x, v) := gx(v, v),

for x ∈M and v ∈ ∆(x), and define the functional Jg : Ω∆(x̄) → IR+ by

Jg(γ) :=
∫ 1

0

Lg(γ(t), γ̇(t))dt.

The Bolza optimization problem under consideration, denoted by (BP)g,∆, consists in minimiz-
ing the functional Jg, called energy, over all horizontal paths γ joining x̄ to x ∈ M . Since M
is connected and complete, and since the running cost Lg is coercive in every fiber, for every
x ∈ M there exists a horizontal path γ ∈ Ω∆(x̄, x), minimizing the energy Jg. The value
function associated to the Bolza problem (BP)g,∆ is defined by

Vg,∆(x) := inf {Jg(γ) | γ ∈ Ω∆(x̄, x)} ,

for every x ∈M .

Note that the length of a horizontal path γ, defined by (2), does not depend on its parametriza-
tion. Hence, up to reparametrizing, one can assume that the horizontal paths are parametrized
by arc-length, i.e., that gγ(t)(γ̇(t), γ̇(t)) = 1. In this case, the length minimizing problem is

5In fact, this result has been strengthened later as follows. We can prove that the singular set of a locally
semiconcave function is countably n− 1-rectifiable, i.e., is contained in a countable union of locally Lipschitzian
hypersurfaces of M (see [15, 42]).
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equivalent to the minimal time problem. Moreover, if all paths are defined on the same inter-
val, then length and energy minimization problems are equivalent, and the value function Vg,∆

satisfies
Vg,∆(x) = dSR(x̄, x)2. (13)

In other terms, the sub-Riemannian problem of minimizing the length between two points x̄
and x, for the sub-Riemannian manifold (M,∆, g), is equivalent to the Bolza problem (BP)g,∆.

We next provide another equivalent formulation of this optimization problem, in terms of
optimal control theory, that will be useful in the proofs of Theorems 1 and 2. Let x ∈M , and
let γ be a minimizing horizontal path joining x̄ to x. Since γ is necessarily not self-intersecting,
there exists a tubular neighborhood V of the path γ in M , and there exist m smooth vector
fields f1, . . . , fm on V, such that

∆(x) = Span {fi(x) | i = 1, . . . ,m} ,

for every x ∈ V. Then, every horizontal path x(·), contained in V, is solution of the control
system

ẋ(t) =
m∑

i=1

ui(t)fi(x(t)),

where u(·) = (u1(·), . . . , um(·)) ∈ L∞([0, 1]; IRm) is called the control. Without loss of generality,
we assume that the m-tuple of vector fields (f1, . . . , fm) is orthonormal for the metric g. In
these conditions, the energy of the path x(·) is

Jg(x(·)) =
∫ 1

0

m∑
i=1

ui(t)2dt.

Since the optimal control problem does not admit any nontrivial singular minimizing path,
it follows from the Pontryagin maximum principle (see [35]) that every minimizing path γ
is the projection of a normal extremal ψ(·) = (γ(·), p(·)), associated with the control u(·) =
(u1(·), . . . , um(·)), where

ui(t) = 〈p(t), fi(γ(t))〉, i = 1, . . . ,m. (14)

2.2.2 Properties of the value function Vg,∆

Consider the Hamiltonian function Hg,∆ : T ∗M → IR defined by

Hg,∆(x, p) := max
v∈∆(x)

(
p(v)− 1

2
gx(v, v)

)
.

Note that this Hamiltonian coincides with the Hamiltonian H defined by (3) (as can be seen in
local coordinates).

Proposition 8. If the distribution ∆ is nonholonomic on M , then the value function Vg,∆ :
M → IR is continuous on M and is a viscosity solution of the Hamilton-Jacobi equation

−1
2
Vg,∆(x) +Hg,∆

(
x,

1
2
dVg,∆(x)

)
= 0, ∀x ∈M \ {x̄}. (15)

Note that this proposition still holds if there exist some minimizing singular paths.

Proof. The continuity of Vg,∆ follows from the continuity of the sub-Riemannian distance,
associated to the metric g, on M ×M . Notice that, since the running cost Lg is coercive in
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the fibers, and since M is connected, for every x ∈ M \ {x̄}, there exists an horizontal path
γ(·) ∈ Ω∆(x̄, x) such that

Vg,∆(x) = Jg(γ(·)) =
∫ 1

0

Lg(γ(s), γ̇(s))ds.

Let us prove that Vg,∆ is a viscosity solution of (15) on M \ {x̄}. Let x ∈ M \ {x̄}, and let
γ : [0, 1] →M be an horizontal path joining x̄ to x. For t ∈ (0, 1), there exists γ̃ ∈ Ω∆(x̄, γ(t))
such that

Vg,∆(γ(t)) =
∫ 1

0

Lg(γ̃(s), ˙̃γ(s))ds =
1
t

∫ t

0

Lg

(
γ̃

(s
t

)
, ˙̃γ

(s
t

))
ds.

Define γ1 ∈ Ω∆(x̄, x) by

γ1(s) :=
{
γ̃

(
s
t

)
if s ∈ [0, t],

γ(s) if s ∈ [t, 1].

Then, there holds

Vg,∆(x) ≤
∫ 1

0

Lg(γ1(s), γ̇1(s))ds

≤
∫ t

0

Lg

(
γ̃

(s
t

)
,
1
t

˙̃γ
(s
t

))
ds+

∫ 1

t

Lg(γ(s), γ̇(s))ds

≤ 1
t
Vg,∆(γ(t)) +

∫ 1

t

Lg(γ(s), γ̇(s))ds.

If φ : M → IR is a C1 function satisfying φ ≥ Vg,∆ and φ(x) = Vg,∆(x), then

φ(x) = Vg,∆(x) ≤ 1
t
Vg,∆(γ(t)) +

∫ 1

t

Lg(γ(s), γ̇(s))ds

≤ 1
t
φ(γ(t)) +

∫ 1

t

Lg(γ(s), γ̇(s))ds.

Making t tend to 1, and considering all C1 horizontal paths joining x̄ to x, we infer that, for
every v ∈ ∆(x),

dφ(x)(v) ≤ φ(x) + Lg(x, v).

On the other part, consider some path γ ∈ Ω∆(x̄, x) satisfying Vg,∆(x) = Jg(γ). For every
t ∈ (0, 1), up to a change of variable, this path is necessary minimizing between x̄ and γ(t).
Therefore, for every t ∈ (0, 1),

Vg,∆(x) =
1
t
Vg,∆(γ(t)) +

∫ 1

t

Lg(γ(s), γ̇(s))ds.

If ψ : U → IR is a C1 function satisfying ψ ≤ Vg,∆ and φ(x) = Vg,∆(x), then

ψ(x) ≥ 1
t
ψ(γ(t)) +

∫ 1

t

Lg(γ(s), γ̇(s))ds.

As previously, passing to the limit yields the existence of v ∈ ∆(x) such that

dψ(x)(v) ≥ ψ(x) + Lg(x, v).

The conclusion follows.
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Remark 2.2. Notice that, since Vg,∆ is a viscosity solution of (15) on M \ {x̄}, there holds, for
every horizontal path γ : [a, b] →M \ {x̄} (with a < b),

Vg,∆(γ(b))− Vg,∆(γ(a)) ≤
∫ b

a

Vg,∆(γ(s))ds+
∫ b

a

Lg(γ(s), γ̇(s))ds.

Remark 2.3. We also notice, that since Vg,∆ is a viscosity solution of (15) on M \ {x̄}, we have

−1
2
Vg,∆(x) +Hg,∆(x,

1
2
ζ) = 0, ∀x ∈M \ {x̄}, ∀ζ ∈ ∂LVg,∆(x). (16)

Finally we have the following result.

Proposition 9. If the distribution ∆ is nonholonomic on M , then the value function Vg,∆ is
continuous on M , and locally semiconcave on M \ {x̄}.

We just sketch the proof of Proposition 9; we refer the reader to [14, 42] for further details.

Proof. Recall that since M is connected and complete, for every x ∈ M \ {x̄}, there exists an
horizontal path γ ∈ Ω∆(x̄, x) such that

Vg,∆(x) = Jg(γ) =
∫ 1

0

Lg(γ(s), γ̇(s))ds.

By assumption, this minimizing path γ is necessarily nonsingular, and thus, it is the projection
of a normal extremal. It is well known (see [1, 47]) that, for every x ∈ M \ {x̄}, there exists a
neighborhood V of x in M \ {x̄}, such that the set of cotangent vectors p0 ∈ T ∗x̄M for which
expx̄(p0) ∈ V and the projection of the corresponding normal extremal minimizes the length
between x̄ and expx̄(p0), is compact in T ∗x̄M . On the other hand, we know from [43, Proposition
4 p. 153], that, if ζ ∈ ∂LVg,∆(x), then there exists a normal extremal ψ : [0, 1] → T ∗M whose
projection is minimizing between x̄ and x and such that ψ(1) = (x, 1

2ζ). This proves that the
function Vg,∆ is locally Lipschitzian on M \ {x̄}.

Let x ∈M \ {x̄}, and let γ̄ be a minimizing horizontal path joining x̄ to x. By assumption,
this path is nonsingular, and thus, it is not a critical point of the end-point mapping Ex̄. Hence,
there exists a submanifold N of Ω∆(x̄), of dimension n, such that the mapping

E : N −→ M
γ(·) 7−→ Ex̄(γ(·)) = γ(1),

is a local diffeomorphism, from a neighborhood of γ̄(·) in N , into a neighborhood W of x = γ̄(1).
We infer that, for every y ∈ W,

Vg,∆(y) ≤ Jg(E−1(y)).

Since Jg is smooth on the submanifold N , up to diffeomorphism, one can put a parabola over
the graph of Jg on N , and thus, over the graph of the function Vg,∆ at every x ∈M \ {x̄}. The
second-order term of this parabola depends on the minimizing controls which are associated to
the points x. Using the compactness of the minimizers that we recalled above, we deduce that
the function Vg,∆ is locally semiconcave on M \ {x̄}.

In the sequel, the singular set of Vg,∆, denoted Σ(Vg,∆), is

Σ(Vg,∆) := {x ∈M \ {x̄} | ∂LVg,∆(x) is not a singleton} .

Recall that, since the function Vg,∆ is locally semiconcave on M \{x̄}, its limiting subdifferential
is nonempty at any point of M \ {x̄} (see [15]).
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2.2.3 Properties of optimal trajectories of (BP)g,∆

We stress that, due to the assumption of the absence of singular minimizing path, every minimiz-
ing curve of the Bolza problem (BP)g,∆ is the projection of a normal extremal, i.e., an integral

curve of the Hamiltonian vector field
−→
H defined by (3), associated with H. In particular, every

minimizing curve of (BP)g,∆ is smooth on [0, 1].

Lemma 2.3. For every x ∈ M \ {x̄} and every ζ ∈ ∂LVg,∆(x), there exists a unique normal
extremal ψ(·) : [0, 1] → T ∗M whose projection γ(·) : [0, 1] → M is minimizing between x̄ and
x, and such that ψ(1) = (x, 1

2ζ) in local coordinates. In addition, ψ(·) is the unique (up to a
multiplying scalar) normal extremal lift of γ(·).

Proof. The first part of the statement is a consequence of [43, Proposition 4 p. 153]. Uniqueness
follows from Cauchy-Lipschitz Theorem. Uniqueness (up to a multiplying scalar) of the normal
extremal lift of γ(·) is a consequence of the assumption of the absence of singular minimizing
paths (see [43, Remark 8 p. 149]).

Lemma 2.4. Let x ∈ M \ {x̄} and γ(·) : [0, 1] → M be a minimizing curve of (BP)g,∆ such
that γ(1) = x. Then, for every t ∈ (0, 1), the curve γ̃t(·) : [0, 1] →M defined by γ̃t(s) := γ(st),
for s ∈ [0, 1], is the unique minimizing curve of (BP)g,∆ steering x̄ to γ(t). Moreover, γ̃t(·) is
the projection of the normal extremal (γ̃t(·), p̃t(·)) in local coordinates, with p̃t(s) = tp(st) for
every s ∈ [0, 1].

Proof. We argue by contradiction. If there is another horizontal curve γ2(·) : [0, 1] →M which
minimizes the sub-Riemannian distance between x̄ and γ(t), then there exists a nontrivial
minimizing path x(·), joining the points γ(t) and γ(1) = x, and having two distinct normal
extremal lifts ψ1(·) and ψ2(·). Then, the extremal ψ1(·) − ψ2(·) is an abnormal extremal lift
of the path x(·). Hence, the path x(·) is singular and minimizing, and this contradicts our
assumption.

We next prove that the adjoint vector associated to γ̃t(·) is given by p̃t(s) = tp(st) for
s ∈ [0, 1]. In local coordinates, using the expression (14) of normal controls, γ(·) is solution of
the system

γ̇(t) =
n∑

i=1

〈p(t), fi(γ(t))〉fi(γ(t)), for a.e. t ∈ [0, 1].

Hence, γ̃t(·) is solution of

d

ds
γ̃t(s) = t

n∑
i=1

〈p(st), fi(γ̃t(t))〉fi(γ̃t(t)), for a.e. s ∈ [0, 1].

The conclusion follows.

Lemma 2.5. Any normal extremal ψ(·) : [0, 1] → T ∗M whose projection is minimizing between
x̄ and x ∈M \ {x̄} satisfies ζ ∈ ∂LVg,∆(x), where ψ(1) = (x, 1

2ζ) in local coordinates.

Proof. Let ψ(·) : [0, 1] → T ∗M be a normal extremal whose projection γ(·) is minimizing
between x̄ and x ∈ M \ {x̄}. Since Vg,∆ is locally semiconcave on M \ {x̄}, its limiting
subdifferential is always nonempty on M \ {x̄}. We infer from Lemmas 2.3 and 2.4 that,
for every t ∈ (0, 1), there holds ∂LVg,∆(γ(t)) = {ζ(t)}, where ψ(t) = (x(t), 1

2tζ(t)) in local
coordinates. Consider a sequence (tk) of real numbers converging to 1. Then, on the one part,
the sequence (ψ(tk)) converges to ψ(1), and on the other part, by construction of the limiting
subdifferential, ζ = ζ(1) ∈ ∂LVg,∆(x).
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Lemma 2.6. The following inclusion holds:

Σ(Vg,∆) \ Σ(Vg,∆) ⊂ Cmin(x̄) ∪ {x̄}.

In particular, the set Σ(Vg,∆) is of Hausdorff dimension lower than or equal to n− 1.

Proof. Let x ∈ Σ(Vg,∆)\Σ(Vg,∆) such that x 6= x̄. By definition, the set ∂LVg,∆(x) is a singleton.
Hence by Lemmas 2.3 and 2.5, there is a unique minimizing path γ(·) ∈ Ω∆(x̄x) and a unique
normal extremal ψ(·) : [0, 1] → T ∗M such that γ(·) = π(ψ(·)); moreover, ∂LVg,∆(x) = {ζ},
where ψ(1) = (x, 1

2ζ) in local coordinates. We argue by contradiction; if x /∈ Cmin(x̄), then
the exponential mapping expx̄ is not singular at p0, where ψ(0) = (x̄, p0) in local coordinates.
Furthermore, since x ∈ Σ(Vg,∆), there is a sequence of points (xk) in Σ(Vg,∆) which converges
to x. For every k, the set ∂LVg,∆(xk) admits at least two elements. Hence for every k, there are
two distinct normal extremals ψ1

k(·), ψ2
k(·) : [0, 1] → T ∗M such that their projections γ1

k(·), γ2
k(·)

are minimizing between x̄ and xk. Since the limiting subdifferential of Vg,∆ is a singleton, the
sequences (ψ1

k(1)), (ψ2
k(1)) converge necessarily to ψ(1). Moreover, by regularity of the Hamil-

tonian flow, the sequences (ψ1
k(0)), (ψ2

k(0)) converge necessarily to ψ(0). But the exponential
mapping expx̄ must be a local diffeomorphism from a neighborhood of p0 into a neighborhood
of π(ψ(1)). This is a contradiction. The second part of the lemma follows from the fact that
the singular set Σ(Vg,∆) is of Hausdorff dimension lower than or equal to n − 1 (see Theorem
7), and of the fact that the set Cmin(x̄) is contained in C(x̄) which is of Hausdorff dimension
lower than or equal to n− 1 (by [26, Theorem 3.4.3]).

Lemma 2.7. The function Vg,∆ is of class C1 on the open set M \
(
Σ(Vg,∆) ∪ {x̄}

)
.

Proof. The set ∂LVg,∆(x) is a singleton for every x in the set M \
(
Σ(Vg,∆) ∪ {x̄}

)
which is

open in M . From Remark 2.1 and the fact that u is differentiable at some x ∈M \ {x̄} if and
only if x /∈ Σ(u), we infer that Vg,∆ is of class C1 on the set M \

(
Σ(Vg,∆) ∪ {x̄}

)
.

Lemma 2.8. Let x ∈ M \ {x̄} and γ̄(·) : [0, 1] → M be a minimizing curve of (BP)g,∆ such
that γ̄(1) = x. Let Ux be an open neighborhood of x and ϕx : Ux → ϕx(Ux) ⊂ IRn be a
smooth diffeomorphism such that V := Vg,∆ ◦ ϕ−1

x is a locally semiconcave on the open subset
U := ϕx(Ux) ⊂ IRn. Let t ∈ (0, 1) be such that γ̄(s) ∈ Ux for every s ∈ [t, 1]. Then there exist
a neighborhood Wt of γ̄(t) and σ(t) > 0 such that

V (y) ≥ V (ϕx(γ̄(t))) + dV (ϕx(γ̄(t)))(y − ϕx(γ̄(t)))− σ(t)|y − ϕx(γ̄(t))|2, ∀y ∈ Wt. (17)

Proof. Without loss of generality, we assume that M = IRn, that ϕx is the identity, and that
the closure of Ux is a compact subset of M \ {x̄}. Set xs := γ̄(s), for every s ∈ [t, 1]. Since
V = Vg,∆ is locally semiconcave on M \ {x̄}, there exists σ ∈ IR such that

V (y) ≤ V (xs) + dV (xs)(y − xs) + σ|y − xs|2, ∀y ∈ U, ∀s ∈ [t, 1]. (18)

The horizontal path γ̃(·) : [0, 1− t] →M , defined by

γ̃(s) := γ(1− s), ∀s ∈ [0, 1− t],

is minimizing between x and γ(t). Hence, by assumption, it is nonsingular, and thus, it is not
a critical point of the end-point mapping

Et : Ω∆(x) −→ M
γ(·) 7−→ γ(1− t).
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Therefore, there exists a submanifold N of Ω∆(x) of dimension n, such that the mapping

Et : N −→ M
γ(·) 7−→ E(γ(·)),

is a local diffeomorphism, from a neighborhood of γ̃(·) inN , into a neighborhoodWt of γ̃(1−t) =
xt. From Remark 2.2, we infer that, for every y ∈ Wt,

V (y) ≥ V (x)−
∫ 1

t

V (γy(s)) ds−
∫ 1

t

Lg (γy(s), γ̇y(s)) ds, (19)

where γy(·) : [t, 1] →M is defined by

γy(s) := E−1
t (y)(1− s), ∀s ∈ [t, 1].

By (18), we have

−
∫ 1

t

V (γy(s)) ds ≥ −
∫ 1

t

(
V (xs) + dV (xs)(γy(s)− xs) + σ|γy(s)− xs|2

)
ds. (20)

Moreover, since γ̄(·) is minimizing between x̄ and x,

V (x) = V (xt) +
∫ 1

t

V (xs)ds+
∫ 1

t

Lg(xs, ˙̄γ(s))ds.

Hence, from (18), (19) and (20), we deduce that, for every y ∈ Wt,

V (y) ≥ V (xt) + Φ(y),

where

Φ(y) :=
∫ 1

t

(Lg(xs, ˙̄γ(s))− Lg(γy(s), γ̇y(s))) ds−
∫ 1

t

(
dV (xs)(γy(s)− xs) + σ|γy(s)− xs|2

)
ds.

Since the mapping Φt : W → IR is smooth and since Φt(xt) = 0, a parabola can be put under
the graph of V at xt. This proves (17).

Lemma 2.9. The following inclusion holds:

Cmin(x̄) ⊂ Σ(Vg,∆).

Proof. Let x ∈ Cmin(x̄); note that, by definition of Cmin(x̄), one has x 6= x̄ . We argue by
contradiction. If x does not belong to Σ(Vg,∆), then Vg,∆ is C1 in a neighborhood of x. This
means that there exist a neighborhood V of x and t ∈ (0, 1) such that for every y ∈ V, there is a
minimizing curve of (BP)g,∆ such that γ̄(t) = y. From the previous lemma and by compactness
of the minimizers, we deduce that the function −Vg,∆ is locally semiconcave on V. Hence by
Proposition 6, Vg,∆ is C1,1

loc in V. Define

Ψ : V −→ T ∗x̄M
y 7−→ ψ(0),

where ψ(·) : [0, 1] → TM is the normal extremal satisfying ψ(1) = (y, 1
2dVg,∆(y)). This mapping

is locally Lipschitz on V. Moreover by construction, Ψ is an inverse of the exponential mapping.
This proves that p0 := Ψ(x) is not a conjugate point. We obtain a contradiction.

Lemma 2.10. Let p0 ∈ T ∗x̄M be such that H(x̄, p0) 6= 0. There exist a neighborhood W of p0

in T ∗x̄M and ε > 0 such that every normal extremal so that ψ(0) = (x̄, p) (in local coordinates)
belongs to W is minimizing on the interval [0, ε].
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The proof of Lemma 2.10 is postponed to the Appendix (Section 3.2).

We are now ready to provide a proof for Lemma 1.1.
Proof of Lemma 1.1. For the sake of simplicity, we assume that M = IRn, endowed with the
Euclidean metric. We have to prove that Cmin(x̄) ⊂ L(x̄). Let y ∈ Cmin(x̄). We argue
by contradiction. Assume that y does not belong to L(x̄). This means that there exists a
minimizing curve γ(·) of (BP)g,∆ and ty ∈ (0, 1) such that γ(ty) = y. Set x := γ(1), and let t̄
be the minimum of times t ∈ (0, 1) such that γ(t) /∈ Σ(Vg,∆). We claim that t̄ ∈ (0, ty]. As a
matter of fact, we know by Lemma 2.9 that γ(ty) = y ∈ Σ(Vg,∆). Moreover, from Lemma 2.10
and the absence of (nontrivial) singular minimizing path, the mapping

W −→ M
p 7−→ π(ψ(ε)),

where ψ(0) = (x̄, p), is injective. Hence from the Invariance of Domain Theorem6, this mapping
is open. Which means that V = Vg,∆ is necessarily of class C1 on a neighborhood of each γ(s)
with s ∈ (0, ε]. We conclude that t̄ ∈ (0, ty].
Set x̄ := γ(t̄) and xs := γ(s) for every s ∈ [0, 1]. By local semiconcavity of V (see Proposition
9), there exists a neighborhood V of x̄ in M \ {x̄} and σ ∈ IR such that

V (z′) ≤ V (z) + 〈dV (z), z′ − z〉+ σ|z′ − z|2, ∀z, z′ ∈ V. (21)

Let p̄ ∈ T ∗x̄M such that x̄ = expx̄(p̄). Since V is of class C1 in a neighborhood of the curve
s ∈ (0, t̄) 7→ γ(s), there exists a neighborhood W ′ of p̄ in T ∗x̄M such that

∀p ∈ W ′, H(x̄, p) = H(x̄, p̄) =⇒ V (expx̄(p)) = V (x̄).

Thus, by (21), we have for every p ∈ W ′ satisfying H(x̄, p) = H(x̄, p̄),

〈dV (x̄), expx̄(p)− x̄〉 ≥ −σ |expx̄(p)− x̄|2 . (22)

Furthermore, from Lemma 2.5, there exist a neighborhood V ′ of x̄ and σ′ > 0 such that

V (z) ≥ V (x̄) + 〈dV (x̄, z − x̄〉 − σ′|z − x̄|2, ∀z ∈ V ′. (23)

Without loss of generality, assume that V ′ = V and σ′ = σ. For every p ∈ W ′, set x(p) :=
expx̄(p). By (22) and (23), we deduce that for every p ∈ W ′ satisfying H(x̄, p) = H(x̄, p̄) and
for every z ∈ V, we have

V (z) ≥ V (x̄) + 〈dV (x̄), z − x(p)〉+ 〈dV (x̄), x(p)− x̄〉 − σ|z − x̄|2

≥ V (x̄) + 〈dV (x̄), z − x(p)〉 − σ|x(p)− x̄|2 − σ|z − x̄|2.

In conclusion, by (21), we obtain that for every p ∈ W ′ satisfying H(x̄, p) = H(x̄, p̄) and every
z ∈ V, we have

〈dV (x̄), z − x(p)〉 − σ|x(p)− x̄|2 − σ|z − x̄|2 ≤ 〈dV (x(p)), z − x(p)〉+ σ|z − x(p)|2.

Hence, for every p ∈ W ′ satisfying H(x̄, p) = H(x̄, p̄) and every z ∈ V,

2σ|z − x(p)|2 + 〈dV (x(p))− dV (x̄), z − x(p)〉+ 2σ〈x(p)− x̄, z − x(p)〉+ 2σ|x(p)− x̄|2 ≥ 0. (24)

Now, since x̄ = γ(t̄) belongs to Σ(V ), we know by Lemma 2.6 that the exponential mapping is
singular at p̄. Define the mapping Φ : IRn × IRn → IRn × IRn by

∀(z, p) ∈ IRn × IRn, Φ(x, p) := ψ(x(1), p(1)),
6The Invariance of Domain Theorem states that, for a topological manifold N , if f : N → N is continuous

and injective, then it is open. We refer the reader to the book [12] for a proof of that result.
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where (x(·), p(·)) : [0, 1] → T ∗M is the normal extremal satisfying (x(0), p(0)) = (x, p). Since
Φ is a flow, its differential is always invertible. Hence there exist P ∈ IRn and Q ∈ IRn \ {0}
such that

DΦ(x̄, p̄) · (0, P ) = (0, Q).

This means that there exist two continuous functions ε1, ε2 : IR → IRn, and a mapping λ 7→
p(λ) ∈ W ′ such that, for every λ sufficiently small, the following properties are satisfied:

(i) H(x̄, p(λ)) = H(x̄, p̄);

(ii) V (xλ) = V (x̄) where xλ := x(p(λ));

(iii) xλ = x̄+ λ2ε1(λ);

(iv) dV (xλ) = dV (x̄) + λQ+ λ2ε2(λ).

From (24), we deduce that, for every z ∈ V,

2σ|z − xλ|2 + λ〈Q, z − xλ〉+ λ2〈ε2(λ), z − xλ〉+ 2σλ2〈ε1(λ), z − xλ〉+ 2σλ4|ε1(λ)|2 ≥ 0.

We can apply this inequality for every α sufficiently small with z = xλ − αQ. This yields

2σα2|Q|2 − λα|Q|2 + λ2α〈ε2(λ),−Q〉+ 2σλ2α〈ε1(λ),−Q〉+ 2σλ4|ε1(λ)|2 ≥ 0,

for every λ, α sufficiently small. Taking α := λ
√
λ, we find a contradiction. �

Lemma 2.11. There holds
Σ(Vg,∆) = L(x̄) ∪ {x̄}.

In particular, the cut locus is closed in M \ {x̄}, and is of Hausdorff dimension lower than or
equal to n− 1.

Proof. From Lemma 2.3, any point of Σ(Vg,∆) is joined from x̄ by several minimizing curves.
Hence, from Lemma 2.4, any such point belongs to the cut locus L(x̄). From Lemmas 2.6 and
1.1, we deduce that

Σ(Vg,∆) ⊂ L(x̄) ∪ {x̄}.

If x ∈M \ {x̄} does not belong to Σ(Vg,∆), then, from Lemma 2.7, the function Vg,∆ is of class
C1 in a neighborhood U of x. Then, the continuous mapping

F : U −→ T ∗M

x 7−→ F (x) = −
−→
H (x, 1

2dVg,∆(x))

is such that F (x) = (x̄, p0), with expx̄(p0) = x. This means that the exponential mapping expx̄

is a homeomorphism from F (U) into U , of inverse mapping expx̄. In particular, it follows that
x /∈ L(x̄). The fact that x̄ belongs to Σ(Vg,∆) results from [1, Theorem 1].

Remark 2.4. Lemma 2.11 asserts that the cut locus L(x̄) has Hausdorff dimension lower than
or equal to n− 1. Recently, proving a Lipschitz regularity property of the distance function to
the cut locus, Li and Nirenberg showed in [30] that the (n− 1)-dimensional Hausdorff measure
of the cut locus in the Riemannian framework is finite. It would be interesting to study the
regularity of the distance function to the cut locus to obtain such a result in the sub-Riemannian
case.

Lemma 2.12. The function Vg,∆ is of class C∞ on the open set M \ Σ(Vg,∆). Moreover, if
γ : [0, 1] →M is a minimizing curve for (BP)g,∆, then γ(t) /∈ Σ(Vg,∆), for every t ∈ (0, 1).
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Proof. Let γ : [0, 1] → M be a minimizing curve for (BP)g,∆. It follows from Lemmas 1.1 and
2.11 that γ(t) /∈ Σ(Vg,∆), for every t ∈ (0, 1).

Let x ∈ M \ Σ(Vg,∆), and let γ(·) be a minimizing horizontal path joining x̄ to x. By
assumption, γ(·) is necessarily nonsingular, and admits a unique normal extremal lift ψ(·) :
[0, 1] → T ∗M . From Lemmas 1.1 and 2.11, the point x is not conjugate to x̄, and hence, the
exponential mapping expx̄ is a (smooth) local diffeomorphism from a neighborhood of p0 into
a neighborhood of x, where ψ(0) = (x̄, p0) in local coordinates. As recalled in the first section,
the length of the path γ(·) = π(ψ(·)) is equal to (2H(ψ(0)))1/2. Since γ(·) is minimizing, it is
also equal to dSR(x̄, x). Then, using local coordinates, and from (13), there holds

Vg,∆(x) = 2H(x̄, (expx̄)−1(x)),

in a neighborhood of x (see also [43, Corollary 1 p. 157]). It follows that Vg,∆ is of class C∞ at
the point x.

2.2.4 Conclusion: proof of Theorem 1

Define S := Σ(Vg,∆). From Lemma 2.11, there holds S = L(x̄)∪ {x̄}. We next define a section
X of ∆, that is smooth outside S. To this aim, it is convenient to consider local coordinates,
and to express the problem in terms of optimal control. Let x ∈ M \ S. In a neighborhood U
of x, one has, in local coordinates,

∆ = Span{f1, . . . , fm},

where (f1, . . . , fm) is a m-tuple of smooth vector fields which is orthonormal for the metric g.
We proceed as in [37].

Let x ∈ M \ x̄ be fixed (of course, we set X(x) := 0 if x = x̄), pick some ζ ∈ ∂LVg,∆(x).
Note that, since Vg,∆ is smooth outside the set S, one has ζ = dVg,∆(x) whenever x ∈ M \ S.
Define the control ũ(x) = (ũ1(x), · · · , ũm(x)) by

ũi(x) :=
1
2
ζ(fi(x)), ∀i = 1, · · · ,m. (25)

For x ∈ M \ S, ũi(x) = 1
2 〈dVg,∆(x), fi(x)〉 is the closed-loop form of the optimal control (14).

For x ∈ S, the expression of ũi(x) depends on the choice of ζ ∈ ∂LVg,∆(x). Define

X(x) := −
m∑

i=1

ũi(x)fi(x). (26)

Geometrically, X(x) coincides with the projection of − 1
2ζ onto ∆(x). At the point x̄, we set

X(x̄) = 0. This defines a vector field X on M , which is smooth on M \ S, but may be totally
discontinuous on S.

We next prove that X is SRSx̄,S . Property (i) is obviously satisfied, but properties (ii) and
(iii) are not so direct to derive.

We first prove that every minimizing trajectory yields a Caratheodory solution of ẋ = X(x).
Let x ∈M \x̄ be fixed and γ(·) : [0, 1] →M be a minimizing curve of the Bolza problem (BP)g,∆

between x̄ and x. It follows from the Pontryagin maximum principle that γ is the projection
of a normal extremal expressed in local coordinates by ψ(·) = (γ(·), p(·)). Let t ∈ (0, 1); from
Lemma 2.4, the curve γ̃t(·) : [0, 1] → M defined by γ̃t(s) := γ(st), for s ∈ [0, 1], is the unique
minimizing curve of (BP)g,∆ steering x̄ to γ(t). Moreover, from Lemma 2.4, it is the projection
of the normal extremal ψ̃t(·) = (γ̃t(·), p̃t(·)), where p̃t(·) is defined by p̃t(s) = tp(st), for every
s ∈ [0, 1]. It then follows from Lemmas 2.5 and 2.12 that, along the curve γ(·),

dVg,∆(γ(t)) = 2tp(t), ∀t ∈ (0, 1).
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Therefore, γ(·) is solution of

γ̇(t) =
1
2t

m∑
i=1

(
dVg,∆(γ(t))(fi(γ(t))

)
fi(γ(t)), a.e. on (0, 1),

in local coordinates along γ(·). This implies that the curve x(·) : [0,∞) →M defined by

x(t) := γ
(
e−t

)
, ∀t ∈ (0,∞),

is a Carathéodory solution of ẋ = X(x) such that x(0) = γ(1) = x.
We next prove that any Carathéodory solution of ẋ = X(x), x(0) = x, tends to x̄ as t tends

to +∞. Having in mind the minimizing properties (by construction) of the vector field X, it
suffices actually to prove the following lemma.

Lemma 2.13. Let x(·) be any Carathéodory solution of ẋ = X(x). Then, there does not exist
a nontrivial interval [a, b] such that x(t) ∈ S for every t ∈ [a, b].

Proof. The proof goes by contradiction. Assume that there exist ε > 0 and a curve x(·) :
[0, ε] →M such that

ẋ(t) = X(x(t)), for almost every t ∈ [0, ε],

and
x(t) ∈ S, ∀t ∈ [0, ε].

In local coordinates in a neighborhood of x(0) = x, one has

ẋ(t) = X(x(t)) = −1
2

m∑
i=1

ζt (fi(x(t)) fi(x(t)), for almost every t ∈ [0, ε],

where ζt ∈ ∂LVg,∆(x(t)) for almost every t ∈ [0, ε]. At this stage, we need to use Lemma 2.2,
whose proof is provided in Appendix (Section 3.1). According to this lemma, using (25) and the
Hamilton-Jacobi equation (16) satisfied by Vg,∆ (see Remark 2.3), we deduce that, for almost
every t ∈ [0, ε],

d

dt
(Vg,∆(x(t))) = ζt (ẋ(t)) = −1

2

m∑
i=1

(
ζt(fi(x(t)))

)2

= −Hg,∆(x(t), ζt) = −2Vg,∆(x(t)), (27)

since the Hamiltonian function Hg,∆(x, p) is quadratic in p. Therefore,

Vg,∆(x(t)) = Vg,∆(x)e−2t, ∀t ∈ [0, ε]. (28)

Let γ(·) →M be a minimizing curve of the Bolza problem (BP)g,∆ between x̄ and x(ε). Define
the horizontal path γ̃(·) : [0, 1] →M by

γ̃(t) =
{
x(− ln t) if e−ε ≤ t ≤ 1
γ (eεt) if 0 ≤ t ≤ e−ε.

The cost of γ̃(·) is

Jg(γ̃(·)) =
∫ e−ε

0

Lg

(
γ̃(t), ˙̃γ(t)

)
dt+

∫ 1

e−ε

Lg

(
γ̃(t), ˙̃γ(t)

)
dt

=
∫ e−ε

0

Lg (γ (eεt) , eεγ̇ (eεt)) dt+
∫ 1

e−ε

Lg

(
γ̃(t), ˙̃γ(t)

)
dt

= eεVg,∆(x(ε)) +
∫ 1

e−ε

1
t2

m∑
i=1

ũi(x(− ln t))2dt

= eεVg,∆(x(ε)) +
∫ ε

0

es
m∑

i=1

ũi(x(s))2ds.
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Using (25), (27), and (28), one has, for almost every s ∈ [0, ε],

m∑
i=1

ũi(x(s))2 =
m∑

i=1

1
4

(
ζs (fi(x(s)))

)2

= Vg,∆(x(s)) = Vg,∆(x)e−2s,

and, since Vg,∆(x(ε) = Vg,∆(x)e−2ε, it follows that

Jg(γ̃(·)) = Vg,∆(x).

Hence, γ̃ is a minimizing curve of the Bolza problem (BP)g,∆ between x̄ and x. From Lemma
2.12, it cannot stay on S on positive times. This yields a contradiction.

It follows from this lemma, and from the construction of X using optimal controls, that any
Carathéodory trajectory of ẋ = X(x), x(0) = x, tends to x̄ as t tends to +∞. The property of
Lyapunov stability is obvious to verify. Finally, the fact that the set S has Hausdorff dimension
lower than or equal to n− 1 is a consequence of Lemma 2.6.

2.3 Proof of Theorem 2

Let g be a Riemannian metric on M and x̄ be fixed. Since ∆ is a smooth distribution of rank
two on M , for every x ∈M , there exists a neighborhood Vx of x and two smooth vector fields
fx
1 , f

x
2 which represent ∆ in Vx, that is, such that

∆(y) = Span {fx
1 (y), fx

2 (y)} , ∀y ∈ Vx.

Moreover, as recalled in the introduction, since ∆ is a Martinet distribution, for every x ∈ Σ∆,
the two vector fields fx

1 , f
x
2 can be chosen as

fx
1 =

∂

∂x1
+ x2

2

∂

∂x3
and fx

2 =
∂

∂x2
, (29)

in local coordinates. Recall that, in the neighborhood Vx, the Martinet surface Σ∆ coincides
with the surface x2 = 0, and the singular paths are the integral curves of the vector field ∂

∂x1
restricted to x2 = 0. For convenience, consider that the vector fields fx

1 , f
x
2 are defined as well

outside the neigborhood Vx. Thus, without loss of generality, for every x ∈M , we assume that
the vector fields fx

1 , f
x
2 are well defined, smooth on M and satisfy

fx
1 (y) = fx

2 (y) = 0, ∀y ∈M \Wx,

with Vx ⊂ Wx, and
Span {fx

1 (y), fx
2 (y)} ⊂ ∆(y), ∀y ∈M.

By compactness of Σ∆, there is a finite number of points (xi)i∈I of Σ∆ such that

Σ∆ ⊂ ∪i∈IVxi
.

Let β : M → [0,∞) be a smooth function such that

∀x ∈M, β(x) = 0 ⇐⇒ x ∈ Σ∆.

For every i ∈ I, define the smooth vector field gi, in local coordinates, by

gi(y) := β(y)fxi
1 (y), ∀y ∈M.

By compactness of M , there is a finite number of points (yj)j∈J of M such that

M ⊂ (∪i∈IVxi) ∪
(
∪j∈JVyj

)
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and
Σ∆ ∩

(
∪j∈JWyj

)
= ∅.

By construction, we have

Span
{
gi(y), fxi

2 (y), fyj

1 (y), fyj

2 (y) | i ∈ I, j ∈ J
}

= ∆(y), ∀y ∈M \ Σ∆ (30)

and
Span

{
gi(y), fxi

2 (y), fyj

1 (y), fyj

2 (y) | i ∈ I, j ∈ J
}
∩ TyΣ∆ = {0}, ∀y ∈ Σ∆. (31)

Indeed, for every y ∈ Σ∆, there holds

Span
{
gi(y), fxi

2 (y), fyj

1 (y), fyj

2 (y) | i ∈ I, j ∈ J
}

= Span {fxi
2 (y) | i ∈ I} . (32)

It follows from (30) and (31) that any trajectory, solution of the control system

ẋ(t) =
∑
i∈I

u1
i (t)gi(x(t)) + u2

i (t)f
xi
2 (x(t)) +

∑
j∈J

v1
j (t)fyj

1 (x(t)) + v2
j (t)fyj

2 (x(t)), (33)

where u(·) = (u1
1(·), u2

1(·), · · · , u1
|I|(·), u

2
|I|(·), v

1
1(·), v2

1(·), · · · , v1
|J|(·), v

2
|J|(·)) belongs to the con-

trol set U defined by
U := L∞

(
[0, 1]; IR2|I|+2|J|

)
,

is an horizontal path of ∆. Note that, for every u(·) ∈ U , there exists a unique absolutely
continuous curve γu(·) : [0, 1] →M such that γu(·)(0) = x̄ and

γ̇u(·)(t) =
∑
i∈I

(
u1

i (t)gi(γu(·)(t)) + u2
i (t)f

xi
2 (γu(·)(t))

)
+

∑
j∈J

(
v1

j (t)fyj

1 (γu(·)(t)) + v2
j (t)fyj

2 (γu(·)(t))
)
,

for almost every t ∈ [0, 1]. Moreover, it is clear by construction of the control system under
consideration that, for every x ∈M , there exists a control u(·) ∈ U such that γu(·)(1) = x. For
every u(·) ∈ U , set

J(u(·)) :=
∫ 1

0

∑
i∈I

(
u1

i (t)
2 + u2

i (t)
2
)

+
∑
j∈J

(
v1

j (t)2 + v2
j (t)2

) dt.

Define the value function W : M → IR by

W (x) := inf
{
J(u(·)) | u(·) ∈ U , γu(·)(0) = x̄, γu(·)(1) = x

}
,

for every x ∈ M . By coercivity of the cost function, it is easy to prove that, for every x ∈
M \ {x̄}, there exists a control u(·) ∈ U such that γu(·)(1) = x and W (x) = J(u(·)) (i.e., a
minimizing control). Moreover, by construction of the control system, more precisely, from (32),
the trajectory γu(·)(·) cannot stay on the Martinet surface on a nontrivial subinterval of [0, 1]. As
a consequence, since any singular trajectory is contained in the Martinet surface, any nontrivial
minimizing control is nonsingular. Using similar arguments as in the proof of Theorem 1, it
follows that the value function W is a viscosity solution of a certain Hamilton-Jacobi equation,
is continuous on M , and is locally semiconcave in M \ {x̄} (see [14]). Moreover, the optimal
trajectories of the optimal control problem under consideration share the same properties as
those of the Bolza problem (BP)g,∆. The construction of a stabilizing feedback then follows
the same lines as in Theorem 1.

Remark 2.5. For a noncompact manifold M , the above proof needs to be adapted by replacing
a finite number of controls (ui)i∈I and (vj)j∈J with a locally finite set of controls.
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3 Appendix

3.1 Proof of Lemma 2.2

Without loss of generality, we assume that M = IRn. Given k ∈ {1, · · · , n} and ρ > 0, denote
by Σk

ρ(u) the set of all x ∈ U such that D+u(x) contains a k-dimensional sphere of radius ρ,
and define

Σk(u) :=
{
x ∈ U | dim

(
D+u(x)

)
= k

}
.

By well known properties of convex sets, one has Σk(u) ⊂
⋃

ρ>0 Σk
ρ(u). Note that a point

x ∈ Σk
ρ(u) does not necessarily belong to Σk(u), since D+u(x) may be of dimension greater

than k. The following result is fundamental for the proof of Lemma 2.2 (we refer the reader to
[15] for its proof).

Lemma 3.1. For every k ∈ {1, · · · , n} and every ρ > 0, the set Σk
ρ(u) is closed and satisfies

Tan
(
x,Σk

ρ(u)
)
⊂

[
D+u(x)

]⊥
, ∀x ∈ Σk

ρ(u) ∩ Σk(u)7.

Return to the proof of Lemma 2.2. First, note that the map t ∈ [a, b] 7→ u(γ(t)) is Lip-
schitzian. Hence, by Rademacher’s Theorem, it is differentiable almost everywhere on [a, b].
Moreover, by the chain rule for Clarke’s generalized gradients (see [22]), for every t ∈ [a, b]
where γ is differentiable, there exists p ∈ ∂u(γ(t)) such that

d

dt
(u(γ(t))) = 〈p, γ̇(t)〉. (34)

For every k ∈ {1, · · · , n} and any positive integer l, set

Ik,l :=
{
t ∈ [a, b] | γ(t) ∈

(
Σk

1
l
(u) ∩ Σk(u)

)
\ Σk

1
l+1

(u)
}

and
J := [a, b] \

⋃
k,l

Ik,l.

Notice that, since u is locally semiconcave and γ is locally Lipschitzian, u is differentiable at
almost every γ(t) with t ∈ J . Thus, for every such t, there holds necessarily p(t) = ∇u(γ(t))
and

d

dt
(u(γ(t))) = 〈p(t), γ̇(t)〉.

It remains to prove that this equality holds for almost every t in [a, b] \ J . From the Lebesgue
density theorem, there exists a sequence of measurables sets {I ′k,l} such that all sets Ik,l \ I ′k,l

have Lebesgue measure zero and such that any point in one of the sets I ′k,l is a density point
in that set. It is sufficient to prove the required equality on each set I ′k,l. Fix k, l and t ∈ I ′k,l,
set x := γ(t). Since x is a density point in I ′k,l, there exists a sequence {ti} of times in I ′k,l

converging to t. Thus, the vector γ̇(t) belongs to Tan
(
x,Σk

ρ(u)
)
. Then, from Lemma 3.1, γ̇(t)

belongs to [D+u(x)]⊥. By (34), we obtain the desired equality. This concludes the proof of
Lemma 2.2.

7Here, Tan
`
x, Σk

ρ(u)
´

denotes the tangent set to Σk
ρ(u) at x. Recall that, given a closed set S ⊂ IRn and

x ∈ S, the tangent set to S at x, denoted by Tan(x, S), is defined as the vector space generated by the set

T (x, S) :=


lim

i→∞

xi − x

ti
| xi ∈ S, xi → x, ti ∈ IR+, ti ↓ 0

ff
.

Recall also that, if A ⊂ IRn, then the set A⊥ is defined as the set of vectors v ∈ IRn such that 〈v, p〉 = 〈v, p′〉
for any p, p′ ∈ A.
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3.2 Proof of Lemma 2.10

The proof that we present here is taken from [42] (compare with [32, 34]). For the sake of
simplicity, assume that M = IRn, endowed with the Euclidean metric. Since the property to be
proved is local, we assume that there are m smooth vector fields f1, · · · , fm, orthonormal with
respect to the Euclidean metric, such that

∆(x) = Span {fi(x) | i = 1, . . . ,m} ,

in a neighborhood V of x̄. With these notations, the associated Hamiltonian H : IRn× IRn → IR
is

H(x, p) := max
u∈IRm

{
〈p,

m∑
i=1

uifi(x)〉 −
1
2

m∑
i=1

u2
i

}
=

1
2

m∑
i=1

〈p, fi(x)〉2,

for every (x, p) ∈ Rn × IRn.
Our aim is now to prove the following result: for every p0 ∈ IRn such that H(x̄, p0) 6= 0, there
exist a neighborhood W of p0 in IRn and ε > 0 such that every solution (x(·), p(·)) : [0, ε] →
IRn × IRn of the Hamiltonian system

ẋ(t) =
∂H

∂p
(x(t), p(t)) =

m∑
i=1

〈p(t), fi(x(t))〉fi(x(t))

ṗ(t) = −∂H
∂x

(x(t), p(t)) = −
m∑

i=1

〈p(t), fi(x(t))〉dfi(x(t))∗p(t),
(35)

with x(0) = x̄ and p(0) ∈ W, satisfies∫ ε

0

m∑
i=1

〈p(t), fi(x(t))〉2dt ≤
∫ ε

0

m∑
i=1

ui(t)2dt, (36)

for every control u(·) ∈ L∞([0, ε]; IRm) such that the solution of

ẏ(t) =
m∑

i=1

ui(t)fi(y(t)), y(0) = x̄, (37)

satisfies y(ε) = x(ε). Let p0 ∈ IRn \ {0} be fixed, we need the following lemma.

Lemma 3.2. There exist a neighborhood W of p0 and ρ > 0 such that, for every p ∈ W, there
exists a function S : B(x̄, ρ) → IR of class C1 which satisfies

H(x,∇S(x)) = H(x̄, p), ∀x ∈ B(x̄, ρ), (38)

and such that, (xp(·), pp(·)) denotes the solution of (35) satisfying xp(0) = x̄ and pp(0) = p,
then

∇S(xp(t)) = pp(t), ∀t ∈ (−ρ, ρ). (39)

Proof. The proof consists in applying the method of characteristics. Let Π be the linear hy-
perplane such that 〈p0, v〉 = 0 for every v ∈ Π. We first show how to construct locally S
as the solution of the Hamilton-Jacobi equation (38) which vanishes on x̄ + Π and such that
∇S(x̄) = p0. Up to considering a smaller neighborhood V, we assume that H(x, p0) 6= 0 for
every x ∈ V ′. For every x ∈ (x̄+ Π) ∪ V, set

p̄(x) :=

√
H(x̄, p0)
H(x, p0)

p0.
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Then, H(x, p̄(x)) = H(x̄, p0) and p̄(x) ⊥ Π, for every x ∈ V ′. There exists µ > 0 such that, for
every x ∈ (x̄ + Π) ∪ V, the solution (xx(·), px(·)) of (35), satisfying xx(0) = x and px(0) = x̄,
is defined on the interval (−µ, µ). For every x ∈ (x̄ + Π) ∪ V and every t ∈ (−µ, µ), set
θ(t, x) := xx(t). The mapping (t, x) 7→ θ(t, x) is smooth. Moreover, θ(0, x) = x for every
x ∈ (x̄ + Π) ∪ V and θ̇(0, x̄) =

∑m
i=1〈p̄(x), fi(x̄)〉fi(x̄) does not belong to Π. Hence there

exists ρ ∈ (0, µ) with B(x̄, ρ) ⊂ V such that the mapping θ is a smooth diffeomorphism from
(−ρ, ρ) × ((x̄+ Π) ∪B(x̄, ρ)) into a neighborhood V ′ of x̄. Denote by ϕ = (τ, π) the inverse
function of θ, that is the function such that (θ ◦ ϕ)(x) = (τ(x), π(x)) = x for every x ∈ V ′.
Define the two vector fields X and P by

X(x) := θ̇(τ(x), π(x)) and P (x) := pπ(x)(τ(x)), ∀x ∈ V ′.

Then,

X(θ(t, x)) = θ̇(t, x) = ẋx(t) =
m∑

i=1

〈px(t), fi(xx(t))〉fi(xx(t))

=
m∑

i=1

〈P (θ(t, x)), fi(θ(t, x))〉fi(θ(t, x)),

and
m∑

i=1

〈P (θ(t, x)), fi(xx(t))〉2 =
m∑

i=1

〈px(t), fi(xx(t))〉2 = 2H(x, p̄(x)) = 2H(x̄, p0),

for every t ∈ (−ρ, ρ) and every x ∈ (x̄+Π)∪B(x̄, ρ). For every x ∈ V ′, set αi(x) := 〈P (x), fi(x)〉.
Hence,

X(x) =
m∑

i=1

αi(x)fi(x) and
m∑

i=1

αi(x)2 = H(x̄, p0),

for every x ∈ V ′. Define the function S : V ′ 7→ IR by

S(x) := 2H(x̄, p0)τ(x), ∀x ∈ V ′.

We next prove that ∇S(x) = P (x) for every x ∈ V ′. For every t ∈ (−ρ, ρ), denote by Wt :=
{y ∈ V ′ | τ(y) = t}. In fact, Wt coincides with the set of y ∈ V ′ such that S(y) = 2H(x̄, p0)t.
It is a smooth hypersurface which satisfies ∇S(y) ⊥ TyWt for every y ∈ Wt. Let y ∈ Wt be
fixed, there exists x ∈ (x̄ + Π) ∪ B(x̄, ρ) such that y = θ(t, x) = xx(t). Let us first prove that
P (y) = px(t) is orthogonal to TyWt. To this aim, without loss of generality we assume that
t > 0. Let w ∈ TyWt, there exists v ∈ Π such that w = dxθt(x)v. For every s ∈ [0, t], set
z(s) := dxθ(s, x)v. We have

ż(s) =
d

ds
dxθ(s, x)v =

d

dx
θ̇(t, x)v =

d

dx
X(θ(t, x))v = dX(θ(t, x))z(s).

Hence,

d

ds
〈z(s), px(s)〉 = 〈ż(s), px(s)〉+ 〈z(s), ṗx(s)〉

= 〈dX(θ(s, x))z(s), px(s)〉 − 〈z(s),
m∑

i=1

〈px(s), fi(xx(s))〉dfi(xx(s))∗px(s)〉.
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Since X(x) =
∑m

i=1 αi(x)fi(x) and
∑m

i=1 αi(x)2 = H(x̄, p0) for every x ∈ V ′, there holds

dX(xx(s))∗px(s) =
m∑

i=1

αi(xx(s))dfi(xx(s))∗px(s) +
m∑

i=1

〈fi(xx(s)), px(s)〉∇αi(xx(s))

=
m∑

i=1

αi(xx(s))dfi(xx(s))∗px(s) +
m∑

i=1

αi(xx(s))∇αi(xx(s))

=
m∑

i=1

αi(xx(s))dfi(xx(s))∗px(s).

We deduce that d
ds 〈z(s), px(s)〉 = 0 for every s ∈ [0, t]. Hence,

〈w,P (y)〉 = 〈w, px(t)〉 = 〈z(t), px(t)〉 = 〈z(0), p̄(x)〉 = 0.

This proves that P (y) is orthogonal to TyWt, which implies that P (y) and ∇S(y) are collinear.
Furthermore, since S(xx(s)) = 2H(x̄, p0)s for every s ∈ [0, t], one gets

〈∇S(xx(t)), ẋx(t)〉 = 2H(x̄, p0) = 〈px(t), ẋx(t)〉.

Since ẋx(t) = X(y) does not belong to TyWt, we deduce that ∇S(xx(t)) = px(t). In conse-
quence, we proved that ∇S(x) = P (x) for every x ∈ V ′.

Let us now conclude the proof of Lemma 2.10. Clearly, there exists ε > 0 such that every
solution (x(·), p(·)) : [0, ε] → IRn × IRn of (35), with x(0) = x̄ and p(0) ∈ W, satisfies

x(t) ∈ B(x̄, ρ), ∀t ∈ [0, ε].

Moreover, we have
S(x(ε))− S(x̄) = 2εH(x̄, p).

Let u(·) ∈ L∞([0, ε]; IRm) be a control such that the solution y(·) : [0, ε] → W of (37) starting
at x̄ satisfies y(ε) = x(ε). We have

S(x(ε))− S(x̄) = S(y(ε))− S(y(0))

=
∫ ε

0

d

dt
(S(y(t))) dt

=
∫ ε

0

〈∇S(y(t)), ẏ(t)〉dt

≤
∫ ε

0

H(y(t), dS(y(t))) +
1
2

m∑
i=1

ui(t)2dt

= εH(x̄, p) +
∫ ε

0

m∑
i=1

ui(t)2dt.

The conclusion follows.
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[9] A. Belläıche. The tangent space in sub-Riemannian geometry. in Sub-Riemannian Geom-
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181–191, 1983.

[14] P. Cannarsa and L. Rifford. Semiconcavity results for optimal control problems admitting
no singular minimizing controls. Preprint, 2006.

[15] P. Cannarsa and C. Sinestrari. Semiconcave functions, Hamilton-Jacobi equations, and
optimal control. Progress in Nonlinear Differential Equations and their Applications, 58.
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