RANGE OF THE GRADIENT OF A SMOOTH BUMP FUNCTION IN FINITE DIMENSIONS

LUDOVIC RIFFORD

ABSTRACT. This paper proves the semi-closedness of the range of the gradient for sufficiently smooth bumps in the Euclidean space.

Let \mathbb{R}^N be the Euclidean space of dimension N. A bump on \mathbb{R}^N is a function from \mathbb{R}^N into \mathbb{R} with a bounded nonempty support. The aim of this short paper is to answer partially an open question suggested by Borwein, Fabian, Kortezov and Loewen in [1]. Let $f : \mathbb{R}^N \to \mathbb{R}$ be a C^1 -smooth bump function; does $f'(\mathbb{R}^N)$ equal the closure of its interior? We are not able to provide an answer, but we can prove the following result.

Theorem 1. Let $f : \mathbb{R}^N \to \mathbb{R}$ be a C^{N+1} -smooth bump. Then $f'(\mathbb{R}^N)$ is the closure of its interior.

We do not know if the hypothesis on the regularity of the bump f is optimal in our theorem when $N \geq 3$. However, the result can be improved for N = 2; Gaspari [3] proved by specific two-dimensional arguments that the conclusion holds if the bump is only assumed to be C^2 -smooth on the plane. Again we cannot say if we need the bump function to be C^2 for N = 2. We proceed now to prove our Theorem.

1. Proof of Theorem 1

For the sequel, we set $F := f' = \nabla f$. Moreover, since the theorem is obvious for N = 1 we will assume that $N \ge 2$. The proof is based on a refinement of Sard's Theorem that can be found in Federer [2]. Let us denote by $B_k (k \in \{0, \dots, N\})$ the set defined as follows:

$$B_k := \{ x \in \mathbb{R}^N : \operatorname{rank} DF(x) \le k \}.$$

Of course $B_N = \mathbb{R}^N$. Theorem 3.4.3 in [2] gives that if the function F is C^N -smooth then for all $k = 0, \dots, N-1$,

$$\mathcal{H}^{k+1}\left(F(B_k)\right) = 0. \tag{1}$$

where \mathcal{H}^{k+1} denotes the (k+1)-dimensional Hausdorff measure. Fix \bar{x} in \mathbb{R}^N and let us prove that $F(\bar{x})$ belongs to the closure of $\operatorname{int}(F(\mathbb{R}^N))$. Since it is well known that $0 \in \operatorname{int}(F(\mathbb{R}^N))$ (see Wang [6]), we can assume that $F(\bar{x}) \neq 0$. Our proof begins by the following lemma.

Lemma 1. There exists a neighbourhood \mathcal{V} of $F(\bar{x})$ relative to $F(\mathbb{R}^N)$ and an integer $\bar{k} \in \{1, \dots, N\}$ such that for any $x \in F^{-1}(\mathcal{V})$, rank $DF(x) \leq \bar{k}$

L. Rifford: Institut Girard Desargues, Université Claude Bernard Lyon I 69622 Villeurbanne, France. email: rifford@desargues.univ-lyon1.fr.

LUDOVIC RIFFORD

and moreover there exists a sequence $(v_n)_{n \in \mathbb{N}}$ in \mathcal{V} which converges to $F(\bar{x})$ and such that

$$F(y) = v_n \Longrightarrow \operatorname{rank} DF(y) = \bar{k}.$$
 (2)

Proof. Let us fix V an open neighbourhood of $F(\bar{x})$ relative to $F(\mathbb{R}^N)$ and denote by k_0 the max of the k's in $\{0, 1, \dots, n\}$ which satisfy $V \cap F(C_k) \neq \emptyset$ where we define the set C_k as

$$C_k := \{ x \in \mathbb{R}^N : \operatorname{rank} DF(x) = k \}.$$

First of all remark that $k_0 > 0$. As a matter of fact, suppose that for any $k \ge 1, V \cap F(C_{k_i}) = \emptyset$, that is for any y in $F^{-1}(V)$, rankDF(y) = 0. Since $F^{-1}(V)$ is open this implies that F is constant on $F^{-1}(V)$ and hence that $F(\bar{x})$ is isolated in $F(\mathbb{R}^N)$. So, we get a contradiction by arc-connectedness of $F(\mathbb{R}^N)$ (and since $F(\bar{x}) \neq 0$ and $0 \in F(\mathbb{R}^n)$). Consequently, we deduce that there exists $y \in \mathbb{R}^N$ such that $F(y) \in V$ and rank $DF(y) = k_0 > 0$. Furthermore for all $z \in F^{-1}(V)$, rank $DF(z) \le k_0$. Hence by lower semicontinuity of $z \mapsto \operatorname{rank} DF(z)$, this implies that rankDF is constant in a neighbourhood of y (because $\{z : \operatorname{rank} DF(z) \ge k_0\}$ is open). Therefore, by the rank theorem (see Rudin [4, Theorem 9.20]), V has the structure of a k_0 -dimensional manifold near F(y), and hence $\mathcal{H}^{k_0}(V) > 0$. Thus by (1), $V - F(B_{k_0-1})$ is nonempty. We conclude that for any v in the latter set,

$$F(z) = v \Longrightarrow \operatorname{rank} DF(z) = k_0.$$

Repeating this argument with a decreasing sequence on neighbourhoods, we get a decreasing sequence of integers in $\{1, \dots, n\}$ which has to be stationnary. Hence the proof is easy to complete.

We claim now the following lemma.

Lemma 2. The constant of Lemma 1 satisfies $\bar{k} = N$.

Proof. Let us remark that since $F = f' = \nabla f$, the Jacobian of F at any point y in \mathbb{R}^N is actually the Hessian of the function f. We argue by contradiction and so we assume that $\bar{k} < N$.

By the previous remark, for any $y \in \mathbb{R}^N$, DF(y) is a symetric matrix, the nontrivial vector subspaces $\operatorname{Ker} DF(y)$ and $\operatorname{Im} DF(y)$ are orthogonal and DF(y) induces an automorphism on $\operatorname{Im} DF(y)$. Let us fix $n \in \mathbb{N}$. By Lemma 1 and by the constant rank theorem (see for instance Spivak [5] page 65) we deduce that $M_n := \{y : F(y) = v_n\}$ is a submanifold of \mathbb{R}^N of dimension N-k and at least C^2 -smooth (since F is C^N -smooth and $N \geq 2$). Furthermore since f is a bump, M_n is a compact submanifold. Now since M_n is a C^2 submanifold of \mathbb{R}^N there exists a open tubular neigh-

Now since M_n is a C^2 submanifold of \mathbb{R}^N there exists a open tubular neighbourhood $\mathcal{U} \subset \mathcal{V}$ of M_n and a C^2 -smooth function $r: \mathcal{U} \to M_n$ which is the projection on the set M_n such that for any $x \in \mathcal{U}, x - r(x) \in N_{r(x)}M_n$, where for any $p \in M_n$, N_pM_n denotes the normal space of M_n at p. In addition from the properties of the constant \bar{k} , by reducing \mathcal{U} if necessary, we can assume that for any $x \in \mathcal{U}, \operatorname{rank} DF(x) = \bar{k}$. We set the following function on the neighbourhood \mathcal{U} :

$$\begin{split} \Phi : \mathcal{U} &\to \mathbb{R}^N \\ x &\mapsto DF(r(x))(x - r(x)) \end{split}$$

We need now the following result.

Lemma 3. If M_n is a compact C^2 submanifold of \mathbb{R}^N , then for all ξ in the unit sphere \mathbb{S}^{N-1} , there exists $p \in M_n$ such that $\xi \in N_p M_n$.

Proof. Consider for any $l \in \mathbb{N}$, $p_l := \operatorname{proj}_{M_n}(l\xi)$, where $\operatorname{proj}_{M_n}(\cdot)$ denotes the projection map on the closed set M_n . Since the submanifold M_n is C^2 , the vector $\frac{l\xi - p_l}{\|l\xi - P_l\|}$ belongs to $N_{p_l}M_n$. Moreover by compactness of M_n we can assume that $p_l \to \bar{p}$ when l tends to infinity. Now since the sequence $(p_l)_{l\in\mathbb{N}}$ is bounded, we have that $\lim_{l\to\infty} \frac{l\xi - p_l}{\|l\xi - P_l\|} = \xi$. By continuity of the normal bundle NM_n , we conclude easily that $\xi \in N_{\bar{p}}M_n$. \Box

Lemma 3 implies immediately that for all $\xi \in \mathbb{S}^{N-1}$, there exists $p \in M_n$ and $v \in N_p M_n$ such that $v = \xi$. Furthermore the map DF(p) is an automosphism on $N_p M_n$, hence there exists $w \in N_p M_n$ such that DF(p)(w) = v. We conclude that for any t small enough (s.t. $p + tw \in \mathcal{U}$), $DF(p)(tw) = t\xi$ and hence that $\Phi(p + tw) = t\xi$. Since M_n is compact, we have proved that for some $t_0 > 0$, the ball $B(0, t_0)$ is included in $\Phi(\mathcal{U})$; hence $\Phi(\mathcal{U})$ has a nonempty interior. Therefore (since the function Φ is smooth enough) Sard's Theorem gives us the existence of regular values of Φ in \mathbb{R}^N . So there exists $\bar{y} \in \mathcal{U}$ such that rank $D\Phi(\bar{y}) = N$. Consequently there exists $\rho > 0$ such that the map Φ is a diffeomorphism from $\mathcal{W} = B(\bar{y}, \rho)$ (the ball centered at \bar{y} with radius ρ) into a neighbourhood \mathcal{X} of $\Phi(\bar{y})$.

For any $l \in \mathbb{N}^*$, we set $y_l := r(\bar{y}) + \frac{1}{l}(\bar{y} - r(\bar{y}))$. The constant rank theorem implies that for any l the set $V_l := \{y \in \mathcal{U} : F(y) = F(y_l)\}$ is a submanifold of \mathcal{U} of dimension N - k. (Of course V_l might be noncompact in \mathcal{U} , *i.e.* $\overline{V_l}$ not included in \mathcal{U} .) On the other hand, by Lipschitz continuity of $DF(\cdot)$ and since $\mathbb{N} - k > 0$, there exists a neighbourhood \mathcal{Y} of the segment $[\bar{y}, r(\bar{y})]$ in $co\{\mathcal{W} \cup r(\mathcal{W})\}$ and a Lipschitz continuous map $X : \mathcal{Y} \to \mathbb{R}^N$ such that for any $x \in \mathcal{Y}$,

 $X(x) \in \ker DF(x)$ and ||X(x)|| = 1.

If we denote by $\theta_X(y,\tau)$ the local flow of the vector field X on \mathcal{Y} , we get that for any τ small enough $\theta_X(y_l,\tau) \in V_l$. On the other hand, Gronwall's Lemma yields easily the following:

Lemma 4. There exists two positive constants K, μ such that for any $l \in \mathbb{N}^*$ and for any $\tau \leq \mu$, we have

$$\theta_X(y_l,\tau) \in \operatorname{co}\left\{B\left(\bar{y},\frac{\rho}{2}\right) \cup r\left(B\left(\bar{y},\frac{\rho}{2}\right)\right)\right\},\tag{3}$$

$$\frac{\|\theta_X(y_l,\tau) - r(\theta_X(y_l,\tau))\|}{\|y_l - r(y_l)\|} \in [e^{-K\tau}, e^{K\tau}].$$
(4)

We set for any $l \in \mathbb{N}^*$, $z_l := \theta_X(y_l, \mu)$. By considering a converging subsequence of $(z_l)_{l \in \mathbb{N}^*}$ if necessary we can compute

$$\lim_{l \to \infty} \frac{F(y_l) - F(r(y_l))}{\|z_l - r(z_l)\|} = \lim_{l \to \infty} \frac{F(z_l) - F(r(z_l))}{\|z_l - r(z_l)\|}$$
$$= \lim_{l \to \infty} DF(r(z_l)) \left(\frac{z_l - r(z_l)}{\|z_l - r(z_l)\|}\right)$$
$$= DF(\bar{z})(\bar{\zeta}),$$

where $\lim_{l\to\infty} z_l = \bar{z} = r(\bar{z}) \in M_n$ and $\lim_{l\to\infty} \frac{z_l - r(z_l)}{\|z_l - r(z_l)\|} = \bar{\zeta} \in N_{\bar{z}}M_n$. We deduce that

$$DF(r(\bar{y}))(\bar{y} - r(\bar{y})) = \lim_{l \to \infty} l \left(F(y_l) - F(r(y_l)) \right)$$

=
$$\lim_{l \to \infty} l \|z_l - r(z_l)\| \frac{F(y_l) - F(r(y_l))}{\|z_l - r(z_l)\|}$$

=
$$c \|\bar{y} - r(\bar{y})\| DF(\bar{z})(\bar{\zeta})$$

=
$$DF(\bar{z})(c \|\bar{y} - r(\bar{y})\|\bar{\zeta}),$$

with $c = \lim_{l \to \infty} \frac{\|z_l - r(z_l)\|}{\|y_l - r(y_l)\|}$.

The computations prove that $\Phi(\bar{y}) = \Phi(\bar{z} + c \|\bar{y} - r(\bar{y})\|\bar{\zeta})$. Furthermore by (3), \bar{z} belongs to $r(\mathcal{W})$ and $\|\bar{z} - r(\bar{y})\| > 0$. Consequently since Φ is injective on \mathcal{W} , it remains to prove that $\bar{z} + c \|\bar{y} - r(\bar{y})\|\bar{\zeta}$ is in \mathcal{W} to get a contradiction. By (4) taking μ smaller if necessary, we get the result. \Box

The proof of Theorem 1 is now easy. Since k = N, for any $n \in \mathbb{N}$ the different values v_n of Lemma 1 belong to the interior of $f'(\mathbb{R}^N)$ and moreover the sequence $(v_n)_{n \in \mathbb{N}}$ converges to $F(\bar{x})$. This proves the theorem.

References

- J. M. Borwein, M. Fabian, I. Kortezov, and P. D. Loewen. The range of the gradient of a continuously differentiable bump. J. Nonlinear Convex Anal., 2(1):1–19, 2001.
- [2] H. Federer. Geometric measure theory. Springer-Verlag New York Inc., New York, 1969.
- [3] T. Gaspari. On the range of the derivative of a real valued function with bounded support. Preprint.
- [4] W. Rudin. Principles of mathematical analysis. McGraw-Hill Book Co., New York, 1964.
- [5] M. Spivak. A comprehensive introduction to differential geometry. Vol. I. Publish or Perish Inc., Wilmington, Del., second edition, 1979.
- [6] X. Wang. Pathological examples of Lipschitz functions. PhD thesis, SFU, 1995.