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ON THE EXISTENCE OF NONSMOOTH

CONTROL-LYAPUNOV FUNCTIONS IN THE SENSE OF

GENERALIZED GRADIENTS

LUDOVIC RIFFORD

Abstract. Let ẋ = f(x, u) be a general control system; the existence
of a smooth control-Lyapunov function does not imply the existence of
a continuous stabilizing feedback. However, we show that it allows us to
design a stabilizing feedback in the Krasovskii (or Filippov) sense. More-
over, we recall a definition of a control-Lyapunov function in the case
of a nonsmooth function; it is based on Clarke’s generalized gradient.
Finally, with an inedite proof we prove that the existence of this type
of control-Lyapunov function is equivalent to the existence of a classical
control-Lyapunov function. This property leads to a generalization of a
result on the systems with integrator.

Abstract. Soit ẋ = f(x, u) un système commandé ; l’existence d’une
fonction Lyapunov lisse associée à ce système ne garantit généralement
pas l’existence d’un retour d’état stabilisant continu. Cependant, nous
montrons qu’elle conduit toujours à la construction d’un retour d’état
stabilisant au sens de Krasovskii (ou de Filippov). En outre, nous rap-
pelons une définition de fonction Lyapunov dans le cas d’une fonction
seulement Lipschitzienne; celle-ci est caractérisée par une condition sur
les gradients généralisés de Clarke. Et Nous démontrons par une preuve
inédite que l’existence d’une telle fonction est équivalente à celle d’une
fonction Lyapunov lisse classique. Cette dernière propriété nous permet
de généraliser un résultat sur le problème intégrateur au cas non-lisse.

1. Introduction

The object of this paper is to study the control systems of the form

ẋ = f(x, u),

which admit nice properties of stabilization at the origin. First, using the
Kurzweil’s result [20], it is straightforward to show that if a control system
admits a continuous feedback u : Rn → U for which the closed-loop system

ẋ = f(x, u(x))

is globally asymptotically stable at the origin, then it possesses a smooth
control-Lyapunov function. The converse is false. Many systems which pos-
sess a smooth control-Lyapunov function do not admit continuous stabilizing
feedbacks. However, as it was shown by Artstein [1], such systems admit
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banne, France. email: rifford@desargues.univ-lyon1.fr.



2 LUDOVIC RIFFORD

relaxed continuous feedbacks. If moreover the system is affine in the con-
trol, these ones can be taken to be continuous outside the origin. Actually,
the relaxed feedbacks which are provided by Artstein are not the only one
which allow us to overcome the lack of continuous stabilizing closed-loops.
Other kinds of feedbacks coming from notions developped by Filippov [14]
and Krasovskii [19] enable us as well to stabilize correctly the systems which
admit smooth control-Lyapunov functions. Considering a closed-loop sys-
tem x "→ f(x, u(x)) that is not necessarly continuous, they associate with
it a differential inclusion which is upper semicontinuous with convex values.
Roughly speaking, in the case of Krasovskii, giving a state x0 it puts to-
gether all the possible values of the vector field f(x, u(x)) around x0. The
corresponding trajectories of this differential inclusion have indeed the same
behavior as the perturbed trajectories associated with the discontinuous or-
dinary differential equation ẋ = f(x, u(x)) (see [17, 21]).
On the other hand, it is not necessary to work with smooth functions. Using
Clarke’s generalized gradients permits us to extend the classical definition
of control-Lyapunov function: we do not require them to be smooth any-
more, but only locally Lipschitz. We next refer to them as control-Lyapunov
functions in the sense of generalized gradients. In this way, we can give a
sense to some locally Lipschitz functions which arises naturally as potential
control-Lyapunov functions. We prove in this paper that the existence of
a control-Lyapunov function in the sense of generalized gradients is both
equivalent to existence of a smooth control-Lyapunov function and to exis-
tence of a stabilizing feedback of Krasovskii or Filippov type. Even if the
first equivalence is new, we stress that the novelty of this paper is not so
much in the results but in the proofs. In particular, we precise that the
notion of locally Lipschitz control-Lyapunov function ever appeared in [15].

In addition, we present a precise example of stabilization problem where
the use of a nonsmooth control-Lyapunov function comes out naturally.
We prove that if a control system possesses a locally Lipschitz stabilizing
feedback, then the corresponding control system with integrator admits a
stabilizing feedback which is continuous on the state space. This ques-
tion concerning the integrator problem has been studied by many authors
[5, 10, 11, 12, 30, 32] in the smooth case (i.e. when the dynamics is smooth);
however let us notice that we can recognize the nonsmooth cases in the works
of Freeman, Kokotovic [15] and Praly, Teel [31].

Our paper is organised as follows: in Section 2 we describe our results.
In section 3 we apply our main theorem to the integrator problem. In sec-
tion 4, we give the proofs of Theorems 1 and 2 and we conclude with some
comments.

Throughout this paper, 〈·, ·〉 denotes the inner product in Rn, ‖ · ‖ the
euclidean norm, B the open unit ball, and B its closure. We will also denote
the distance between x and the set S by dS(x).
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2. Definitions and statements of the results

In this paper we are concerned with control systems of the form

ẋ(t) = f(x(t), u(t)) (2.1)

where the state x(t) is in the Euclidean space Rn and the control u(t) belongs
to the set of control U which is assumed to be a subset of Rm. Moreover
we will assume that the function f is continuous from Rn × U into Rn and
that it admits an equilibrium point at the origin, i.e. f(0, 0) = 0 (where
“0” is some particular control in U). We recall that the trajectories of (2.1)
are absolutely continuous functions x(·) associated with some open loops
u : [0,∞[→ U and solutions of (2.1) almost everywhere.
Our objective is to find a necessary and sufficient condition for the existence
of a smooth control-Lyapunov function. Let us give the definition the def-
inition of this concept. Note before that the function V : Rn "−→ R≥0 is
positive definite if x )= 0 ⇒ V (x) > 0 and V (0) = 0 and that it is proper if
lim‖x‖→∞ V (x) = ∞.

Definition 2.1. Let V be an application which is assumed to be C1 from
Rn into R. It is said to be a control-Lyapunov function (abreviated clf)
for the system (2.1) if it is positive definite, proper and if the following
condition is satisfied: For any compact set K of Rn, there exists a compact
subset U0 ⊂ U such that

∀x ∈ K \ {0}, min
u∈U0

〈∇V (x), f(x, u)〉 < 0. (2.2)

As it has been shown by Kurzweil [20] (and by Massera [23] in the local
case) in the context of classical differential equations, if the system ẋ = g(x)
is globally asymptotically stable at the origin then there exists a (classi-
cal) Lyapunov function. If the system (2.1) admits a continuous stabilizing
feedback, that is, a continuous function

u : R
n −→ U

such that the closed-loop system ẋ = f(x, u(x)) is globally asymptotically
stable, then there exists a smooth (C∞) control-Lyapunov function. Unfor-
tunatly, the converse is false; the presence of a smooth control-Lyapunov
function does not lead to the existence of continuous stabilizing feedbacks.
Let us give the following example (quoted by Sontag in [30]) to highlight
this problem:

ẋ1 = u2u3

ẋ2 = u1u3

ẋ3 = u1u2,
(2.3)

where (u1, u2, u3) ∈ B is the unit ball of R3.
The function x "→ ‖x‖2 is clearly a smooth clf for this system and yet it does
not admit a continuous stabilizing feedback. As a matter of fact, no point
of the form (0, ε, ε) belongs to the set f(x, u) for x in a neighbourhood of
the origin and u in the unit ball B. In other words, the system (2.3) does
not satisfy the Brockett’s condition which is necessary for the existence of
continuous feedback. This example leads us to consider another form of
feedback. We will deal with differential inclusions that we proceed to define.
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Let F : Rn → 2Rn
be a multivalued map. We shall say that the hypotheses

(H) are satisfied if the two following conditions hold:

(H1) For any x in Rn, F (x) is a nonempty compact convex set.
(H2) The multivalued map F is upper semicontinous; that is:

∀x ∈ Rn,∀ε > 0,∃δ > 0 such that

‖x − y‖ < δ ⇒ F (y) ⊂ F (x) + εB.

The hypotheses (H) correspond to the usual framework for the study of the
differential inclusion

ẋ(t) ∈ F (x(t)) a.e. (2.4)

associated with F . For the sake of simplicity, we will sometimes speak about
the multivalued map F for talking about its differential inclusion (2.4). We
suggest the following references for a detailed study of multivalued maps
and differential inclusions [13], [4] and [3].

Knowing this notion we are now able to extend the classical definition of
asymptotic stability to the more general case of differential inclusions.

Definition 2.2. The differential inclusion (2.4) is Globally Asymptotically
Stable (abreviated GAS) provided that no solution exhibits finite time blow-
up, and provided that the following holds:

(a) Uniform Attraction: For any 0 < r < R, there exists T = T (r,R) > 0
such that for any solution x(·) of (2.4) with ‖x(0)‖ ≤ R, one has

‖x(t)‖ ≤ r ∀t ≥ T.

(b) Uniform Boundedness: There is a continuous nondecreasing function

M :]0,∞[→]0,∞[

such that for any solution x(·) of (2.4), one has

‖x(t)‖ ≤ M(‖x(0)‖) ∀t ≥ 0.

(c) Lyapunov Stability:

lim
R↓0

M(R) = 0.

Remark 2.3. This definition agrees with the one taken in [8] and [22].

The concept of differential inclusion will allow us to give a sense to the
Cauchy problem ẋ(t) = f(x(t), u(x(t))) when the function x "→ f(x, u(x))
does not have continuity properties. As a matter of fact, in the general case
of non necessarly continuous functions, no theorem insures the existence of
solution to the Cauchy problem

ẋ(t) = f(x(t), u(x(t))), x(0) = x0. (2.5)

That’s why we have to recall an alternative concept of solutions.

Let be given

u : R
n → U,

an application which is not assumed to be continuous. We shall say that the
function u is locally bounded if, for any compact set K of Rn, there exists
IGD, , ,
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δK > 0 such that for any x ∈ K

∀δ ≤ δK , u(x + δB) is a compact set in R
m.

We can associate two multivalued maps with the function u as follows. We
set for any x in Rn:

Ku(x) := co{∩δ>0f(x, u(x + δB))}, (2.6)

and Fu(x) := co{
⋂

λ(N)=0

⋂
δ>0

f(x, u(x + δB \ N))}, (2.7)

where coA denotes the convex hull of the set A and where λ denotes the
Lebesgue measure on Rn .
The multivalued maps Ku and Fu possess nice properties of regularity. If
u is locally bounded, then Ku satisfies hypotheses (H) and if moreover u
is also measurable then Fu satisfies (H) too. Under these assumptions, we
shall say that the absolutely continuous arc x(·) is a solution of Krasovskii
type (resp. of Filippov type) of the Cauchy problem (2.5) if it is solution
of the differential inclusion (2.6) (resp. (2.7)). This leads to the following
definition.

Definition 2.4. We shall say that the control system (2.1) admits a stabi-
lizing feedback of Krasovskii type (resp. of Filippov type) if there exists a
function u : Rn "−→ Rm which is locally bounded and such that the differ-
ential inclusion (2.6) (resp. (2.7)) is Globally Asymptotically Stable.

We are going to connect the existence of a stabilizing feedback to the one
of a control-Lyapunov function. As we said in the introduction, it is not
necessary to work with smooth control-Lyapunov functions. Let us intro-
duce some concepts of nonsmooth analysis.

Let f : Rn "−→ R be a locally Lipschitz function, we denote by ∂P f(x̄) its
proximal subdifferential at x̄, i.e. the set of vectors ζ ∈ Rn such that there
exists δ,σ > 0 veryfying

f(y) − f(x̄) + σ‖y − x̄‖2 ≥ 〈ζ, y − x̄〉 ∀y ∈ x̄ + δB.

This object permits us to define the generalized gradient of f at x̄:

∂f(x̄) := co{lim ζk : xk → x̄, ζk ∈ ∂P f(xk)}.

This tool has been introduced by Clarke in 1973. Since this time, a complete
calculus has been developed, one that extends all the theorems of the usual
smooth calculus. In particular, the generalized gradient of the sum of two
functions is included in the sum of the generalized gradients.

Remark 2.5. The definition of the generalized gradient given above coin-
cides with the following one which is based on the Rademacher’s Theorem:

∂f(x̄) := co{lim∇f(xk) : xk → x̄, xk ∈ Df},

where Df denotes the set of points where f is differentiable.

We proceed now to adapt the classical defnition of control-Lyapunov func-
tion to the case of functions which are only locally Lipschitz.
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Definition 2.6. Let V : Rn "−→ R; it is said to be a control-Lyapunov
function in the sense of generalized gradients for the system (2.1) if V is
locally Lipschitz, positive definite, proper and if it satisfies the following
property: For any compact set K in Rn, there exists U0 ⊂ U such that

∀x ∈ K \ {0},∀ζ ∈ ∂V (x), min
u∈U0

〈ζ, f(x, u)〉 < 0. (2.8)

Like the proximal subdifferential in the case of systems which are globally
asymptotically controllable (see [6], [26]), the generalized gradient consti-
tutes a fantastic tool for the study of systems which possess strong properties
of stability. Let us state our main result.

Theorem 2.7. The following properties are equivalent:

(i) The system (2.1) admits a control-Lyapunov function in the sense of
generalized gradients.

(ii) The system (2.1) admits a control-Lyapunov function which is C∞ on
Rn.

(iii) The system (2.1) admits a stabilizing feedback of Krasovskii type (or
of Filippov type).

The parts (iii) ⇒ (i) and (iii) ⇒ (ii) are not new. However, we present
a proof which differs from the known ones (see Clarke et al. [8], Lin et al.
[22] and more recently Praly and Teel [31]). Instead of constructing a global
locally Lipschitz differential inclusion to deduce the existence of a control-
Lyapunov function in the sense of generalized gradients, we design locally
some control-Lyapunov functions that we glue to obtain a global clf. This
approach requires some easy facts of the nonsmooth calculus and makes the
proof inedite. Actually this kind of construction could be related to the one
used in the proof of the existence of a locally Lipschitz control-Lyapunov
function for asymptotically controllable systems, see [26]. On the other
hand, we precise that the proof of (i) ⇒ (ii) is inspired by ideas given in [8].
However, in our context, we deal with weak control-Lyapunov functions (i.e.
we have a minimum over U instead of a maximum in the decrease property
(2.8)) that require a more technical proof.

Furthermore, we find the Artstein’s result (also given in [28] and [12]) in
the case of f affine in the control; that is, when the function f is of the form

f(x, u) = f0(x) +
m∑

i=1

uifi(x),

where the fi’s are some locally Lipschitz functions from Rn into Rn. In
addition we are able to precise the regularity of the stabilizing feedback
given in (iii) under an additional assumption around the origin. Let us state
the result.

Theorem 2.8. If f is affine in the control and if the property (i) of Theorem
2.7 holds (or equivalently(ii)) then there exists a stabilizing feedback which is
continuous on Rn\{0}. If moreover for all ε > 0,∃δ > 0 such that if ‖x‖ < δ
then the compact set Wx of Definition 2.1 can be taken to be included in εB,
then the stabilizing feedback can be taken to be continuous at the origin.

We present now a nice example where our results apply.
IGD, , ,
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3. Application to the integrator problem

In order to highlight the using of nonsmooth clf, we present a result which
concerns the system with integrator associated with the initial system (2.1).
This kind of problem has been studied recently in [16, 25] where we can
recognize the nonsmooth method which will be used. Our proof is inspired
by the one given by Byrnes, Isidori [5] and Tsinias [33] in the smooth case;
one can also find this proof in the book of Sontag [29]. On the other hand,
we stress that Rosier [27] provides an alternative demonstration of 3.1 in
the smooth case; it does not involve control-Lyapunov function. Besides, we
suggest more additional readings to the curious reader on other questions
related to the integrator problem [10, 11].

Theorem 3.1. Let f : Rn × U → Rn a function which is assumed to be
continuous in x and locally Lipschitz in u uniformly in x in a neighbourhood
of the origin in Rn × Rm. If the control system (2.1) possesses a locally
Lipschitz stabilizing feedback, then the control system with integrator{

ẋ = f(x, u)
u̇ = v ∈ Rm (3.1)

admits a stabilizing feedback which is continuous on Rn.

Proof. Let us denote k the locally Lipschitz feedback which stabilizes our
system. By Theorem 2.7, there exists a smooth control-Lyapunov function
V on Rn verifying in particular:

∀x )= 0, 〈∇V (x), f(x, k(x))〉 < 0. (3.2)

Consider the function W from Rn × Rm into R

∀(x, z) ∈ R
n × R

m,W (x, z) = V (x) +
1

2
‖z − k(x)‖2.

We shall prove that the function W is a control-Lyapunov function in the
sense of generalized gradients. Therefore, we will conclude by Theorem 2.8.
First of all, it is easy to see that W is locally Lipschitz, positive definite and
proper. Let us look at the generalized gradients of W .
Take (x̄, z̄) ∈ Rn × Rm and (ζ1, ζ2) ∈ ∂W (x̄, z̄) where ζ1 ∈ Rn and ζ2 ∈ Rm.
We see immediatly that ζ2 = z̄ − k(x̄).
Moreover, by a classical chain rule on the generalized jacobians (see [7] or
[18]), one has

ζ1 = ∇V (x̄) + ζ ′1,

with ‖ζ ′1‖ ≤ Lk‖z̄ − k(x̄)‖, where Lk is the Lipschitz constant of k in a
neighbourghood of x̄. We deduce that

∂W (x̄, z̄) ⊂ (∇V (x̄) + Lk‖z̄ − k(x̄)‖B, z̄ − k(x̄)).

Consider now (x, z) ∈ Rn × Rm \ (0, 0) and (ζ1, ζ2) ∈ ∂W (x, z). We can
write (ζ1, ζ2) = (∇V (x) + Ψ, (z − k(x))) with ‖ψ‖ ≤ Lk‖z − k(x)‖.
First case : if z = k(x), then (ζ1, ζ2) = (∇V (x), 0) and the decrease condition
(2.8) is satisfied by (3.2).
Second case : If ‖z − k(x)‖ > 0
We define M a matrix of Mn,m(R) as follows:

M :=
f(x, z) − f(x, k(x))(z − k(x))t

‖z − k(x)‖2
.

IGD, , ,
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It is straightforward to show that ‖M‖ is bounded by the Lipschitz constant
of f in the variable z with x fixed. We set:

v := k(x) − z − M t∇V (x) + µ where µ :=
k(x) − z

‖z − k(x)‖2
〈Ψ, f(x, z)〉.

We can compute by (3.2):

〈(ζ1, ζ2), (f(x, z), v)〉 = −‖z − k(x)‖2 + 〈∇V (x), f(x, z) − M(z − k(x))〉

= −‖z − k(x)‖2 + 〈∇V (x), f(x, k(x))〉 < 0.

Moreover, if (x, z) is in a small enough neighbourhood V ×W of the origin,
then by the hypotheses the function f is locally Lipschitz in the variable u
uniformly in x; that is there exists a constant L0

f such that

∀x ∈ V,∀(u1, u2) ∈ W ×W, ‖f(x, u1) − f(x, u2)‖ ≤ L0
f‖u1 − u2‖.

We deduce that the matrix M that we defined above is such that ‖M‖ ≤ L0
f .

If we denote by L0
k the Lipschitz constant of the function k on W, then we

get:
‖v‖ ≤ ‖z − k(x)‖ + L0

f‖∇V (x)‖ + L0
k‖f(x, z)‖,

where (x, z) belongs to V×W and v corresponds to v (= v(x, z)) from above.
Hence we deduce that the quantity v (= v(x, z)) tends to 0 when the couple
(x, z) converge to the origin. This enables us to apply Theorem 2.8 and to
obtain the existence of a stabilizing feedback v(·, ·) which is continuous on
Rn.

We will try now to understand why we cannot relax the hypotheses of
Theorem 3.1 into continuity of the stabilizing feedback k. First of all, we
know a counterexample in this kind of situation; Coron and Rosier provide
in [12] the following control system:

ẋ = f(x, u) = x
1
3 − u.

(the function f is continuous and Lipschitz in u uniformly in x.)

The feedback law u(x) = 2x
1
3 is a stabilizing feedback and moreover there

does not exist other stabilizing feedbacks which are locally Lipschitz at the
origin. Let us now looking at the integrator system{

ẋ = x
1
3 − u

u̇ = v,

It does not possess any continuous stabilizing feedback. Coron and Rosier
give the following function:

V (x, u) = x − u2.

Along a trajectory (x(t), u(t)) of the integrator system, it satisfies:

V̇ = x
1
3 − u − 2uv ≥ 0

whenever V is nonnegative, v ≤ 1 and |(x, u)| is sufficently small.
But if there would exist a stabilizing feedback continuous at the origin, then
it would verify the Lyapunov Stability property (see Definition 2.2). But
every point of the set A := {(x, u) : x − u2 ≥ 0} can’t reach asymptotically
the origin without leaving the part A where V̇ is positive. In other terms,
in order to tends to 0 the stabilizing trajectories must move away from the
IGD, , ,
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origin. As we are seeing, the integrator system does not possess continuous
stabilizing feedbacks because the Lyapunov stability property can’t be sat-
isfied. Actually, for (x0, u0) close enough to the origin, there does not exist
stabilizing trajectories which converge to zero with respect to small con-
trols! The system is not stabilizable at the origin with small controls, how
could it be stabilizable by a continuous feedback or even by a continuous
“time-varying feedback” (see [12])?

In a general manner, if we assume that the initial control system (2.1)
admits a stabilizing feedback which is only continuous at the origin, then it
seems to be difficult to prove that the integrator system (3.1) is controllable
at the origin with small controls. As a matter of fact, let be given an
initial state (x0, u0), if we consider a trajectory x(·) of the GAS system
ẋ = f(x, k(x)) on [0,∞). It converges to the origin and moreover we can
compute:

u̇(t) = dk(x(t)) · f(x(t), k(x(t)).

Thus the control v := u̇(t) drives the system (3.1) to the origin, but we
cannot claim that the controls are sufficiently small around the origin (the
term dk(x(t) might be very big).

To conclude, if we omit the assumption of Lipschitz regularity on k, we
cannot prove the existence of a stabilizing feedback (for the integrator sys-
tem) which is continuous at the origin. However, it is in fact possible to
get a stabilizing feedback which is continuous (even smooth) outside the
origin. In other words, we can produce a control-Lyapunov function which
is sufficiently regular (C1 or locally lipschitz) but which does not verify the
small control property (see Artstein [1] or the last assumption of Theorem
2.8). Such results have been proven by Tsinias; we refer to [34] for the case
m = 1 and to [35] for the multi-input case.

4. Proofs Theorems 2.7 and 2.8

Let us begin by the most difficult part: (iii) =⇒ (i).
In fact we will derive our result from the following theorem.

Theorem 4.1. Let F : Rn → 2Rn
be a multivalued function satisfying the

hypotheses (H) and such that the differential inclusion (2.4) is GAS. Then
under these assumptions, there exists a function V : Rn → R which is locally
Lipschitz, positive definite, proper and such that:

∀x )= 0,∀ζ ∈ ∂V (x),∀v ∈ F (x), 〈ζ, v〉 < 0. (4.1)

Remark 4.2. In this case, the application V is called strong control-Lyapunov
function for F . By the same proof as for (i) ⇒ (ii), one can deduce from
Theorem 4.1 the existence of a smooth strong control-Lyapunov function F ;
we recognize the main result given by Clarke, Ledyaev and Stern [8].

Let us consider F a multivalued application being GAS; we are going
to construct a strong control-Lyapunov function. Let us before change the
dynamic to transform it into a bounded dynamic.

Lemma 4.3. Let F be a multifunction which satisfies (H), let α : Rn →
[0,∞[ be a positive definite continuous function. Then the multifunction

IGD, , ,
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defined as follows
Fα(x) := α(x)F (x)

satisfies (H) and is GAS.

We suggest the reading of [8] for a proof of this result. Up to set F (x) :=
Fα(x) with α(x) := [max{1 + ‖v‖ : v ∈ F (x)}]−1, we can assume that F is
bounded by 1 on Rn. Besides, since α does not vanish outside the origin, a
Lyapunov function for F is obviously a control-Lyapunov function for Fα.
The proof of our Theorem requires the following compactness property of
solutions of differential inclusions (see e.g. [3, 7, 9, 13]).

Lemma 4.4. Let F be a multivalued map satisfying hypotheses (H). Then
for any sequence δk → 0 and sequence xk(·) of absolutely continuous and
uniformly bounded functions on [a, b] satisfying

ẋk(t) ∈ co F (xk(t) + δkB) + δkB a.e.,

there exists a subsequence xki
(·) converging uniformly to some solution x(·)

of ẋ ∈ F (x) on [a, b].

Give now the proposition which will be fundamental in the construction
of the control-Lyapunov function in the sense of generalized gradients. We
will invoke it many times with different functions G.

Proposition 4.5. Let G be a multivalued map from Rn into 2Rn
satisfying

(H1) and which is locally Lipschitz and bounded (by a constant m), let L :
Rn → R be a locally Lipschitz function and [0, b] be an interval on the real
line. Then the value function defined as follows

V (x) := max

{∫ b

0
L(x(t))dt

}
,

where the maximum is taken over all trajectories of

ẋ(t) ∈ G(x(t)) a.e. (4.2)

with x(0) = x, is locally Lipschitz on Rn; moreover it satisfies the following
property

∀ζ ∈ ∂V (x),∀v ∈ G(x), 〈ζ, v〉 ≤ −L(x) + Lx,b, (4.3)

where Lx,b denotes the maximum of L(x(b)) over all the trajectories of (4.2)
starting at x and defined on [0, b].

Remark 4.6. Since the multivalued map G is uniformly bounded, the reach-
able sets of its corresponding differential inclusion at time b are compact and
hence the Lx,b’s are well-defined.

Proof. Let us begin by proving that the value function V is locally Lipschitz
on Rn; fix r > 0. Consider x in rB. Since the multifunction G is bounded
by m, for any trajectory z(·) of (4.2) with z(0) = z, one has ‖z(t)‖ ≤
‖z‖ + tm,∀t ∈ [0, b]. If we consider a sequence of trajectories (xn(·))n such
that the quantities ∫ b

0
L(xn(t))dt

converge to V (x), then all stay in the ball (r + bm)B; this means that they
are uniformly bounded. Hence we can apply the compactness of trajectories
(see [9]) to deduce that the maximum in the definition of V (x) is attained
IGD, , ,
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for some trajectory x̃(·) of (4.2) with x̃(0) = x. Besides for any y ∈ rB, by
[3, Cor.1,p.121] there exists a trajectory y(·) of (4.2) with y(0) = y which
satisfies

∀t ∈ [0, b], ‖y(t) − x̃(t)‖ ≤ eλGb‖y − x‖,

where λG is the Lipschitz constant of G on (r + mb)B. If we set λL the
Lipschitz constant of L on the ball (r + mb)B, we obtain

V (x) =

∫ b

0
L(x̃(s))ds ≤

∫ b

0
L(y(s))ds +

∫ b

0
λL‖y(s) − x̃(s)‖ds

≤ V (y) + bλLeλGb‖y − x‖.

Since we can repeat the same thing by inverting x and y and by varying r,
we deduce that the function V is locally Lipschitz on Rn. We proceed now
to prove inequality (4.3) for x0 fixed in Rn. Let us begin by verifying (4.3)
with the elements of the proximal subdifferential. Let ζ ∈ ∂P V (x0) and
v ∈ G(x0). By the famous Michael’s Theorem [24], there exists a continuous
map (we can even get it locally Lipschitz, see [4]) g : Rn → Rn such that
∀x ∈ Rn, g(x) ∈ G(x) and g(x0) = v. Consider x(·) a solution of the classical
ordinary differential equation ẋ = g(x(t)) on [0, b] with x(0) = x0, it is a
trajectory of (4.2). Thus we obtain by definition of V , for any t ∈ [0, b]:

V (x(t)) +

∫ t

0
L(x(s))ds −

∫ b+t

b

L(x̃t(s − t))ds ≤ V (x0).

where x̃t(·) denotes a trajectory which realizes the maximum in the definition
of V (x(t)), that is such that

V (x(t)) =

∫ b

0
L(x̃t(s))ds =

∫ b+t

t

L(x̃t(s − t))ds.

On the other hand, there exist σ, η > 0 such that

V (y) − V (x0) + σ‖y − x0‖
2 ≥ 〈ζ, y − x0〉 ∀y ∈ x0 + ηB.

Therefore by setting y = x(t), we get for t sufficently small:

〈ζ, x(t) − x0〉 ≤ σ‖x(t) − x0‖
2 +

∫ b+t

b

L(x̃t(s − t))ds −

∫ t

0
L(x(s))ds.

By dividing by t, and passing to the limit we obtain easily

〈ζ, v〉 ≤ Lx,b − L(x0).

This proves our inequality in the case of proximal subgradients. To conclude,
we claim that the inequality (4.3) will remain by passing to the limit and then
will be satisfied for the elements of the limiting subdifferential ∂LV (x0). The
inequality will also remain by passing to the convex hull. The proposition
is proved.

Come back to our proof; set new things from the multivalued function F .
Let be given a positive number δ, we shall call Fδ the multifunction defined
as follows: For any x ∈ Rn,

ẋ(t) ∈ Fδ(x(t)) := co F (x(t) + δB) + δB. (4.4)

We proceed now to present a lemma which can be found in [8]; we give
its proof for being more self-contained.
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Lemma 4.7. Let R,T, ε be given positive numbers. Then there exists ∆ =
∆(R,T, ε) such that the following hold: For any δ ∈ [0,∆], each solution
x(·) of (4.4) with ‖x(0)‖ ≤ R does not blow-up on [0, T ] and satisfies

(a) ‖x(t)‖ ≤ 2M(R) ∀t ∈ [0, T ].
(b) There exists a solution x̃(·) of (2.4) on [0, T ] such that

‖x(t) − x̃(t)‖ ≤ ε ∀t ∈ [0, T ].

Proof. If there exist sequences δi ↓ 0 and Ti and corresponding solutions
xi(·) of (4.4) on [0, Ti] with δ = δi and ‖xi(0)‖ ≤ R, such that

‖xi(Ti)‖ = 2M(R), ‖xi(t)‖ < 2M(R) ∀t ∈ [0, Ti[. (4.5)

Since the multifunction F is bounded on the ball 2M(R)B, then all the
Fδi

are bounded too, and even uniformly. Because of fact that ‖xi(Ti)‖ =
2M(R), this implies that the sequence Ti does not admit 0 as a cluster point.
Hence, we can assume that Ti ↑ T ′ ≤ T . Thus, we can apply Lemma 4.4 to
deduce the existence of a solution x(·) of (2.4) which is a uniform limit of
the xi’s on [0, T ′]. Consequently, it satisfies ‖x(T ′)‖ = 2M(R). That brings
a contradiction to the definition of M(R)! Therefore we have proved the
existence of some ∆ > 0 verifying the first part of the lemma. On the other
hand, we have shown that any trajectory starting in the ball RB remains in
2M(R)B (whenever t ≤ T ). Then we can always extend it to [0, T ].
Assume now that there exists a sequence δi ↓ 0 and corresponding trajecto-
ries xi(·) of (4.4) on [0, T ] with δ = δi and ‖xi(0)‖ ≤ R, such that

max
t∈[0,T ]

‖xi(t) − x̃(t)‖ ≥ ε

for any trajectory x̃(·) of (2.4). The sequence being uniformly bounded
(by the first part of the proof), Lemma 4.4 brings a contradiction. Finally,
Lemma 4.7 is proved.

We are now able to prove the following.

Lemma 4.8. Let 0 < r < R two positive numbers, then there exist ∆̃ =
∆̃(r,R) > 0 and T̃ > 0 which satisfy:
For any δ ∈ [0,∆], any x(·) solution of (4.4) with ‖x(0)‖ ≤ R can be
extended to [0,∞) such that

‖x(t)‖ ≤ 2M(R) ∀t ≥ 0, (4.6)

et ‖x(t)‖ ≤ r ∀t ≥ T̃ . (4.7)

Proof. By Lyapunov stability, we know that M(ε) ↓ 0 when ε ↓ 0, then
there exists 0 < ε < r such that 2M(ε) < r. By applying Lemma 4.7 with
T = T ( ε

2 , R), ε
2 and R, we get the existence of ∆ such that for any δ ∈ [0,∆],

for any solution x(·) of (4.4) on [0, T ], one has

‖x(t)‖ ≤ 2M(R) ∀t ∈ [0, T ],

and there exists a solution x̃(·) of (2.4) such that

‖x(t) − x̃(t)‖ ≤
ε

2
∀t ∈ [0, T ].
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By applying still once Lemma 4.7 with T = T ( ε
2 , R) and R = ε, we get ∆′

such that for any δ ∈ [0,∆′], any solution x(·) of (4.4) can be extended to
[0, T ] and satisfies

‖x(t‖ ≤ 2M(ε) < r ∀t ∈ [0, T ].

Set ∆̃ := min{∆,∆′}. Let us prove that the properties (4.6) and (4.7) are
verified for any δ in [0, ∆̃].
Let us consider such a δ and a solution x(·) of (4.4). It remains in the ball
2M(R) whenever t ≤ T , thus we will be able to extend it to [0, T ]. Moreover,
by construction of ∆, there exists a trajectory x̃(·) of (2.4) such that

‖x(t) − x̃(t)‖ ≤
ε

2
∀t ∈ [0, T ].

On the other hand, by definition of T , one has ‖x̃(T )‖ ≤ ε
2 . Thus ‖x(T )‖ ≤

ε ≤ R. Therefore, we can extend our trajectory on [T, 2T ]. Since ‖x(T )‖ ≤ ε,
it remains in 2M(ε)B and hence in rB. As before ‖x(2T )‖ ≤ ε. The work
done above means that we can repeat the extension of our trajectory on the
different intervals [nT, (n + 1)T ] in such a manner that we stay in the ball
2M(R)B for t ≥ 0 and in rB for t ≥ T̃ = T ( ε

2 , R). The lemma is proved.

We proceed now to construct our control-Lyapunov function in the sense
of generalized gradients. For that, we start by setting a sequence of value
functions {Vp}p≥1 corresponding to the one that appeared in Proposition
4.5.
Set for any positive integer p, Rp := 2p. By Lemma 4.8, we can associate
with each couple (1, 2M(Rp) + 2) some constants ∆̃p and T̃p such that

∆̃p+1 ≤ ∆̃p ≤ ∆̃(1, Rp) and T̃p+1 ≥ T̃p ≥ T (1, 2M(Rp) + 2).

Fix now some positive integer p. We define a multifunction Fp, and then a
new dynamics as follows.
Set for any x in Rn:

W p
x :=

{
y : ‖y − x‖ ≤

1

2
∆̃p

}
.

Since the family {W p
x}x is a covering of Rn, there exists a locally finite open

cover {W n
xi
}i of Rn and {Ψi}i a subordinated C∞ partition of unity. We set

for any x in Rn:

Fp(x) :=
∑

i

Ψi(x)F

(
xi +

∆̃p

2
B

)
.

By construction, Fp satisfies obviously (H1), is locally Lipschitz and its norm
is bounded by 1 on Rn; on the other hand we have that for any x in Rn:

F (x) ⊂ Fp(x) ⊂ coF (x + ∆̃pB) ⊂ F∆̃p
(x), (4.8)

and

Fp+1(x) ⊂ Fp(x). (4.9)

Let us go back to the construction of our sequence of value functions. We
shall apply Proposition 4.5 with each of the dynamics previously defined.
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We proceed recursively; let us start by defining V1. We set for any x in Rn:

V1(x) := max

{∫ T̃1

0
L1(x(s))ds : ẋ ∈ F1(x(t)) a.e. and x(0) = x

}
,

where L1(y) = dB(y) ∀y ∈ Rn.
By Proposition 4.5, the value function V1 is locally Lipschitz on Rn and
proper (because the dynamics is globally bounded); moreover, it is nonneg-
ative. Besides, if we consider x ∈ Rn with ‖x‖ ≤ 2M(R1) + 2, then by
Lemma 4.8 for every trajectory x(·) of (4.4) with δ = ∆̃1 and x(0) = x, one
has

‖x(t)‖ ≤ 1 ∀t ≥ T̃1,

that is dB(x(t)) = 0. The property (4.3) allows us to write for any x ∈ Rn

with ‖x‖ ≤ 2M(R1) + 2:

∀ζ ∈ ∂V1(x),∀v ∈ F (x), 〈ζ, v〉 ≤ −dB(x). (4.10)

Let us now assume that we have defined the functions V1, V2, · · · , Vp, and
let us define the function Vp+1. We begin by setting two auxiliary functions;
we set for any x ∈ Rn:

Bp(x) := max{Vp(y) : ‖y‖ ≤ ‖x‖ + 1} + 1,

and

Lp+1 := max

{
1

2
, ‖x‖ − 2M(Rp)

}
Lp + max {0, ‖x‖ − 2M(Rp)}Bp(x).

Define our function Vp+1; set for any x in Rn:

Vp+1(x) := max

{∫ T̃p+1

0
Lp+1(x(s))ds : ẋ ∈ Fp+1(x(t))a.e. and x(0) = x

}
.

Since the functions Bp and Lp+1 are locally Lipschitz and nonnegative (pos-
itive outside B), and since

T̃p+1 ≥ T (1, 2M(Rp+1) + 2),

Proposition 4.5 implies that Vp+1 is locally Lipschitz, proper, nonnegative
(positive outside B) and satisfies for any x with ‖x‖ ≤ 2M(Rp+1) + 2:

∀ζ ∈ ∂Vp+1(x),∀v ∈ F (x), 〈ζ, v〉 ≤ −Lp+1(x). (4.11)

Furthermore, we have the following lemma.

Lemma 4.9. Let x ∈ Rn.

(a) If ‖x‖ ≤ Rp, then Vp+1(x) ≤ Vp(x)
2 .

(b) If ‖x‖ ≥ 2M(Rp) + 2, then Vp+1(x) ≥ Vp(x) + 1.

Proof.
(a) Let x ∈ RpB. By Lemma 4.8 (because ∆̃p+1 ≤ ∆̃p ≤ ∆̃(1, Rp)) and

from (4.8) applied for p+1, all the trajectories of ẋ ∈ Fp+1(x) starting
at x stay in the ball 2M(Rp)B. Thus, all along those we have:

Lp+1 ≥
Lp

2
.
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In addition to that, by (4.9), these ones are also some trajectories of
ẋ ∈ Fp(x), and for all t ≥ T̃p, they remain in the unit ball, where Lp

vanishes. Since T̃p+1 ≥ T̃p, this implies that∫ T̃p+1

T̃p

Lp+1(x(s))ds = 0.

We conclude that

Vp+1(x) ≤
Vp(x)

2
.

(b) Consider x /∈ [2M(Rp) + 2]B. Since the dynamics Fp+1 has a norm
bounded by 1, all its trajectories x(·) starting at x stay outside the ball
[2M(Rp) + 1]B for t ∈ [0, 1]. But from the definitions of Lp+1 and Bp,
we have for any t ∈ [0, 1]:

Lp+1(x(t)) ≥ Bp(x(t)) ≥ Vp(x) + 1.

Hence we deduce that Vp+1(x) ≥
∫ 1
0 Lp+1(x(s))ds ≥ Vp(x) + 1.

Since the construction of our sequence (Vp)p≥1 is achieved, we can define:

∀x ∈ R
n,V0(x) := max{Vp(x) : p ≥ 1}. (4.12)

This new function is well defined. As a matter of fact, the preceding lemma
implies that if for some q and s, we have 2M(Rq) + 2 ≤ ‖x‖ ≤ Rs, then
V0(x) = maxq≤p≤s Vp(x) and if ‖x‖ ≤ 2 = R1, then V0(x) = V1(x). We
conclude that the maximum in the definition of V0(x) is attained only for
a finite number of Vp(x)’s. Moreover, since the functions Vp are locally
Lipschitz and proper, the function V0 is itself locally Lipschitz and proper.
On the other hand, it is obviously nonnegative and positive outside the
closed unit ball B. In addition, by Proposition 2.3.12 of [7], if ζ belongs
to ∂V0(x) then it belongs to the convex hull of the ∂Vp(x) for which the
maximum in (4.12) is attained, that is such that Vp(x) = V0(x). From these
results and by (4.10) and (4.11) we deduce that:

∀x ∈ R
n \ B,∀ζ ∈ ∂V0(x),∀v ∈ F (x), 〈ζ, v〉 < 0. (4.13)

On the other hand, it is easy to show that

∀x ∈ B,∀ζ ∈ ∂V0(x),∀v ∈ F (x), 〈ζ, v〉 ≤ 0. (4.14)

We set now a new sequence rp := 1
2p . As before, we can choose a sequence

of couples (∆̃′
p, T̃

′
p) in such a manner that

T̃ ′
p ≥ T (rp, 2).

We set as before a sequence F ′
p of dynamics. Then we can set for any p:

V ′
p(x) := max

{∫ T̃ ′
p

0
dSp(x(s))ds : ẋ ∈ F ′

p(x(t))a.e. and x(0) = x

}
,

where Sp denotes the ball rpB.
Each of these value functions V ′

p is locally Lipschitz and satisfies by the good

choice of T̃ ′
p:

∀x ∈ 2B,∀ζ ∈ ∂V ′
p(x),∀v ∈ F (x), 〈ζ, v〉 ≤ −dSp(x). (4.15)
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By setting Mp the maximum of V ′
p over the ball 2B, we can truncate it as

follows:
We define for any x ∈ Rn,

Vp := min{Mp, V
′
p(x)}.

First we mention that the maximum Mp of V ′
p is achieved on the boundary

of 2B (this comes from (4.15) and the fact that 0 is a generalized gradient
at the local maximum if it is in 2B). Furthermore Let us notice that Vp is
globally Lipschitz (let us denote its Lipachitz constant by Kp) and bounded
by Mp. There is in fact a connection between its generalized gradients and
those V ′

p:

∀x ∈ B, ∂Vp(x) = ∂V ′
p(x) and ∀x /∈ B, ∂Vp(x) ⊂ co{0, ∂V ′

p(x)}. (4.16)

Finally, we set:

V(x) := V0(x) +
∞∑

p=1

ρpVp(x),

where ρp := min{ 1
Mp2p , 1

Kp2p }. Still by construction, the function V is posi-

tive definite, proper and locally Lipschitz. Besides by a rule on the sum of
generalized gradients (see [9]), we have:
If ζ ∈ ∂V(x) then

ζ ∈ ∂V0(x) +
∞∑

p=1

ρp∂Vp(x).

Hence by linearity of the scalar product, we get by (4.13), (4.14), (4.15) and
(4.16):

∀x )= 0,∀ζ ∈ ∂V(x),∀v ∈ F (x), 〈ζ, v〉 < 0.

Theorem 4.1 is proved.

We proceed now to show now the part (i) =⇒ (ii):
We assume that the system (2.1) admits a control-Lyapunov function in the
sense of generalized gradients V ; we shall regularize it.

Fix x in Rn \ {0}. By Definition 2.6, there exists a compact set Wx such
that

∀y ∈ 2‖x‖B \ {0},∀ζ ∈ ∂V (y), min
u∈Wx

〈ζ, f(y, u)〉 < 0. (4.17)

We can define the following positive quantity:

εx := − max
y∈x+ ‖x‖

2
B

max
ζ∈∂V (y)

min
u∈Wx

〈ζ, f(y, u)〉 > 0. (4.18)

Note that the positivity of the constant εx is a consequence of the upper
semicontinuity of the multivalued map y "→ ∂V (y) and of the compacity of
Wx.
We set also for any y ∈ x + ‖x‖

2 B:

Fx(y) := co{f(y, u) : u ∈ Wx}.
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Since Fx(y) and ∂V (y) are convex sets, the minimax Theorem (see [2])

implies by (4.17) and (4.18) that for any y ∈ x+ ‖x‖
2 B, there exists v ∈ Fx(y)

such that

∀ζ ∈ ∂V (y), 〈ζ, v〉 ≤ −εx. (4.19)

Furthermore, since the multivalued map x "→ ∂V (x) is upper semicontinuous
and since Fx is continuous, we can find a neighbourhood Ux (with 0 /∈ Ux)
of x and a positive real number δx such that for any y ∈ Ux, there exists
v ∈ Fx(y) satisfying:

∀z ∈ Ux + δxB,∀ζ ∈ ∂V (z), 〈ζ, v〉 ≤ −
εx
2

. (4.20)

This construction being done for any x in Rn \ {0}, we can extract from
the family {Ux}x a locally finite open cover {Ui}∞i=1 of Rn \ {0} (where the
Ui’s are relatively compact open sets whom the closure does not contain the
origin) corresponding to families {xi}∞i=1 and {δi}∞i=1. We set for any x in
Rn \ {0}:

δ(x) := min

{
‖x‖

2
,min

{
δj :

(
x +

‖x‖

2
B

)
∩ Uj )= ∅

}}
> 0.

The family {x+ δ(x)
2 B}x is an open cover of Rn \{0}; we can extract from it

a locally finite open cover {xp + δ(xp)
2 B}∞p=1 corresponding to a C∞ partition

of unity {ψ}∞p=1. For any p, Supp(ψp) will denote the support of the function

ψp; let us recall that it is included in xp + δ(xp)
2 B. With this stuff, we can

set for any p:

εp := min
(xp+ ‖xp‖

2
B)∩Ui +=∅

{εxi} > 0, (4.21)

ε̄p := min

{
min

(xp+ ‖xp‖
2

B)∩Ui +=∅
min
x∈Ui

V (x), εp

}
> 0, (4.22)

qp := max
(xp+ ‖xp‖

2
B)∩Ui +=∅

max
x∈U i

max
u∈Wxi

{‖∇ψi‖‖f(x, u)‖} > 0. (4.23)

Let ω : Rn → [0,∞[ be a C∞ function with support in the closed unit ball
B̄, such that ∫

Rn

ω(x)dx = 1.

For ν > 0 let us define for any x ∈ Rn:

Vν(x) :=

∫
Rn

V (x + νy)ω(y)dy.

This function is C∞ and furthermore if S ⊂ Rn is compact, then the se-
quence (Vν)ν converges uniformly to V when ν tends to 0. Thus for each p,

there exists νp < δ(xp)
2 such that

|Vνp(x) − V (x)| ≤
ε̄p

2p+1(1 + qp)
∀x ∈ xp + δ(xp)B. (4.24)

Let us define a function

Ṽ (x) :=

{ ∑
p ψp(x)Vνp(x) if x )= 0,

0 if x = 0.
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It is clearly differentiable on Rn \ {0}. Furthermore, since for any x ∈ Rn

|Ṽ (x) − V (x)| ≤
∑

p

ψp(x)|V (x) − Vνp(x)| ≤
1

2
V (x).

we obtain that the function Ṽ is smooth outside the origin, positive definite,
proper and continuous at the origin. Prove that Ṽ satisfies the decrease
condition (2.2).
From Rademacher’s Theorem (see [9]), since V is locally Lipschitz, it is
differentiable almost everywhere in Rn, and by Remark 2.5, for every point
x where it is differentiable, we have

∇V (x) ⊂ ∂V (x). (4.25)

On the other hand, Lebesgue’s Theorem (because the function is locally
Lipschitz) implies that for any x ∈ Rn \ {0},

∇Vν(x) =

∫
Rn

∇V (x + νy)ω(y)dy. (4.26)

Fix x ∈ Rn \{0}. By construction of the family {Ui}∞i=1, there exists i0 such

that x ∈ Ui0. So if x ∈ Supp(ψp) for some p, then x ∈ xp + δ(xp)
2 B and then

xp + δ(xp)
2 B ∩ Ui0 )= ∅ that implies (since δ(xp) ≤ ‖xp‖):

xp +
‖xp‖

2
B ∩ Ui0 )= ∅.

We deduce by the definition of δ(xp) that δ(xp) ≤ δi0 and hence that x +
δ(xp)

2 B is included in Ui0+δi0B. On the other hand, there exists vi0 ∈ Fxi0
(x)

which satisfies (4.20) with x = xi0. We obtain by (4.25) and (4.26) that for
any p with x ∈ Supp(ψp):

〈∇Vνp(x), vi0〉 =

∫
Rn

〈∇V (x + νpy), vi0〉ω(y)dy

≤

∫
Rn

−εxi0
ω(y)dy

≤ −εxi0
. (4.27)

Now, if the function V is differentiable at x, we can compute:
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〈∇Ṽ (x), vi0〉

= 〈∇V (x), vi0〉 +
∑

p

ψp(x)〈∇Vνp(x) −∇V (x), vi0〉

+
∑

p

〈∇ψp(x), vi0〉(Vνp(x) − V (x))

=
∑

p

ψp(x)〈∇Vνp(x), vi0〉 +
∑

p

〈∇ψp(x), vi0〉(Vνp(x) − V (x))

≤
∑

p

ψp(x)(−εxi0
) +

∑
p

‖∇ψp(x)‖‖vi0‖|Vνp(x) − V (x)|

≤ −εxi0
+

∑
p

ε̄p

2p+1

≤ −
εxi0

2
< 0.

Therefore since vi0 belongs to the convex hull of {f(x, u) : u ∈ Wxi0
},

there exists some f(x, u) which satisfies (2.2).

We have shown that if x ∈ Rn \ {0} and if the function V is differentiable
at x, then (2.2) is satisfied with a compact set Wxi0

which depends on x but
which could be taken to be uniform for all x with ‖x‖ ≤ r . Let us emphasize
that since Ṽ is smooth outside the origin and since V is differentiable almost
everywhere, our result implies (also by (H1)) that (2.2) is satisfied for any
x )= 0. However V is not C∞ at the origin. By Lemma 4.3 in [22], one
can find a function β : [0,∞[→ [0,∞[ which is increasing, positive, C∞ on
]0,∞[ and such that the function V̂ (·) = β(Ṽ (·)) is C∞ on Rn. For this new
function, we will have

∂V̂ (x) = β′(Ṽ (x))∂Ṽ (x).

Hence it will satisfy the decrease condition (2.2) and will be a smooth
control-Lyapunov function.

It remains to prove (ii) =⇒ (iii). Let us denote by V the function given
by the assertion (ii). By definition, for any positive integer i there exists a
compact set Wi such that

∀y ∈ 2iB \ {0}, min
u∈Wi

〈∇V (y), f(y, u)〉 < 0. (4.28)

For each x ∈ Rn, we set Wx := W[x]+1 (where [x] denotes the integer part
of ‖x‖). Define for any x ∈ Rn :

h(x) := inf
y∈Rn

{− min
u∈Wy

〈∇V (y), f(y, u)〉 + ‖x − y‖}. (4.29)

This new function is 1-Lipschitz and positive definite (by 4.28), and moreover
we have by construction:

h(x) ≤ − min
u∈Wx

〈∇V (x), f(x, u)〉.

IGD, , ,



20 LUDOVIC RIFFORD

This allows us to define for any x ∈ Rn \ {0} the following nonempty set:

G(x) := {u ∈ Wx : 〈∇V (x), f(x, u)〉 ≤ −h(x)} . (4.30)

Consider a selection u(·) of G (extended by 0 at the origin). By the good
choice of the compact sets Wx, it is locally bounded. Besides, by linearity
of the scalar product, we have for any x )= 0 and for any v ∈ Ku(x),

〈∇V (x), v〉 ≤ −h(x). (4.31)

By Theorem 15.1 of [14] we conclude that the differential inclusion

ẋ(t) ∈ Ku(x(t)) a.e.

is globally asymptotically stable at the origin.
Now, if instead of a feedback of Krasovskii type we want to construct a
feedback of Filippov type, we have to prove that the multivalued map K
which is considered above is measurable. Thus we can extract a measurable
selection (see [4]) which will allow us to set the differential inclusion given
by Filippov. Then we conclude with the same proof and hence the proof of
Theorem 2.7 is complete. We have still to demonstrate Theorem 2.8.
In the case of an affine system, that is when

f(x, u) = f0(x) +
m∑

i=1

uifi(x),

we consider the same compact sets Wx as above and the same function h
given by (4.29). We define for any x ∈ Rn \ {0}:

K ′(x) :=

{
u ∈ Wx : 〈∇V (x), f(x, u)〉 ≤ −

h(x)

2

}
.

Since the function f is affine in the control, the multivalued map K ′ has
nonempty convex compact values. In addition, since f and ∇V are both
continuous and since the sets G(x) given by (4.30) are nonempty, we deduce
that the multivalued map K ′ is also lower semicontinuous in Rn \ {0} (we
refer to [13] and [4] for the definition of lower semicontinuity). So, we can
apply the famous Michael’s Theorem (see [24]) and get the existence of a
continuous selection u : Rn \ {0} → U . Of course, we set u(0) = 0; by the
same proof as for (ii) =⇒ (iii), we get that the dynamical system

ẋ = f(x, u(x))

is globally asymptotically stable.
Now if the last assumption of Theorem 2.8 is satisfied, then the function K ′

can be extended to Rn by setting K ′(0) = {0}. It is with nonempty convex
compact values and furthermore it is henceforth lower semicontinuous in Rn.
We deduce the existence of a continuous selection on Rn such that u(0) = 0.
Still once we conclude by the proof of (ii) =⇒ (iii) of Theorem 2.7. Theorem
2.8 is proved.

4.1. Further comments

In view of the preceding proof, we can easily generalize Theorem 2.7 to
the case of stabilization toward a compact set. As a matter of fact, since
our proof is mainly based on the compacity of the basin of attraction, we
IGD, , ,
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can easily developp all our lemmae in this case. In this way, we obtain some
result close to the theorem presented by Praly and Teel in [31].
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[27] L. Rosier. Étude de quelques problèmes de stabilisation. PhD thesis, ENS de Cachan,
1993.

[28] E. D. Sontag. A “universal” construction of Artstein’s theorem on nonlinear stabi-
lization. Systems Control Lett., 13(2):117–123, 1989.

[29] E.D. Sontag. Mathematical Control Theory. Texts in Applied Mathematics, vol.6.
Springer-Verlag, New York, 1990. (Second Edition, 1998).

[30] E.D. Sontag. Stability and stabilization: discontinuities and the effect of disturbances.
In Nonlinear analysis, differential equations and control (Montreal, QC, 1998), pages
551–598. Kluwer Acad. Publ., Dordrecht, 1999.

[31] A. R. Teel and L. Praly. A smooth Lyapunov function from a class-KL estimate involv-
ing two positive semidefinite functions. ESAIM Control Optim. Calc. Var., 5:313–367,
2000.

[32] J. Tsinias. A Lyapunov description of stability in control systems. Nonlinear Analysis
TMA, 13:3–74, 1989.

[33] J. Tsinias. Sufficient Lyapunov-like conditions for stabilization. Math. Control Signals
Systems, 2(4):343–357, 1989.

[34] J. Tsinias. A local stabilization theorem for interconnected systems. Systems Control
Lett., 18(6):429–434, 1992.

[35] J. Tsinias. An extension of Artstein’s theorem on stabilization by using ordinary
feedback integrators. Systems Control Lett., 20(2):141–148, 1993.

IGD, , ,


