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Abstract. We prove that the set of critical values of the distance
function from a submanifold of a complete Riemannian manifold is of
Lebesgue measure zero. In this way, we extend a result of Itoh and
Tanaka.

1. Introduction

A well-known and widely used property of critical values of differentiable
mappings is given by the Morse-Sard theorem [11, 15]: if a mapping is
Ck-smooth with k sufficiently big, then the set of its critical values has
the Lebesgue measure zero. In this article, we prove that the Morse-Sard
theorem holds when the smooth function is replaced by the distance func-
tion from a C∞-smooth submanifold in a complete C∞-smooth Riemannian
manifold of any dimension. Therefore we settle an open question asked by
Itoh and Tanaka [8] who proved this result in dimension less than 5. Our
proof is mainly based on the Yomdin’s method which relies on semialgebraic
sets, and on a result by Itoh and Tanaka [7], which established the Lipschitz
continuity of the distance function to the cut locus. Notice that our main
theorem can indeed be viewed as a corollary of a more general result about
the minimum of smooth functions on compact manifolds. In order to state
our results, we present the notion of critical points of the distance function
which is not smooth but only Lipschitz continuous.

Let N be a closed C∞-smooth submanifold of a complete C∞-smooth
Riemannian manifold M . The distance function dN (·) from the submanifold
N is defined on M by

∀p ∈ M,dN (p) := min{d(p, q) : q ∈ N}.
A unit speed geodesic segment γ : [0, a] → M emanating from N is called a
N -segment if t = dN (γ(t)) on [0, a]. A point p ∈ M \ N is called a critical
point of the distance function dN if for any unit tangent vector v at p, there
exists an N -segment γ : [0, dN (x)] → M through p such that the angle made
by v and −γ̇(dN (p)) is not greater than π

2 ; we denote by C(dN ) the set of
critical points of the distance function dN . Notice that this definition of
critical point is equivalent to say that the point p contains zero in its Clarke
generalized gradient ∂dN (p); we will return to this caracterization of critical
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points at the end of this section. In this article, we prove that the set of all
critical values of dN has the Lebesgue measure zero.

Theorem 1. Let N be a closed C∞-smooth submanifold of a complete C∞-
smooth Riemannian manifold M . Then the set of critical values of the
distance function from N is of Lebesgue measure zero.

Remark 1.1. Twenty years ago, Fu proved in [6] that the set of all critical
values of the distance function from a compact subset in R3 is of Lebesgue
measure zero. Following Whitney [17], S. Ferry [5] gave a counterexample
to this result in dimension greater than three.

Actually, we are able to improve Theorem 1 whenever the ambient man-
ifold is the Euclidean space Rn.

Theorem 2. Let N be a closed submanifold of dimension d and of class Ck

in Rn with k > 2d(n + 1). Then the set of critical values of the distance
function from N is of Lebesgue measure zero.

We do not know if the lower bound on k that we give in Theorem 2 is
optimal. Note that both theorems above imply that for almost all positive
numbers c < sup{dN (x)}, the set of all points whose distances from N are
c is a Lipschitz hypersurface of M . Actually, Theorem 1 is a consequence of
a more general result that we proceed to explain.

Let N be a compact smooth manifold and let φ : Rn × N → R be a
smooth function. Define the function f : Rn → R by

∀x ∈ R
n, f(x) := min

q∈N
{φ(x, q)}.

Though the function f is not smooth, we are able to define some notion of
critical points for f . Since the manifold N is compact, it is straightforward to
show that f is indeed Lipschitz continuous. Thus by Rademacher Theorem
(see [12]), it is differentiable almost everywhere in Rn. Denote by Df the
set of points where f is differentiable and define the generalized gradient of
f at x ∈ Rn as follows:

∀x ∈ R
n, ∂f(x) = co

{
lim
i→∞

∇f(xi) : xi −→i→∞ x, xi ∈ Df

}
,

where co{A} denotes the convex hull of A ⊂ Rn. This tool was introduced by
Clarke [2] in 1973. Since that time, a complete calculus has been developed,
one that extends all the theorems of the usual smooth calculus. A point
x ∈ Rn will be called a critical point of f if 0 ∈ ∂f(x), the critical values
of f are the images of its critical points, and we denote by C(f) the set
of critical points of the function f . Since the function f is defined as the
minimum of smooth function, we can compute its generalized gradients (we
refer the reader to [3, Exercise 9.13 p. 99] for such a result):

∀x ∈ R
n, ∂f(x) = co{∇xφ(x, q) : q ∈ argminf(x)}, (1)

where ∇xφ(x, q) denotes the derivative of φ in the first variable and where
argminf(x) := {q ∈ N : f(x) = φ(x, q)}. In the context of distance func-
tions, as we will see in the proof of Theorem 1, this formula will imply that
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both definitions of critical points coincide. In consequence, Theorem 1 will
be a corollary of the following.

Theorem 3. Let U be an open subsets of Rn and let N be a compact man-
ifold of class Ck and of dimension d. Let φ : U × N → R be a smooth
function of class Ck. Then the function f : U → R defined by

f(x) := min
q∈N

{φ(x, q)},
satisfies the following: If k > 2n + 2d(n + 1), then f(C(f)) has Lebesgue
measure zero.

As we said, our proofs are strongly based on the Yomdin’s proof of Sard
theorem; they demonstrate the power of the Yomdin’s method. Our paper is
organized as follows: in Section 2 we develop preliminaries on semialgebraic
sets, and we give the proofs of our results in Section 3.

Throughout this paper, R denotes the set of real numbers, ‖ · ‖ the Eu-
clidean norm of Rn, Bn the open ball {x ∈ Rn : ‖x‖ < 1}, Bn the closure of
B and Bn(x, r) = x + rBn (resp. Bn(x, r) = x + rBn) the ball (resp. the
closed ball) centered at x with radius r. Finally if A is a subset of Rn then
coA denotes its convex hull.

2. Preliminaries on semialgebraic sets

2.1. Definitions and properties. We refer the reader to [4, 10] for surveys
on semialgebraic sets and for the proofs of the propositions below. Moreover
we refer the interested reader to the excellent book [1] for a very detailed
study of semialgebraic sets.
A set A ⊂ Rn is called semialgebraic if it can be obtained by a finite num-
ber of the union and the intersection operations from the sets of the form
{f = 0}, {g > 0}, where f, g are polynomials on Rn. For given such a
representation of A we call its set-theoretic formula together with the di-
mension n of the ambient space and with the degrees of polynomials in it,
the diagram of this representation of A. Hence any constant which depends
only on the diagram of A can indeed be replaced by another constant which
depends only on the number and the degrees of polynomials defining A. We
give below three classical propositions on semialgebraic sets; we usually say
that these results are consequences of the Tarski-Seidenberg principle.

Proposition 2.1. The number of connected connected components of a
semialgebraic set is bounded by a constant which depends only on the number
and the degrees of polynomials which define that set.

Proposition 2.2. Let A ⊂ Rn be a semialgebraic set. Then the sets Ā, ∂A,
each connected component of A, π(A), where π denotes the projection of
Rn on Rk ⊂ Rn, are semialgebraic, and the diagram of each of these sets
depends only on the diagram of A.

Proposition 2.3. Let A ⊂ Rn be a semialgebraic set. If P1, · · · , Pq are q
polynomials on Rn of degree less or equal than d, then the set

{(P1(a), · · · , Pq(a)) : a ∈ A}
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is a semialgebraic set in Rq; its diagram depends only on the diagram of A,
d and q.

Our results will be strongly based on the following theorem; we refer the
reader to Yomdin’s papers [18] and [19] for the proof of it.

Theorem 4. For any semialgebraic set A ⊂ Rn inside the ball of a given
radius r, there is a constant K depending only on the number and degrees of
polynomials defining A, such that any x, y belonging to the same connected
component of A, can be joined by a connected semialgebraic curve s of length
not greater than Kr.

2.2. The semialgebraic case: quasi critical values. Let S be a positive
integer. Let A1, · · · , AS be S compact semialgebraic sets in Rm and let
P1(·, ·), · · · , PS(·, ·) be S polynomials on Rn × Rm. We define fP : Rn → R

by
∀x ∈ R

n, fP (x) := min {Ps(x, a) : a ∈ As, s ∈ {1, · · · , S}} .

Since the sets A1, · · · , AS are compact, the function fP is locally Lipschitz
on Rn. Let δ, µ be two positive constants, let us define the notion of (δ, µ)-
critical points of fP . For every x ∈ Rn, we denote by argminδ(x) the set of
couples (a, s) in Rm × R such that

s ∈ {1, · · · , S}, a ∈ As, and Ps(x, a) ≤ fP (x) + δ.

We will say that x ∈ Rn is a (δ, µ)-critical point of fP if the following
property is satisfied:

µB ∩ co
{
∇xPs(x, a) : (a, s) ∈ argminδ(x)

}
+= ∅.

We denote by Cδ,µ(fP ) the set of (δ, µ)-critical points of the function fP and
we prove the following result.

Theorem 5. Let A1, · · · , AS be S compact semialgebraic sets in Rm and
P1(·, ·), · · · , PS(·, ·) be S polynomials in Rn × Rm. Denote by KP > 0
some uniform Lipschitz constant of the polynomials P1, · · ·PS on the set
Bn × (A1 ∪ · · · ∪ AS) and denote by MP > 0 some upper bound of the
‖D2

xP1‖, · · · , ‖D2
xPS‖ on the same set1. Then for any constants δ, µ, r such

that 0 < δ, µ ≤ r ≤ 1, the set fP (Cδ,µ(fP ) ∩ Bn
r ) is included in the union of

N intervals of length

Krµ +
√

2MP Krδ + KP

√
2

MP

√
δ,

where the constants N and K depend only on the diagrams of the semialge-
braic sets A1, · · · , AS, on the integer S and of the degrees of the polynomials
P1(·, ·), · · · , PS(·, ·).
Proof.

Lemma 1. The set Cδ,µ(fP ) is semialgebraic; its diagram depends only
on the diagrams of A1, · · · , AS, on S and on the degrees of polynomials
P1(·, ·), · · · , PS(·, ·).

1Here if P (·, ·) is a polynomial on R
n
×R

m, then D2
xP denotes the second order deriv-

ative of the polynomial P in the first variable.
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Proof. By the Carathéodory theorem (cf. Theorem 17.1 in [13]), the set
Cδ,µ(fP ) can be described as the set of points x ∈ Rn which satisfy the two
following conditions:

(i) there exist s1, · · · , sn+1 in {1, · · · , S}, there exist a1, · · · , an+1 in Rm

such that,

∀i ∈ {1, · · · , n + 1}, ai ∈ Asi
,

and ∀s ∈ {1, · · · , S},∀a ∈ As, Psi
(x, ai) ≤ Ps(x, a) + δ;

(ii) there exists also (λ1, · · · , λn+1) in [0, 1] with
∑n+1

i=1 λi = 1 such that∥∥∥∥∥
n+1∑
i=1

λi∇xPsi
(x, ai)

∥∥∥∥∥
2

≤ µ2

Denote by E the set of tuples (x, s1, · · · , sn+1, a1, · · · , an+1, λ1, · · · , λn+1) in
Rn × {1 · · · , S}n+1 × (Rm)n+1 × [0, 1]n+1 such that

∀i ∈ {1, · · · , n + 1}, ai ∈ Asi
.

Since the sets A1, · · · , AS are semialgebraic, the set E can be represented as
a finite union (over all possible (n+1)-tuples (s1, · · · , sn+1)) of semialgebraic
sets (of the form Rn ×{s1}, · · · {sn+1}× As1

× · · · × Asn+1 × [0, 1]n+1), so it
is a semialgebraic set. Moreover its diagram depends only on the diagrams
of the A1, · · · , AS .
Let F be the set of tuples (x, s1, · · · , sn+1, a1, · · · , an+1, λ1, · · · , λn+1, s, a)
in Rn × {1 · · · , S}n+1 × (Rm)n+1 × [0, 1]n+1 × {1, · · · , S} × Rm such that

∀i ∈ {1, · · · , n + 1}, ai ∈ Asi
,

a ∈ As,

and ∃i ∈ {1, · · · , n + 1} s.t. Psi
(x, ai) > Ps(x, a) + δ.

By the same argument as above, since P1(·, ·), · · · , PS(·, ·) are all polynomi-
als, the set F is semialgebraic and its diagram depends only on data of the
problem.
Denote by π1 the projection from Rn×{1 · · · , S}n+1 × (Rm)n+1 × [0, 1]n+1 ×
{1, · · · , S} × Rm into Rn × {1 · · · , S}n+1 × (Rm)n+1 × [0, 1]n+1 which sup-
press the two last “coordinates” of the tuple, that is, which maps the tuple
(x, s1, · · · , sn+1, a1, · · · , an+1, λ1, · · · , λn+1, s, a) to the tuple (x, s1, · · · , sn+1,
a1, · · · , an+1, λ1, · · · , λn+1).
It is straightforward to show that the set E \π1(F ) corresponds to the set of
tuples (x, s1, · · · , sn+1, a1, · · · , an+1, λ1, · · · , λn+1) in Rn × {1 · · · , S}n+1 ×
(Rm)n+1 × [0, 1]n+1 which satisfy

∀i ∈ {1, · · · , n + 1}, ai ∈ Asi
, (2)

and ∀i ∈ {1, · · · , n + 1},∀s ∈ {1, · · · , S},∀a ∈ As, Psi
(x, ai) ≤ Ps(x, a) + δ,

which can also be written as,

∀i ∈ {1, · · · , n + 1}, Psi
(x, ai) ≤ fP (x) + δ. (3)

Therefore, if we denote by π2 the projection

π2 : R
n × {1 · · · , S}n+1 × (Rm)n+1 × [0, 1]n+1 −→ R

n

(x, s1, · · · , sn+1, a1, · · · , an+1, λ1, · · · , λn+1) 0−→ x
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then (by (2), (3)) the set Cδ,µ(fP ) corresponds to π2(E ∩ E ′) where the set
E ′ denotes the set of tuples (x, s1, · · · , sn+1, a1, · · · , an+1, λ1, · · · , λn+1) such
that

n+1∑
i=1

λi = 1,

and

∥∥∥∥∥
n+1∑
i=1

λi∇xPsi
(x, ai)

∥∥∥∥∥
2

≤ µ2.

Since the projection of a semialgebraic set is semialgebraic by Proposition
2.2, and since all inequalities that appear in (i)-(ii) are polynomial in the
coordinates of their variables, we deduce that Cδ,µ(fP ) is semialgebraic and
that its diagram depends only upon that of the sets A1, · · · , AS , on the
integer S and of the degrees of the polynomials P1(·, ·), · · · , PS(·, ·). !

Returning to the proof of Theorem 5. Denote by Di each connected
component of Cδ,µ(fP ) ∩ Bn

r and let Ei := fP (Di). Let x, y be two points
belonging to the same connected component of Di. By Theorem 4 there
exist some constant K > 0 independent on i and a curve S (parametrized
by arc-length) of length l ≤ Kr, joining x and y in Di. Set ρ := µ+

√
2MP δ.

Let 0 ≤ ti < ti+1 ≤ l such that ti+1 − ti = ρ−µ
MP

; we are going to prove that

fP (x(ti+1)) − fP (x(ti)) ≤ ρ(ti+1 − ti). (4)

We argue by contradiction; so let us assume that

fP (x(ti+1)) − fP (x(ti)) > ρ(ti+1 − ti).

Since x(ti) ∈ Cδ,µ(fP ), there exists (ā, s̄) ∈ argminδ(x(ti)) such that

〈x(ti+1) − x(ti),∇xPs̄(x(ti), ā)〉 ≤ µ‖x(ti+1) − x(ti)‖.
By Taylor formula at second order, we deduce

Ps̄(x(ti+1), ā) ≤ Ps̄(x(ti), ā) + 〈∇xPs̄(x(ti), ā), x(ti+1) − x(ti)〉
· · · + MP

2
‖x(ti+1) − x(ti)‖2,

which, since Ps̄(x(ti), ā) ≤ fP (x(ti)) + δ and fP (x(ti+1)) ≤ Ps̄(x(ti+1), ā)
implies,

fP (x(ti+1)) ≤ fP (x(ti)) + δ + µ‖x(ti+1) − x(ti)‖ +
MP

2
‖x(ti+1) − x(ti)‖2.

Remark that since the curve S is parametrized by arc-length, we have
‖x(ti+1) − x(ti)‖ ≤ (ti+1 − ti). Hence we deduce

fP (x(ti+1)) − fP (x(ti)) ≤ δ + µ(ti+1 − ti) +
MP

2
(ti+1 − ti)

2.

Since we are assuming fP (x(ti+1)) − fP (x(ti)) > ρ(ti+1 − ti), this implies

(ti+1 − ti)

[
ρ− µ − MP

2
(ti+1 − ti)

]
< δ. (5)

By definition of ρ and ti+1−ti, the left-hand side of (5) equals δ hence we get
a contradiction. We conclude that for every interval I = [ti, ti+1] ⊂ [0, l] of
length ρ−µ

MP
, we have fP (x(ti+1))−fP (x(ti)) ≤ ρ(ti+1−ti). In particular, this
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implies that on each subinterval of [0, l] of the form I = [0, t] with t = k ρ−µ
MP

and where k is a positive integer, we have

fP (x(t)) − fP (x(0)) ≤ ρt ≤ ρl ≤ ρKr.

The interval [0, l] on which the curve S is defined, can be partitionned into
an interval of length of the form k ρ−µ

MP
and another subinterval of length

less than ρ−µ
MP

. Since the polynomial P is Lipschitz with constant KP on

Bn × (A1 ∪ · · · ∪ AS), the function fP has the same Lipschitz constant on
Bn, hence we deduce that

fP (y) − fP (x) ≤ Krρ+ KP
ρ− µ

MP

= Krµ +
√

2MP Krδ + KP

√
2

MP

√
δ.

Since x and y are arbitrary points in Di and since the number of connected
components of Cδ,µ(fP )∩Bn

r depends only on the diagrams of A and P (·, ·),
we conclude. !

3. Proof of our results

3.1. Proof of Theorem 3. Fix some compact cube T in U and let us prove
that meas(f(C(f)∩T )) = 0. Without loss of generality, we can assume that
the n-cube T has sides of length 1.
By Whitney embedding’s theorem (see [16, Theorem 4.4 p. 63], without loss
of generality, we can assume that the manifold N is a compact submanifold
of Rm of dimension d and of class Ck. Therefore the function φ can be
smoothly extended to some neighbourhood V of N in Rm in such a way that
the function

φ : U × V −→ R

(x, q) 0−→ φ(x, q)

is a Ck-smooth function. Let V ′ ⊂ V be a compact neighbourhood of N ; for
the rest of the proof we denote by Kφ the Lipschitz constant of the function
φ on T × V ′ and we denote by R2

φ (resp. Rk
φ) the maximum of the norms

‖d(∇xφ)‖ (resp. ‖dkφ(x, q)‖) for x ∈ T and q ∈ V ′.
Furthermore, there exists a covering of N by a finite family of open sets
(Oi)i∈I in V ′ such that for each i ∈ I, Oi is included in some cube of side 1
and such that there exists a diffeomorphism Ψi : Cm → Oi of class Ck which
satisfies

Ψi(Cm ∩ (Rd × {0m−d})) = Oi ∩ N,

where Cm is some cube of dimension m in Rm with sides of length less or
equal than one (in fact for sake of simplicity, we can assume that Cm is
the open unit cube of Rm). From now we denote by KΨ the maximum of
Lipschitz constants of the mappings Ψi (i ∈ I) and by Rk

Ψ the maximum of
the ‖dkΨi‖ (i ∈ I) over Cm (without loss of generality, we can assume that
the Ψi’s are defined on some uniform compact set containing the cube Cm).
Let l be a positive integer, set r := 1

l . The cube Cd := Cm ∩ (Rd × {0m−d})
can be divided into ld cubes Dj (j = 1, · · · , ld) of side r. For each i ∈ I and
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each j, let Pi,j be the (k − 1)-Taylor polynomial2 of Ψi at the center of the
cube Dj. We have that for any x ∈ Dj ,

‖Ψi(x) − Pi,j(x)‖ ≤ Rk
Ψrk. (6)

By Proposition 2.3, for each i, j, the set Pi,j(Dj) is semialgebraic in Rm.
Moreover by definition of KΨ, there exists ci,j ∈ Pi,j(Dj) such that

Pi,j(Dj) ⊂ Bn (ci,j ,KΨr) . (7)

For sake of simplicity, let us set for each couple (i, j), Ei,j := Pi,j(Dj). The
cube T in U can be divided in smaller cubes as well. Thus there exists ln

cubes Tt (t = 1, · · · , ln) of side r which cover T ; denote by xt the center
of each cube Tt. For each (i, j, t), let P t

i,j(x, q) be the (k − 1)-th Taylor
polynomial of φ(·, ·) at the point (xt, ci,j). By (7) and by the definition of
Rk

φ, we have for every x ∈ Tt and for every q ∈ Ei,j,

|φ(x, q) − P t
i,j(x, q)| ≤ Rk

φKk
Ψrk (8)

‖∇xφ(x, q) − ∇xP
t
i,j(x, q)‖ ≤ Rk

φKk−1
Ψ rk−1 (9)

‖d(∇xφ)(x, q) − d(∇xP t
i,j)(x, q)‖ ≤ Rk

φKk−2
Ψ rk−2. (10)

In this way, we produced one family of polynomials {P t
i,j} (with i ∈ I,

j = 1, · · · , ld and t = 1, · · · , ln) of degree k − 1 and one family {Ei,j} (with
i ∈ I and j = 1, · · · , ld) of semialgebraic sets which are all defined by
polynomials of degree k − 1. Let us call a configuration, one (2n + 3)-
tuple of the form (i1, i2, · · · , in+1, j1, j2, · · · , jn+1, t) where t ∈ {1, · · · , ln},
where each is (s = 1, · · · , n + 1) belongs to I, and where each js (s =
1, · · · , n + 1) belongs to the set {1, · · · , ld}. We denote by S a configuration
which corresponds to some (2n + 3)-tuple of the form above. Notice that
there are exactly |I|n+1ld(n+1)ln such (2n+3)-tuples. We claim the following.

Lemma 2. There exist two positive constants M1,M2 such that if the point
x belongs to C(f)∩T , then there exists some configuration S such that x is

a (M1rk,M2rk−1)-critical point of the mapping

fS : Tt −→ R

x 0−→ min{P t
is,js

(x, qs) : qs ∈ Eis,js
, s ∈ {1, · · · , n + 1}}.

Moreover we have,

|f(x) − fS(x)| ≤ M1r
k. (11)

Proof. First, since x is in T , then there exists t ∈ {1, · · · , ln} such that x ∈
Tt. Moreover, since it is a critical value of f , by (1) there exist q̄1, · · · , q̄n+1

in the manifold N and λ1, · · · , λn+1 ∈ [0, 1]n+1 with
∑n+1

s=1 λs = 1 such that

n+1∑
s=1

λs∇xφ(x, q̄s) = 0, (12)

with f(x) = φ(x, q̄s), ∀s = 1, · · · , n + 1. (13)

2The function Ψi is defined from C
m

⊂ R
m into R

m, hence its Taylor polynomial
denotes the m-tuple with coordinates each Taylor polynomials of the coordinates of Ψi.



A MORSE-SARD THEOREM FOR THE DISTANCE FUNCTION 9

Thus each q̄s belongs to some set Oi with i ∈ I. This means that there
exist n + 1 couples (i1, j1), · · · , (in+1, jn+1) and n + 1 points xs in Djs

(s =
1, · · · , n + 1) such that for every s = 1, · · · , n + 1,

Ψis(xs) = q̄s.

Set for each s = 1, · · · , n + 1, let q̄′s := Pis,js
(xs). Each q̄′s belongs to Eis,js

and moreover by (6),

∀s = 1, · · · , n + 1, ‖q̄s − q̄′s‖ ≤ Rk
Ψrk. (14)

By (9)-(10) and (12) we obtain,∥∥∥∥∥
n+1∑
s=1

λs∇xP
t
is,js

(x, q̄′s)

∥∥∥∥∥
≤

∥∥∥∥∥
n+1∑
s=1

λs∇xP
t
is,js

(x, q̄s)

∥∥∥∥∥
+

∥∥∥∥∥
n+1∑
s=1

λs(∇xP t
is,js

(x, q̄′s) − ∇xP t
is,js

(x, q̄s))

∥∥∥∥∥
≤ Rk

φKk−1
Ψ rk−1 + (R2

φ + Rk
φKk−2

Ψ rk−2)Rk
Ψrk. (15)

Furthermore, by (8), (13) and (14), we have

fS(x) − f(x) = fS(x) − φ(x, q̄1)

≤ fS(x) − φ(x, q̄′1) + KφRk
Ψrk

≤ P t
i1,j1(x, q̄′1) − φ(x, q̄′1) + KφRk

Ψrk

≤ Rk
φKk

Ψrk + KφRk
Ψrk. (16)

On the other hand, if q = Pi,j(p) belongs to Ei,j then since Ψi(p) ∈ Oi ∩ N
we get by (8),

|P t
i,j(x, q) − φ(x,Ψi(p))| ≤ |P t

i,j(x, q) − φ(x, q)| + KφRk
Ψrk

≤ Rk
φKk

Ψrk + KφRk
Ψrk. (17)

Hence we deduce that for some q̄ = Pī,j̄(p̄) ∈ Eī,j̄ such that fS(x) = P t
ī,j̄(x, q̄),

we have

f(x) − fS(x) ≤ f(x) − P t
ī,j̄(x, q̄)

≤ φ(x,Ψī(p̄)) − P t
ī,j̄(x, q̄)

≤ Rk
φKk

Ψrk + KφRk
Ψrk. (18)

Consequently, by (13), (17) and (18), we obtain that for every s = 1, · · · , n+
1,

P t
is,js

(x, q̄s
′) ≤ [P t

is,js
(x, q̄s) − φ(x, q̄s)] + φ(x, q̄s)

≤ Rk
φKk

Ψrk + KφRk
Ψrk + f(x)

≤ fS(x) + 2(Rk
φKk

Ψ + KφRk
Ψ)rk. (19)

Set
M1 := 2(Rk

φKk
Ψ + KφRk

Ψ),
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and
M2 := Rk

φKk−1
Ψ + (R2

φ + Rφk
Kk−2

Ψ rk−2)Rk
Ψr.

By (15) and (19), we conclude that x is a (M1rk,M2rk−1)-critical point of
fS . Moreover by (16) and (18), we conclude that

|f(x) − fS(x)| ≤ M1r
k.

The proof of the lemma is complete. !

Returning to the proof of Theorem 3. Since the semialgebraic sets Ei,j

are all defined by a fix number of polynomials of degree k − 1, since the
polynomials P t

i,j have degree k − 1 and since their Lipschitz constants and

their C2 norms are uniform on T ×V ′ by (8)-(10) (let us call them KP and
MP ); by Theorem 5, we deduce that there exists two positive constants N
and K such that for each configuration S, f(C(fS) ∩ Tt) is included in N
intervals of length

Krµ +
√

2MP Krδ + KP

√
2

MP

√
δ,

where δ := M1rk and µ := M2rk−1. By (11) we conclude that for r small
enough, we have

meas(f(C(f) ∩ T )) ≤ |I|n+1ld(n+1)ln2KP

√
2M1

MP

1√
lk

≤ |I|n+12KP

√
2M1

MP
ln+d(n+1)− k

2 .

As l tends to infinity, since k > 2n + 2(n + 1)d , we deduce that

meas(f(C(f) ∩ T )) = 0,

which conclude the proof of Theorem 3.

3.2. Proof of Theorem 1. For each critical point p of the distance func-
tion dN (·) we will show that there exists an open neighbourhood U of p such
that the Lebesgue measure of dN (U ∩C(dN )) is zero. Then C(dN ) is covered
by a union of countably many subsets Ui (i ∈ N) such that the Lebesgue
measure of each subset dN (Ui ∩ C(dN )) is zero. Thus the claim of Theorem
1 is clear. Fix p ∈ C(dN ).

Since N is a C∞-smooth submanifold of M , there exists ε > 0 small
enough such that the set N ε := {x ∈ M : dN (x) = ε} is a C∞-smooth
hypersurface of M , and such that the distance function dN (·) is of class C∞

on the set {x ∈ M : dN (x) ∈ (0, 2ε)}. For such an ε > 0, if γ : [0, a] → M
is a N -segment joining N to p = γ(a) with a > ε, then the unit speed
geodesic segment γ̃ : [ε, a] → M is a N ε-segment joining N ε to p = γ(a). In
particular, this means that the distance functions dN (·) and dNε have the
same critical points and that

∀p ∈ {x ∈ M : dN (x) > ε}, dN (x) = dNε(x) + ε. (20)

By construction, N ε is a hypersurface with one normal vector at q ∈ N ε

given by ∇dN (q) of norm 1. Hence, by completeness of M , for every q ∈ N ε

there exists a unique unit speed geodesic γq(·) : [0,∞) → M starting at q
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with γ̇q(0) = ∇dN (q). The distance from N ε to the cut point on γq is given
by

ρ(q) := sup{t : γq|[0,t] is a N ε − segment}.
The function ρ : N ε → (0,∞] is called the distance function from N ε to
the cut locus. In [7], Itoh and Tanaka proved the following (we refer the
reader to [7] for the definition of the distance function to the cut locus ρ(·)
whenever N is an arbitrary submanifold of M).

Theorem 6. Let N be a C∞-smooth submanifold of a complete C∞-smooth
Riemannian manifold M and π : Uν → N the unit normal bundle of N .
Then for each v ∈ Uν with ρ(v) < ∞, ρ is locally Lipschitz around v.

By the discussion above p ∈ C(dε
N ). Define the set Q(p) ⊂ N by

Q(p) := {q ∈ N ε : d(p, q) = dNε(p)}.
The set Q(p) is clearly compact and nonempty. Hence by Theorem 6, there
exist some neighbourhood V of Q(p) in M such that ρ : V → (0,∞) is
Lipschitz continuous on V.
On the other hand, there exists a uniform normal neighbourhood W of p
and α > 0 such that W is contained in a geodesic ball of radius α around
each of its points (see for instance [9, Lemma 5.12 p. 78] for such a result).
In particular, this means that the function

d(·, ·) : W × W −→ R

(p1, p2) 0−→ d(p1, p2)

is of class C∞ on {(p1, p2) ∈ W × W : p1 += p2}.
Set d := dNε(p). For each element q of Q(p), ρ(q) = d. Moreover by
construction of N ε for each element q of Q(p), the unique unit speed geodesic
starting at q and orthogonal to N ε is minimizing on [0, d]. Hence there exists
some neighbourhood V ′ ⊂ V of Q(p) such that V ′ ∩ N ε is a compact C∞-
smooth hypersurface with boundary, such that the closure of the (d −α/2)-
front F (d−α/2) of N ε ∩V ′ (that is, the closure of the set of γq(d−α/2) for
any q ∈ V ′) is included in W, and such that

∀q ∈ V ′, ρ(q) ≥ d − α

4
. (21)

Consequently, by (21), the front F (d − α/2) is a compact C∞-smooth hy-
persurface with boundary of M , which is included in W. Moreover there
exists some neighbourhood U of p which does not intersect F (d − α/2) such
that for every p′ ∈ U ,

dN (p′) = ε + d − α

2
+ dF (d−α/2)(p

′).

We deduce that dN (·) and dF (d−α/2)(·) have locally the same critical points

and that dF (d−α/2)(·) is defined on U by

dF (d−α/2)(p
′) = min{d(p′, q) : q ∈ F (d − α/2)}.

Since the function d(·, ·) is of class C∞ outside the diagonal of W, we are
in the situation3 of Theorem 3. Moreover by [14, Proposition 4.8 p.108], we

3Here the front is a smooth compact submanifold with boundary of M . Theorem 3
holds in that case; basically no changes are required in the proof.
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conclude that both definitions of critical points of dF (d−α/2) coincide. Hence
we conclude.

3.3. Proof of Theorem 2. In the Euclidean case, by (1) we have,

∂dN (x) = co

{
x − q

‖x − q‖ : q ∈ N

}
.

Hence we deduce that x /∈ N is a critical point of dN (·) if and only if it is a
critical point of dN (·)2, that is if

0 ∈ co{x − q : q ∈ N}.
We conclude that

dN (C(dN )) = {√ρ : ρ ∈ d2
NC(d2

N )}.
Since the function ρ 0→ √

ρ is locally Lipschitz on (0,∞), it suffices to show
that the set of all critical values of dN (·)2 has Lebesgue measure zero.
As in the proof of Lemma 3, if we consider N as a submanifold of Rm (by
Whitney embedding’s theorem), we can approximate N by a finite union
of some algebraic sets Ei,j with i ∈ I and j ∈ {1, · · · , ld}. So if we call
configuration, some (2n + 2)-tuple (i1, · · · , in+1, j1, · · · , jn+1) with each is
(s = 1, · · · , n+1) belonging to I, and with each js (s = 1, · · · , n+1) belong-
ing to the set {1, · · · , n+1}, we enumerate |I|n+1ld(n+1) such configurations.
We have the following lemma.

Lemma 3. There exists two positive constants M1,M2 such that if x belongs
to C(dN (·)2) ∩ T , then there exists some configuration S such that x is a

(M1rk,M2rk−1)-critical point of the mapping

d2
S : T −→ R

x 0−→ min{‖x − qs‖2 : qs ∈ Eis,js
, s ∈ {1, · · · , n + 1}}.

Moreover we have,

|dN (x)2 − d2
S(x)| ≤ M1r

k. (22)

Proof. In this case the function φ(·, ·) is already a polynomial, hence we do
not have to approximate it by its Taylor polynomial. The calculations are
easier than in Lemma 2 above. The proof is let to the reader. !

Returning to the proof of Theorem 2. By the same arguments as in the
proof of Lemma 3, we deduce that there exists two constants N and K such
that for r small enough,

meas(d2
N (C(d2

N )) ∩ T ) ≤ |I|n+1ld(n+1)2KP

√
2M1

MP

1√
lk

≤ |I|n+12KP

√
2M1

MP
ld(n+1)− k

2 .

As l tends to infinity, since k > 2(n + 1)d , we deduce that

measf(C(f) ∩ T ) = 0,

which conclude the proof of Theorem 2.
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