# REFINEMENT OF THE BENOIST THEOREM ON THE SIZE OF DINI SUBDIFFERENTIALS 

Ludovic Rifford<br>Université de Nice-Sophia Antipolis, Laboratoire J.A. Dieudonné, Parc Valrose, 06108 Nice Cedex 02, France

(Communicated by Yacine Chitour)


#### Abstract

Given a lower semicontinuous function $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$, we prove that the set of points of $\mathbb{R}^{n}$ where the lower Dini subdifferential has convex dimension $k$ is countably $(n-k)$-rectifiable. In this way, we extend a theorem of Benoist(see [1, Theorem 3.3]), and as a corollary we obtain a classical result concerning the singular set of locally semiconcave functions.


1. Introduction. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ be any lower semicontinuous function, the lower Dini subdifferential of $f$ at $x$ in the domain of $f$ (denoted by $\operatorname{dom}(f))$ is defined by

$$
\partial^{-} f(x)=\left\{\zeta \in \mathbb{R}^{n} \left\lvert\, \liminf _{y \rightarrow x} \frac{f(y)-f(x)-\langle\zeta, y-x\rangle}{\|y-x\|} \geq 0\right.\right\} .
$$

As it is well-known, for every $x \in \operatorname{dom}(f)$, the set $\partial^{-} f(x)$ is a possibly empty convex subset of $\mathbb{R}^{n}$. Now let $k \in\{1, \cdots, n\}$ be fixed; we call $k$-dimensional Dini singular set of $f$, denoted by $\mathcal{D}^{k}(f)$, the set of $x \in \operatorname{dom}(f)$ such that $\partial^{-} f(x)$ is a nonempty convex set of dimension $k$. Moreover, we call Dini singular set of $f$, the set defined by

$$
\mathcal{D}(f):=\bigcup_{k \in\{1, \cdots, n\}} \mathcal{D}^{k}(f)
$$

Before stating our result, we recall that, given $r \in\{0,1, \cdots, n\}$, the set $C \subset \mathbb{R}^{n}$ is called a $r$-rectifiable set if there exists a Lipschitz continuous function $\phi: \mathbb{R}^{r} \rightarrow \mathbb{R}^{n}$ such that $C \subset \phi\left(\mathbb{R}^{r}\right)$. In addition, $C$ is called countably $r$-rectifiable if it is the union of a countable family of $r$-rectifiable sets. The aim of the present short note is to extend a result by Benoist, who proved that $\mathcal{D}(f)$ is countably $(n-1)$-rectifiable (see [1, Theorem 3.3]), and to obtain as a corollary a classical result on locally semiconcave functions. We prove the following result.
Theorem 1.1. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ be a lower semicontinuous function. Then for every $k \in\{1, \cdots, n\}$, the set $\mathcal{D}^{k}(f)$ is countably $(n-k)$-rectifiable.

Let us now recall briefly the notions of semiconcave and locally semiconcave functions; we refer the reader to the book [2] for further details on semiconcavity (see also [4]). Let $\Omega$ be an open and convex subset of $\mathbb{R}^{n}, u: \Omega \rightarrow \mathbb{R}$ be a continuous

[^0]function, and $C$ be a nonnegative constant. We say that $u$ is $C$-semiconcave or semiconcave on $\Omega$ if
\[

$$
\begin{equation*}
\mu u(y)+(1-\mu) u(x)-u(\mu x+(1-\mu) y) \leq \frac{\mu(1-\mu) C}{2}|x-y|^{2} \tag{1}
\end{equation*}
$$

\]

for any $\mu \in[0,1]$, and any $x, y \in \mathbb{R}^{n}$. Consider now an open subset $\Omega$ of $\mathbb{R}^{n}$; the function $u: \Omega \rightarrow \mathbb{R}$ is called locally semiconcave on $\Omega$, if for every $x \in \Omega$, there is an open and convex neighborhood of $x$ where $u$ is semiconcave. For every $k \in\{1, \cdots, n\}$, we call $k$-dimensional singular set of $u$, denoted by $\Sigma^{k}(u)$, the set of $x \in \Omega$ such that the Clarke generalized gradient of $u$ at $x$, denoted by $\partial u(x)$, is a convex set of dimension $k$ (see $[2,3]$ ). In fact, it is easy to deduce from (1), that for any locally semiconcave function $u: \Omega \rightarrow \mathbb{R}$ on an open subset $\Omega$ of $\mathbb{R}^{n}$, the sets $\partial u(x)$ and $\left(-\partial^{-} u(x)\right)$ coincide at any $x \in \Omega$ (see [2, Theorem 3.3.6 p. 59]). This implies that $\Sigma^{k}(u)=\mathcal{D}^{k}(-u)$ for every $k \in\{1, \cdots, n\}$ and yields the following re sult.

Corollary 1. Let $\Omega$ be an open subset of $\mathbb{R}^{n}$ and $u: \Omega \rightarrow \mathbb{R}$ be a locally semiconcave function. Then for every $k \in\{1, \cdots, n\}$, the set $\Sigma^{k}(u)$ is countably $(n-k)$ rectifiable.

Our proofs combine techniques developed by Benoist in [1] and Cannarsa, Sinestrari in [2].

Notations: Throughout this paper, we denote by $\langle\cdot, \cdot\rangle$ and $|\cdot|$, respectively, the Euclidean scalar product and norm in $\mathbb{R}^{n}$. For any $x \in \mathbb{R}^{n}$ and any $r>0$, we set $B(x, r):=\left\{y \in \mathbb{R}^{n}| | y-x \mid<r\right\}$ and $\bar{B}(x, r):=\left\{y \in \mathbb{R}^{n}| | y-x \mid \leq r\right\}$. Finally, we use the abbreviations $B_{r}:=B(0, r), \bar{B}_{r}:=\bar{B}(0, r), B:=B_{1}$, and $\overline{\bar{B}}:=\bar{B}_{1}$.
2. Preliminary results. Let $k \in\{1, \cdots, n-1\}$, we call $k$-planes the $k$-dimensional subspaces of $\mathbb{R}^{n}$. Given a $k$-plane $\Pi$, we denote by $\Pi^{\perp}$ its orthogonal complement in $\mathbb{R}^{n}$. Given $x \in \mathbb{R}^{n}$, we denote by $p_{\Pi}(x)$ and $p_{\Pi^{\perp}}(x)$ the orthogonal projections of $x$ onto $\Pi$ and $\Pi^{\perp}$ respectively. If $\Pi, \Pi^{\prime}$ are two given $k$-planes, we set

$$
d\left(\Pi, \Pi^{\prime}\right):=\left\|p_{\Pi}-p_{\Pi^{\prime}}\right\|,
$$

where $\|\cdot\|$ is the operator norm of a linear operator in $\mathbb{R}^{n}$. We notice that the set of $k$-planes, denoted by $\mathcal{P}^{k}$, equipped with the distance $d$, is a compact metric space. Hence it admits a dense countable family $\left\{\Pi_{i}^{k}\right\}_{i \geq 1}$. In the sequel, we denote by $B_{d}^{k}(\Pi, \epsilon)$ the set of $\Pi^{\prime} \in \mathcal{P}^{k}$ such that $d\left(\Pi, \Pi^{\prime}\right) \leq \epsilon$.

Given a compact set $K \subset \mathbb{R}^{n}$, we recall that the support function $\sigma_{K}$ of $K$ is defined by

$$
\forall h \in \mathbb{R}^{n}, \quad \sigma_{K}(h):=\max \{\langle w, h\rangle \mid w \in K\}
$$

We notice that if $\operatorname{conv}(K)$ denotes the convex hull of $K$, then we have

$$
\sigma_{\operatorname{conv}(K)}=\sigma_{K} .
$$

Moreover if $K, K^{\prime}$ are two compact sets such that $K \subset K^{\prime}$, then $\sigma_{K} \leq \sigma_{K^{\prime}}$.
Given a $k$-plane $\Pi$, we define the function $\bar{\sigma}_{\Pi}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
\forall h \in \mathbb{R}^{n}, \quad \bar{\sigma}_{\Pi}(h):=\max \{\langle w, h\rangle \mid w \in \Pi \cap \bar{B}\}
$$

The following result is useful for the proof of our theorem.
Lemma 2.1. Let $\Pi, \Pi^{\prime}$ be two $k$-planes and $h \in \mathbb{R}^{n}$, then we have

$$
\begin{equation*}
\left|\bar{\sigma}_{\Pi}(h)-\bar{\sigma}_{\Pi^{\prime}}(h)\right| \leq d\left(\Pi, \Pi^{\prime}\right)|h| . \tag{2}
\end{equation*}
$$

Proof. There is $w \in \Pi \cap \bar{B}$ such that $\bar{\sigma}_{\Pi}(h)=\langle w, h\rangle$. Set

$$
d:=\left|p_{\Pi^{\prime}}(w)\right| .
$$

Notice, that since $w \in \bar{B}$, we have necessarily $d \leq 1$, which means that $p_{\Pi^{\prime}}(w)$ belongs to $\Pi^{\prime} \cap \bar{B}$. Hence we have

$$
\begin{aligned}
\bar{\sigma}_{\Pi^{\prime}}(h) & \geq\left\langle p_{\Pi^{\prime}}(w), h\right\rangle \\
& =\left\langle p_{\Pi^{\prime}}(w)-p_{\Pi}(w), h\right\rangle+\langle w, h\rangle \\
& \geq-\left\|p_{\Pi^{\prime}}(w)-p_{\Pi}(w)\right\||h|+\bar{\sigma}_{\Pi}(h) \\
& \geq-\left\|p_{\Pi^{\prime}}-p_{\Pi}\right\||w||h|+\bar{\sigma}_{\Pi}(h) \\
& \geq-d\left(\Pi, \Pi^{\prime}\right)|h|+\bar{\sigma}_{\Pi}(h) .
\end{aligned}
$$

We deduce that $\bar{\sigma}_{\Pi^{\prime}}(h)-\bar{\sigma}_{\Pi}(h) \geq-d\left(\Pi, \Pi^{\prime}\right)\|h\|$. By symmetry, we obtain the inequality (2).
3. Proof of the theorem. Let $k \in\{1, \cdots, n\}$ be fixed. Let us choose a sequence $\left(v_{j}\right)_{j \geq 1}$ which is dense in $\mathbb{R}^{n}$ and let us define, for $\omega=(r, i, j, l) \in I:=\left(\mathbb{N}^{*}\right)^{4}$, the set $D_{\omega}$ constituted of elements $x$ belonging to the closed ball $\bar{B}_{r}$ such that $f(x) \leq r$, and such that there exist $\Pi \in B_{d}^{k}\left(\Pi_{i}, \frac{1}{4 r}\right), \rho \geq \frac{9}{r}$ and $\zeta \in \bar{B}\left(v_{j}, \frac{1}{2 r}\right)$ satisfying:

$$
\begin{equation*}
\forall y \in B\left(x, \frac{1}{l}\right), \quad f(y) \geq f(x)+\langle\zeta, y-x\rangle+\rho \bar{\sigma}_{\Pi}(y-x)-\frac{1}{2 r}|y-x| \tag{3}
\end{equation*}
$$

Lemma 3.1. We have the following inclusion:

$$
\mathcal{D}^{k}(f) \subset \bigcup_{\omega \in I} D_{\omega} .
$$

Proof. Denote by $e_{1}^{k}, \cdots, e_{k}^{k}$ the standard basis in $\mathbb{R}^{k}$ and choose a constant $\nu^{k}>0$ such that

$$
\begin{equation*}
\bar{B}_{\nu^{k}}^{k} \subset \operatorname{conv}\left( \pm e_{1}^{k}, \cdots, \pm e_{k}^{k}\right) \tag{4}
\end{equation*}
$$

where $\bar{B}_{\nu^{k}}^{k}$ denotes the closed ball centered at the origin with radius $\nu^{k}$ in $\mathbb{R}^{k}$. Let $x \in \mathcal{D}^{k}(f)$; there are $\zeta \in \mathbb{R}^{n}$ and $\mu>0$ such that the convex set $\partial^{-} f(x)$ contains the $k$-ball $\mathcal{B}$ defined as,

$$
\mathcal{B}:=\bar{B}(\zeta, \mu) \cap H
$$

where $H$ denotes the affine subspace of dimension $k$ which is spanned by $\partial^{-} f(x)$ in $\mathbb{R}^{n}$. Choose $r \geq 1$ such that $|x| \leq r, f(x) \leq r$, and $\mu \geq \frac{9}{\nu^{k} r}$. By (4), there are $k$ vectors $e_{1}, \cdots, e_{k} \in \mathbb{R}^{n}$ of norm 1 such that

$$
\begin{equation*}
\bar{B}_{\nu^{k} \mu} \cap \Pi \subset \mu E \subset \bar{B}_{\mu} \tag{5}
\end{equation*}
$$

where $\Pi$ and $E$ are defined by

$$
\Pi:=\operatorname{SPAN}\left\{e_{1}, \cdots, e_{k}\right\} \quad \text { and } \quad E:=\operatorname{conv}\left( \pm e_{1}, \cdots, \pm e_{k}\right) .
$$

For every $m \in\{1, \cdots, k\}$ and every $\epsilon= \pm 1$, the vector $\zeta+\mu \epsilon e_{m}$ belongs to $\mathcal{B}$, then there exists a neighborhood $\mathcal{V}_{m, \epsilon}$ of $x$ such that

$$
\forall y \in \mathcal{V}_{m, \epsilon}, \quad f(y) \geq f(x)+\left\langle\zeta+\mu \epsilon e_{m}, y-x\right\rangle-\frac{1}{2 r}|y-x| .
$$

Hence we deduce that for every $y \in \bigcap_{m \in\{1, \cdots, k\}, \epsilon= \pm 1} \mathcal{V}_{m}$, we have

$$
\begin{aligned}
f(y) \geq f(x)+\langle\zeta, y & -x\rangle \\
& +\max \left\{\mu\left\langle\epsilon e_{m}, y-x\right\rangle \mid m=1, \cdots, k, \epsilon= \pm 1\right\}-\frac{1}{2 r}|y-x|
\end{aligned}
$$

But by (5), we have for every $h \in \mathbb{R}^{n}$,

$$
\max \left\{\mu\left\langle\epsilon e_{m}, h\right\rangle \mid m=1, \cdots, k, \epsilon= \pm 1\right\}=\sigma_{\mu E}(h) \geq \sigma_{\left(\bar{B}_{\nu^{\mu}} \cap \Pi\right)}(h)=\nu^{k} \mu \bar{\sigma}_{\Pi}(h)
$$

We conclude easily by density of the families $\left\{\Pi_{i}^{k}\right\}_{i \geq 1},\left\{v_{j}\right\}_{j \geq 1}$.
Set for every $i \geq 1$, the cone

$$
K_{i}:=\left\{h \in \mathbb{R}^{n} \left\lvert\, \bar{\sigma}_{\Pi_{i}}(h) \leq \frac{1}{2}\|h\|\right.\right\} .
$$

We have the following lemma.
Lemma 3.2. For every $\omega=(r, i, j, l) \in I$ and every $x \in D_{\omega}$, we have

$$
D_{\omega} \cap \bar{B}\left(x, \frac{1}{l}\right) \subset\{x\}+K_{i} .
$$

Proof. Let $y \in D_{\omega} \cap \bar{B}\left(x, \frac{1}{l}\right)$ be fixed. There are $\Pi_{y} \in B_{d}^{k}\left(\Pi_{i}, \frac{1}{4 r}\right), \rho_{y} \geq \frac{9}{r}$ and $\zeta_{y} \in \bar{B}\left(v_{j}, \frac{1}{2 r}\right)$ such that

$$
\forall z \in \bar{B}\left(y, \frac{1}{l}\right), \quad f(z) \geq f(y)+\left\langle\zeta_{y}, z-y\right\rangle+\rho_{y} \bar{\sigma}_{\Pi_{y}}(z-y)-\frac{1}{2 r}|z-y|
$$

In particular, for $z=x$, this implies

$$
\begin{align*}
f(x) & \geq f(y)+\left\langle\zeta_{y}, x-y\right\rangle+\rho_{y} \bar{\sigma}_{\Pi_{y}}(x-y)-\frac{1}{2 r}|y-x| \\
& \geq f(y)+\left\langle\zeta_{y}, x-y\right\rangle-\frac{1}{2 r}|y-x| . \tag{6}
\end{align*}
$$

But since $x \in D_{\omega}$, there are $\Pi_{x} \in B_{d}^{k}\left(\Pi_{i}, \frac{1}{4 r}\right), \rho_{x} \geq \frac{9}{r}$ and $\zeta_{x} \in \bar{B}\left(v_{j}, \frac{1}{2 r}\right)$ such that

$$
\begin{equation*}
f(y) \geq f(x)+\left\langle\zeta_{x}, y-x\right\rangle+\rho_{x} \bar{\sigma}_{\Pi_{x}}(y-x)-\frac{1}{2 r}|y-x| \tag{7}
\end{equation*}
$$

Summing the inequalities (6) and (7), we obtain

$$
0 \geq\left\langle\zeta_{x}-\zeta_{y}, y-x\right\rangle+\rho_{x} \bar{\sigma}_{\Pi_{x}}(y-x)-\frac{1}{r}|y-x|
$$

But $\left|\zeta_{x}-\zeta_{y}\right| \leq \frac{1}{r}$, hence

$$
\rho_{x} \bar{\sigma}_{\Pi_{x}}(y-x) \leq \frac{2}{r}|y-x| .
$$

Which gives by (2)

$$
\begin{aligned}
\bar{\sigma}_{\Pi_{i}}(y-x) & =\left(\bar{\sigma}_{\Pi_{i}}(y-x)-\bar{\sigma}_{\Pi_{x}}(y-x)\right)+\bar{\sigma}_{\Pi_{x}}(y-x) \\
& \leq d\left(\Pi_{i}, \Pi_{x}\right)|y-x|+\frac{2}{\rho_{x} r}|y-x| \\
& \leq \frac{1}{4 r}|y-x|+\frac{1}{4}|y-x| \\
& \leq \frac{1}{2}|y-x| .
\end{aligned}
$$

Lemma 3.3. Let $\omega=(r, i, j, l) \in I$ and $\bar{x} \in D_{\omega}$ be fixed; set

$$
A:=p_{\Pi_{i}^{+}}\left(D_{\omega} \cap \bar{B}\left(\bar{x}, \frac{1}{2 l}\right)\right) .
$$

For every $y \in A$, there exists a unique $z=z_{y} \in \Pi_{i}$ such that

$$
y+z \in D_{\omega} \cap \bar{B}\left(\bar{x}, \frac{1}{2 l}\right) .
$$

Moreover, the mapping $\psi_{\omega}: y \in A \mapsto z_{y}$ is Lipschitz continuous.
Proof. First of all, for every $y \in A$, there is, by definition of $A$, some $x \in D_{\omega} \cap$ $\bar{B}\left(\bar{x}, \frac{1}{2 l}\right)$ such that $y=p_{\Pi_{i}^{\perp}}(x)$. Since $x-y \in \Pi_{i}$, this proves the existence of $z_{y}$. To prove the uniqueness, we argue by contradiction. Let $y \in A$, assume that there are $z \neq z^{\prime} \in \Pi_{i}$ such that $y+z$ and $y+z^{\prime}$ belong to $D_{\omega} \cap \bar{B}\left(\bar{x}, \frac{1}{2 l}\right)$. Since $y+z \in D_{\omega}$, by the previous lemma, we know that

$$
D_{\omega} \cap \bar{B}\left(y+z, \frac{1}{l}\right) \subset\{y+z\}+K_{i} .
$$

But since both $y+z$ and $y+z^{\prime}$ belong to $\bar{B}\left(\bar{x}, \frac{1}{2 l}\right), y+z^{\prime}$ belongs clearly to $D_{\omega} \cap$ $\bar{B}\left(y+z, \frac{1}{l}\right)$. Hence $y+z^{\prime} \in\{y+z\}+K_{i}$. Which means that $\left(y+z^{\prime}\right)-(y+z)=z^{\prime}-z$ belongs to $K_{i}$. But since $z^{\prime}-z \in \Pi_{i}$, we have that $\bar{\sigma}_{\Pi_{i}}\left(z^{\prime}-z\right)=\left|z^{\prime}-z\right|>\frac{1}{2}\left|z^{\prime}-z\right|$. We find a contradiction. Let us now prove that the map $\psi_{\omega}$ is Lipschitz continuous. Let $y, y^{\prime} \in A$ be fixed. By the proof above we know that $\psi_{\omega}(y)=x-y$ (resp. $\psi_{\omega}\left(y^{\prime}\right)=x^{\prime}-y^{\prime}$ ) where $x$ is such that $y=p_{\Pi_{i}^{\perp}}(x)$ (resp. $y=p_{\Pi_{i}^{\perp}}(x)$ ). Set $z:=$ $\psi_{\omega}(y), z^{\prime}:=\psi_{\omega}\left(y^{\prime}\right)$ and $h:=x^{\prime}-x$. Since $x=y+y$ and $x^{\prime}=y^{\prime}+z^{\prime}$ where $y, y^{\prime} \in \Pi_{i}^{\perp}$ and $z, z^{\prime} \in \Pi_{i}$, we have $|h|^{2}=\left|z^{\prime}-z\right|^{2}+\left|y^{\prime}-y\right|^{2}$. But $\bar{\sigma}_{\Pi_{i}}(h)=\left|z^{\prime}-z\right| \leq \frac{1}{2}|h|$. Hence we obtain that

$$
\left|z^{\prime}-z\right| \leq\left|x^{\prime}-x\right|=|h| \leq \frac{2}{\sqrt{3}}\left|y^{\prime}-y\right|
$$

The proof of the lemma is completed.
From the lemma above, for every $\omega=(r, i, j, l) \in I$ and every $\bar{x} \in D_{\omega}$, the map $\phi: A \rightarrow \mathbb{R}^{n}$ defined as,

$$
\forall y \in A, \quad \phi(y)=y+\psi_{\omega}(y),
$$

is Lipschitz continuous and satisfies

$$
D_{\omega} \cap \bar{B}\left(\bar{x}, \frac{1}{2 l}\right) \subset \phi(A) .
$$

Since $A \subset \Pi_{i}^{\perp}$, such a map can be extended into a Lipschitz continuous map from $\Pi_{i}^{\perp}$ into $\mathbb{R}^{n}$. Since $\Pi_{i}^{\perp}$ has dimension $(n-k)$, we deduce that the set $D_{\omega} \cap \bar{B}\left(\bar{x}, \frac{1}{2 l}\right)$ is $(n-k)$-rectifiable. The fact that any set $D_{\omega}$ can be covered by a finite number of balls of radius $\frac{1}{2 l}$ completes the proof of the theorem.

Acknowledgements. The author is very indebted to Joël Benoist for fruitful discussions.

## REFERENCES

[1] J. Benoist, The size of the Dini subdifferential, Proc. Amer. Math. Soc, 129 (2000), 525-530.
[2] P. Cannarsa and C. Sinestrari, "Semiconcave functions, Hamilton-Jacobi equations, and optimal control," Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser Boston Inc., Boston, MA, 2004.
[3] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern, and P.R. Wolenski, "Nonsmooth Analysis and Control Theory," Graduate Texts in Mathematics, vol. 178. Springer-Verlag, New York, 1998.
[4] L. Rifford, "Nonholonomic Variations: An Introduction to Sub-Riemannian Geometry," Monograph. In progress.

Received September 2006; revised May 2007.
E-mail address: rifford@math.unice.fr


[^0]:    2000 Mathematics Subject Classification. Primary: 49J52, 26B35; Secondary: 26BXX.
    Key words and phrases. Nonsmooth analysis, generalized differentials.

