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ABSTRACT. Given a lower semicontinuous function f : R™ — R U {400}, we
prove that the set of points of R™ where the lower Dini subdifferential has
convex dimension k is countably (n — k)-rectifiable. In this way, we extend
a theorem of Benoist(see [1, Theorem 3.3]), and as a corollary we obtain a
classical result concerning the singular set of locally semiconcave functions.

1. Introduction. Let f: R™ — RU {400} be any lower semicontinuous function,
the lower Dini subdifferential of f at  in the domain of f (denoted by dom(f)) is
defined by

o fla) = {C e R | e 0 S0 =Gy =) 0} |

ly — |
As it is well-known, for every xz € dom(f), the set 0~ f(z) is a possibly empty
convex subset of R”. Now let k € {1,---,n} be fixed; we call k-dimensional Dini

singular set of f, denoted by D*(f), the set of € dom(f) such that 9~ f(z) is a
nonempty convex set of dimension k. Moreover, we call Dini singular set of f, the
set defined by

p(f)= U D

ke{l,-- ,n}

Before stating our result, we recall that, given r € {0,1,--- ,n}, the set C C R™ is
called a r-rectifiable set if there exists a Lipschitz continuous function ¢ : R” — R"
such that C' C ¢(R"). In addition, C is called countably r-rectifiable if it is the
union of a countable family of r-rectifiable sets. The aim of the present short note is
to extend a result by Benoist, who proved that D(f) is countably (n — 1)-rectifiable
(see [1, Theorem 3.3]), and to obtain as a corollary a classical result on locally
semiconcave functions. We prove the following result.

Theorem 1.1. Let f : R™ — RU{+o0} be a lower semicontinuous function. Then
for every k € {1,---  n}, the set D*(f) is countably (n — k)-rectifiable.

Let us now recall briefly the notions of semiconcave and locally semiconcave
functions; we refer the reader to the book [2] for further details on semiconcavity
(see also [4]). Let © be an open and convex subset of R™, u : 2 — R be a continuous
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function, and C' be a nonnegative constant. We say that w is C-semiconcave or
semiconcave on 2 if
p(l—p)C 2

puly) + (1 = pu(@) —ulpe + (1 = ply) < =——F——lr —yI%, (1)
for any p € [0,1], and any z,y € R™. Consider now an open subset Q of R";
the function u : Q — R is called locally semiconcave on €, if for every x € ,
there is an open and convex neighborhood of x where u is semiconcave. For every
k€ {1,---,n}, we call k-dimensional singular set of u, denoted by X*(u), the set
of € Q such that the Clarke generalized gradient of u at z, denoted by du(z), is
a convex set of dimension k (see [2, 3]). In fact, it is easy to deduce from (1), that
for any locally semiconcave function u : 2 — R on an open subset €2 of R", the sets
Ou(z) and (=0~ u(x)) coincide at any x € Q (see [2, Theorem 3.3.6 p. 59]). This
implies that ¥*(u) = D¥(—u) for every k € {1,--- ,n} and yields the following re
sult.

Corollary 1. Let Q be an open subset of R™ and u : 2 — R be a locally semicon-
cave function. Then for every k € {1,--- n}, the set ¥*(u) is countably (n — k)-
rectifiable.

Our proofs combine techniques developed by Benoist in [1] and Cannarsa, Sines-
trari in [2].

Notations: Throughout this paper, we denote by (-,-) and | - |, respectively, the
Euclidean scalar product and norm in R”. For any x € R™ and any r > 0, we set
B(z,r):={y € R" | |y —z| <r} and B(z,r) := {y € R" | |y — z| < r}. Finally, we
use the abbreviations B, := B(0,7), B, :== B(0,r), B := By, and B := B;.

2. Preliminary results. Let k € {1,--- ,n—1}, we call k-planes the k-dimensional
subspaces of R”. Given a k-plane II, we denote by I its orthogonal complement
in R™. Given x € R", we denote by pr(x) and pp (x) the orthogonal projections
of x onto IT and II+ respectively. If II, I’ are two given k-planes, we set

d(ILII') = [lpn — pv |,

where || - || is the operator norm of a linear operator in R™. We notice that the
set of k-planes, denoted by P¥, equipped with the distance d, is a compact metric
space. Hence it admits a dense countable family {Hf}izl. In the sequel, we denote
by BX(I1, €) the set of I' € P* such that d(II,1I') < e.
Given a compact set K C R™, we recall that the support function ox of K is
defined by
Vh e R", ogk(h):=max{{w,h) | we K}.

We notice that if conv(K) denotes the convex hull of K, then we have

Oconv(kK) = 0K-

Moreover if K, K’ are two compact sets such that K ¢ K’, then ox < ok.
Given a k-plane II, we define the function 3 : R — R by

Vh € R", &n(h) :=max {(w,h) | w e IINB}.
The following result is useful for the proof of our theorem.
Lemma 2.1. Let II,II' be two k-planes and h € R™, then we have
o (h) — o (h)] < d(ILTT) |, (2)
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Proof. There is w € 1IN B such that ar(h) = (w, k). Set
d = |p (w)].

Notice, that since w € B, we have necessarily d < 1, which means that pr (w)
belongs to IT' N B. Hence we have

5’1‘[/(]1) > <pH’ (w)7 h>
<pH/ (w) — P1 (w)» h> + <w? h>

> = |lpw (w) — pr(w)|| |h| + ou(h)

> —|lpw — pull [wl|h] + &u(h)

> —d(ILT)|h| + on(h).
We deduce that om(h) — an(h) > —d(ILII')||A]|. By symmetry, we obtain the
inequality (2). O
3. Proof of the theorem. Let k € {1,--- ,n} be fixed. Let us choose a sequence

(v;)j>1 which is dense in R™ and let us define, for w = (r,4,5,1) € [ := (N*)*, the
set D,, constituted of elements x belonging to the closed ball B;. such that f () <,
and such that there exist I € B% (H 1 ), p> % and ( € B (vj, %) satisfying:

i Ay
1 _ 1
web (7). )2 @+ G- tonly-0) - ly-a. )
Lemma 3.1. We have the following inclusion:
D*(f) c | Do
wel
Proof. Denote by ek, --- e the standard basis in R¥ and choose a constant v* > 0
such that
Bl’fk C conv (j:e’f, e ,ieﬁ) , (4)

where B’;k denotes the closed ball centered at the origin with radius v* in R¥. Let
x € DF(f); there are ¢ € R™ and p > 0 such that the convex set 9~ f(z) contains
the k-ball B defined as,

B:= B(¢,p) N H,
where H denotes the affine subspace of dimension k£ which is spanned by 0~ f(x)
in R". Choose r > 1 such that |z <7, f(z) <7, and > —2-. By (4), there are k
vectors eq, -, e € R™ of norm 1 such that

B, NII C uE C By, (5)
where II and E are defined by
IT := SPAN{ey, -+ ,ex} and FE:= conv(tey,---,=xeg).

For every m € {1,--- ,k} and every e = &1, the vector { + pee,, belongs to B, then
there exists a neighborhood V,, . of z such that

Yy Ve F(9) 2 F() +{CH ey — ) — oy~

Hence we deduce that for every y €

fy) = f(@) +(Cy— )
+ max {plee,,y —x) | m=1,-- 7k,e::i:l}f2i7ﬁ|y—:r|.

me{l,- ,k},e=+£1 Vm7 we have
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But by (5), we have for every h € R™,
max {p(eem,h) |m=1,---  ke=+1} =o,p(h) > O’(Byk“nn)(h) = v uan(h).
We conclude easily by density of the families {II¥};51, {v;};>1. O
Set for every i > 1, the cone
Kio= {n e B" | om (1) < 5l0l}.

We have the following lemma.

Lemma 3.2. For every w = (r,4,5,1) € I and every x € D,,, we have

_ 1
D,NB (m, l) C {z} + K;.

Proof. Let y € D, N B (x, %) be fixed. There are II, € Bk (Hi, ﬁ) Py > % and
¢y € B (vj, 3-) such that
_ 1 _ 1
Vee By ), f)2 )+ {Gz—y)+pyom, (2 —y) = o |z —yl.
In particular, for z = z, this implies
_ 1
fl@) = fly)+ G —y) +pyon, (@ —y) = 5 ly — 2]
1
2 f)+ e —y) — 5 ly—al. (6)

But since x € D,,, there are II, € Bs (Hi,rlr) Pz > % and (, € B (vj, %) such
that
B 1
Fy) = f@) +(Cory — 2) + paom, (y — @) = 5|y — - (7)
Summing the inequalities (6) and (7), we obtain

_ 1
OZ <Ca:_Cyay_x>+p$UHw(y_$)_ ;|y—x\

But [¢; — ¢y < %, hence

B 2
pzom, (y —z) < ;Iy — .

Which gives by (2)

om(y—2x) = (om,(y—=x)—on,(y—x))+on,(y—)
2
< d(I, )y — x| + — |y — =
Pt
< 1\ |+1| |
—ly—z|+-ly—=
= 47‘y 4y
< 1| \
- — XI|.
< Sl
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Lemma 3.3. Let w = (r,4,j,1) € I and T € D, be fized; set

_ 1
wimme (o8 (5.2))

For every y € A, there exists a unique z = z, € Il; such that

_ 1

Moreover, the mapping v, : y € A z, is Lipschitz continuous.

Proof. First of all, for every y € A, there is, by definition of A, some x € D, N
B (i‘, %) such that y = P (). Since z —y € II; , this proves the existence of
zy. To prove the uniqueness, we argue by contradiction. Let y € A, assume that
there are z # 2’ € II; such that y 4+ z and y + 2 belong to D, N B (Z, ;). Since
y+ z € D, by the previous lemma, we know that

_ 1
DwﬁB<y—|—z,l> C{y+ =z} + K.

But since both y + z and y + 2’ belong to B (Z, ;), y + 2’ belongs clearly to D, N
B(y+z,%). Hence y+2' € {y+2}+K;. Which means that (y+2')—(y+z) = 2/ -z
belongs to K;. But since 2’ — z € II;, we have that o, (2’ — z) = [/ — 2| > ]2/ — 2|.
We find a contradiction. Let us now prove that the map v, is Lipschitz continuous.
Let y,3' € A be fixed. By the proof above we know that ¢, (y) = = — y (resp.
Yu(y') = 2’ —y') where z is such that y = pp. () (vesp. y = pp(2)). Set z =
Yo (y), 2" =Y, (y') and h := 2’ —x. Since * = y+y and 2’ = y'+2’ where y, y’ € II}-
and z,2’ € II;, we have |h|? = |2/ — 2> + |y — y|>. But om,(h) = [/ — 2| < £]Al.
Hence we obtain that

o =2 < Ja’ —a| = B] <

2 /
%W *Z/|~

The proof of the lemma is completed. O

From the lemma above, for every w = (r,4,5,1) € I and every z € D,,, the map
¢ : A — R" defined as,

Vye A, oY) =y+v.(y),

is Lipschitz continuous and satisfies
_ /1

Since A C II#, such a map can be extended into a Lipschitz continuous map from
I into R™. Since IT;- has dimension (n— k), we deduce that the set D, N B (Z, ;)
is (n — k)-rectifiable. The fact that any set D, can be covered by a finite number
of balls of radius % completes the proof of the theorem.
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