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Abstract

We adapt the backstepping method to provide a smooth
suboptimal stabilization of an harvested stock, when the
true optimal solution is bang-bang and the second varia-
tion method leads to a destabilizing controller.

1 Introduction

We consider the harvesting problem under yield control :

_x = f(x) � h ; x(0) = x0 (1)

The state variable x 2 [0;K] represents the biomass stock
and the control variable h 2 [0;H] the harvest. In this
study, the growth function f is the logistic law :

f(x) = rx
�
1�

x

K

�
; (2)

a model used quite often for biological modelling or popu-
lation dynamics. The coe�cients r and K are respectively

the intrinsic growth rate and the carrying capacity.

The problem of optimal exploitation, maximizing an

economical criterion :

Jx0(h) =

Z +1

0

e��t
�
p�

c

x(t)

�
h(t)dt (3)

has been intensively studied. Here � is the discount fac-

tor, p the unit price and c the harvesting cost. See for
instance [4] for the optimal \bang-bang" solution and [5]

for a neighbouring linear-quadratic approximation. Nev-

ertheless, the optimal harvest policy h�() always imposes
a certain value h�(x0) on the initial harvest, that may re-
quire an unrealistic jump from the current harvest. To
deal with this drawback, we propose studying the optimal

control of the derivative of the harvest instead of the har-
vest itself. This is equivalent to saying that we add an

\integrator" to the control system (1) :

�
_x = f(x) � h ; x(0) = x0
_h = u ; h(0) = h0

(4)

u 2 [�U;U ] is now our new control.

We �rst show that the optimal trajectories for the mod-
i�ed problem (x�(t); h�(t)) has the following characteris-
tics : over an initial period of time, a bang bang con-
trol drives (x�(t); h�(t)) to an equilibrium steady state
(xe; he). Thereafter (x�(t); h�(t) is held constant at
(xe; he).

A bang bang solution is not desirable in practice, due
to its lack of smoothness. For this reason we study subop-
timal solutions based on linear quadratic approximations
about the equilibrium and penalization of large deviations

of u. We show that for certain values of the parameters,
the linear approximation of the optimal strategy destabi-
lizes the system.

Finally we propose a family of global stabilizing laws to
be combined with the linear approximation, to provide a

strategy, which is almost optimal and that steers smoothly
the system towards the desired steady state.

2 The optimal solution

The original problem, in which h is treated as a control

variable was solved by Clark [4] with the help of the Max-
imum Principle.

Let (x�(t); h�(t)) be the optimal state. Over a time

interval [t1; t2] in which h�(t) is interior to [0;H], (x�; h�)
are governed by the Euler equation :

d

dt
(L _x) = Lx
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where L(x; _x) = e��t (p � c=x) (f(x) � _x). This has only

constant solution (x�(t); h�(t)) = (xe; he) where :

xe =
K
4

(�
c
pK

+ 1� �
r

�
+

r�
c
pK

+ 1� �
r

�2
+ 8c�

pKr

)

he = rxe
�
1� xe

K

�
The overall strategy is to drive (x�(t); h�(t)) to (xe; he)

as quickly as possible, via bang bang controls and keep it

there.

However, we have to be careful about the controllabil-
ity of the system. If we start for instance from a very

high level of harvesting, it will be impossible to drive the

stock to the equilibrium value : whatever is the control,

the stock will be exhausted in �nite time. Let T be the

trajectory de�ned by the following system :�
_x = �f(x) + h ; x(0) = 0
_h = U ; h(0) = 0

(5)

and the region R by the set of points in the plane (x; h)
above the projection of the graph of T on the plane (x; h).

We state without proof the following simple lemma :

Lemma 1 Let �;  : IR+
� IR �! IR be two locally Lips-

chitz continuous functions such that :

�(�; �) �  (�; �) 8(�; �):

If (y; z) is solution of the system

dy

d�
= �(�; y) ;

dz

d�
=  (�; z)

such that y(0) = z(0), then :

y(� ) � z(� ) 8� � 0:

If we start now with initial conditions (x0; h0) in the
region R and de�ne the control law for (4) :

u+ =

���� �U if h > 0
0 if h = 0

then, for any other control law u(:) with u(t) 2

[�U;U ]; 8t � 0, we have :

h+(t) � h(t); 8t � 0

where h+ and h are the harvest variables for the system

controlled respectively by u+ and u. From lemma 1 ap-

plied to the stock variables x and x+, we deduce that :

x(t) � x+(t); 8t � 0

It is easy to check that the trajectory (x+; h+) cannot
leave the region R because of uniqueness of solutions to

the Cauchy problem. Hence, there exists t+0 � 0 such

that :

x+(t) = 0 8t � t+0 =)

8u(:) 9t0 � 0 such that x(t) = 0; 8t � t0:

This proves that from any initial conditions in R, it is

impossible to attain the equilibrium if it is non-zero.

Now, we are going to show that all initial conditions

outside the region R can be driven to the equilibrium with

a \bang-bang" control. For this, we de�ne a control law

which depends on (x; h). Let T+U (resp. T�U ) be the

trajectories corresponding to the dynamics :8>><
>>:

_x = �f(x) + h

_h =

���� �U (+U ) if h > 0 (h < H)
0 else

x(0) = xe; h(0) = he

(6)

These are in fact the trajectories in reversed time leaving
from (xe; he). So, we can now more precise our control
law :

�u =

����������

+U on the right side of T�U ; T+U
�U on the left side
+U on T�U
�U on T+U
0 if h = 0 or h = H

Assume that the initial condition belongs to the left side
of T+U and T�U . The control law �u allows h to decrease
until the trajectory reaches T+U or the fh = 0g axis. By
uniqueness of solutions to the Cauchy problem, it can-
not reaches T�U during this �rst stage of the trajectory.
In this latter case, the state remains on the x axis (while
�u = 0) until it reaches T+U (notice that under the parabola
of equilibriums _x > 0). Then, the equilibrium is eventu-
ally attained, the state remaining on T+U (see �gure).

If the initial condition belongs to the right side, a similar
behavior occurs reaching T�U or the fh = Hg line. Af-
ter a possible stay on this latter one, the equilibrium is

eventually attained along T�U .

Now, we are going to show that this closed-loop control
law is the fastest strategy for reaching the equilibrium

from initial conditions outside the region R.

Proposition 2 For any initial condition (x0; h0) outside
R, the control law �u drives the state to the equilibrium

(xe; he) in least time.

Proof Let T0 be the time when the trajectory arrives

in (xe; he). Suppose that there exists another control u(:)
such that there exists T < T0 ; (x(t); h(t)) = (xe; he) t �

T . Consider for instance the case where (x0; h0) is in the
left side of T�U and T+U , then :

8t � 0 ; u(t) 2 [�U;+U ]) 8t � 0 ; h(t) � �h(t):

Hence from the lemma 1, x(t) � �x(t) ; 8t � 0. And there
exists T1 � T such that x(t1) < xe, so x(T1) � x(t1) <

2
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xe. Contradiction.

So, the proposed control law forces the state to approach
the equilibrium state (xe; he) as rapidly as possible. As
with the classical formulation where we control h directly
[4], we expect that this control is a good suboptimal strat-
egy.

Conjecture The most-rapid approach to the equilibrium

(xe; he) is also optimal with respect to the cost function J .

Unfortunately, the \bang-bang" strategy is a discon-
tinuous feedback which, in practice, may lead to inces-
sant switchings about the equilibrium if the controller is
not able to react promptly when the state reaches the set
point. For this reason we are looking for suboptimal but
smooth feedbacks.

3 The Linear-Quadratic Approxi-

mation

As bang-bang solutions are not practicable, a very well-
known approximationmethod consist in adding to the cri-
terion a quadratic penalty involving the control :

�J(u) =

Z +1

0

e��t
��

p�
c

x(t)

�
h(t)�

�

2
u(t)2

�
dt

(� is a positive parameter, supposed to be small) and then

study a �rst order approximation of the control law about
the equilibrium point.

According to [3], the discounted optimal problem is

equivalent to an autonomous one, with the Hamiltonian :

�H = ��x (f(x) � h) + ��hu+
�
p �

c

x

�
h �

�

2
u2 � � �V

where (��x; ��v) is the adjoint vector and �V the value func-
tion for the cost function �J . The theory of the second

variation consists then of solving the linear-quadratic aux-

iliary problem :

max
�u()

Z
1

0

�
�x(t)
�h(t)

�t � �Hxx
�Hxh

�Hxh
�Hhh

� �
�x(t)
�h(t)

�
�
�

2
�u(t)2 dt

subject to :

8>><
>>:

_�x = fx(xe):�x� �h
_�h = �u

�x(0) = �x0 = x0 � xe
�h(0) = �h0 = h0 � he

The adjoint equations of �H at the equilibrium (xe; he)
give : (

��xe = p�
c

xe
��he = 0

Writing

A =
h
fx(xe) �1

0 0

i
=

�
r
�
1� 2xe

K

�
�1

0 0

�

B =
h
0
1

i

Q =

�
�Hxx(xe; he) �Hxh(xe; he)
�Hxh(xe; he) �Hhh(xe; he)

�

=

"
�2 r

K
��xe � 2che

x3e

c
x2ec

x2e
0

#

R = ��

we seek a quadratic value function �V (�x0; �h0) =
(�x0 �h0)P (�x0 �h0)

t solution of the auxiliary problem. P

should then be a symmetric matrix, solution of the Ric-
cati algebraic equation :

P (A��=2I2)+(A��=2I2)
tP +PBR�1BtP �Q = 0 (7)

where I2 stands for the identity matrix in IR2. The theory

of the second variation a�rms that the maximal solution
of (7), if it exists, is the value function of the auxiliary
problem and that the linear feedback �u� = K(�x �h)t =
�R�1BtP (�x �h)t is the �rst order approximation of the

nonlinear optimal control (see [2]).

We remark that this is not exactly the usual linear reg-

ulator problem because the matrix Q is not de�nite pos-
itive. Consider the Hamiltonian matrix associated with

the linear quadratic approximation :

H =

�
A � �=2I2 BR�1Bt

�Q �At + �=2I2

�
;

As det(H) is a fourth order polynom in �,H is non singular

only for some isolated values of � and we have the following
result :

Proposition 3 If H is not singular and � 6= 2(1 �

2xe=K), the optimal solution of the auxiliary problem ex-

ists and is de�ned by the unique symmetric matrix P so-

lution of the Riccati equation (7) such that A � �=2I2 �
BR�1BtP is Hurwitz.

3
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Proof The theory of the algebraic Riccati equation (see

[1]) provides :

1. Characterization of the solutions by the one-to-one

correspondence between the solutions P of (7) and

the H-invariant subspaces Sp

�
I2
P

�
(Th. 3.1.1

p. 55).

2. Existence of at least one symmetric solution P , if the

pair [A��=2I2; B] is controllable, � 6= 0 and H is non

singular (Th. 2.32 p. 39).

3. Uniqueness of a symmetric solution P� (resp. P+)
such that all eigenvalues of A � �=2I2 � BR�1BtP�
(resp. A � �=2I2 � BR�1BtP+) have non-positive

(resp. non-negative) real part, if furthermore the mul-

tiplicities of the pure imaginary eigenvalues of H are

all even (Cor. 3.2.3 and 3.2.4 p. 66).

4. Comparison of solutions : P� � P+ is de�nite non-
negative (Th. 32.3 p. 69).

C[A� �=2I2; B]
=

�
0 �1
1 0

�
for all �: So, the pair

[A� �=2I2; B] is always controllable.

As H is similar to �H, the spectrum of H is symmetric
with respect to the imaginary axis. So, if H has any pure
imaginary eigenvalue, by Cayley-Hamilton theorem, there
should exists a real number � such that (H2+�2I4)

2 = 0.
But :

[ 1 0 0 0 ] (H2 + �2I4)
2

2
664

1
0
0
0

3
775 = 0 )

�
r

�
1�

2xe
K

� �=2

��2

+ �2 = 0:

So, excepted for the particular value �� = 2(1 � 2xe=K),
(7) has exactly two solutions P� and P+ such that
A � �=2I2 � BR�1BtP� (resp. A� �=2I2 �BR

�1BtP+)

have non-positive (resp. non-negative) real part eigenval-

ues.

As the restriction ofH to the invariant subspace Sp

�
I2
P

�
is exactly A��=2I2�BR

�1BtP and H does not have any

pure imaginary eigenvalues, A� �=2I2 �BR
�1BtP� and

A��=2I2�BR
�1BtP+ are respectively stable and unsta-

ble matrices.

Now, bearing in mind that we study a maximization prob-
lem, we must choose P� since this is associated with higher
cost. This gives a stabilizing feedback law.

Unfortunately, there is no guarantee that the feedback

�u� = �R�1BtP�(�x �h)t, which stabilizes the pair [A �
�=2I2; B] stabilizes also [A;B] and furthermore stabilizes

asymptotically the system (4) for nonzero values of �.

Proposition 4 If c < Kp=2, for large enough values of �,

the linear approximation feedback �u� = �R�1BtP (�x �h)t

destabilizes the system (4).

Proof Let study the behavior of the system for very

large values of � :8><
>:

lim
�!+1

xe =
c

p

lim
�!+1

he =
rc

p

�
1�

c

Kp

� practicable if

c < Kp:

If P =
1

�

�
a b

b d

�
, the Riccati equation (7) is equivalent

to the system of equations :

2a
�

�
r
�
1� 2xe

K

�
� �=2

�
�

b2

��2
+ 2 r

K
(p � c

xe
) + 2 che

x3e
= 0

�
a
�
+ b

�
r
�
1� 2xe

K

�
� b� bd

��2
�

c
x2e

= 0

�2 b
�
� d� d2

��
= 0

So P �
1

�

2
64 2

rp2(1� c
Kp )

c
p
c

p

c
0

3
75 and A��=2I2�BR

�1BtP

is stable as P ! 0 when � ! +1.

But A � BR�1BtP �

2
64 r

�
1� 2c

Kp

�
�1

p

��c
0

3
75 is unstable

when c < Kp=2.
So, by continuity of the spectrum of the eigenvalues of A�
BR�1BtP with respect to �, we conclude that for � large
enough, the linear approximation feedback destabilizes the
system, which is not practicable at all.

4 Global stabilization

In this section, we drop, for simplicity, the notation � for

relative coordinates of the dynamical system (4) to the

economical equilibrium (xe; he).

We look now for a smooth perturbation (vx; vh) of the

linear-quadratic law that globally asymptotically stabi-
lizes the nonlinear system :8>><

>>:
_x = f(x) � h ; x(0) = x0
_h = kxx+ khh ; h(0) = h0
_kx = vx ; kx(0) = Gx

_kh = vh ; kh(0) = Gh

(8)

towards (x; h) = (0; 0), where G = (Gx Gh) is the feed-

back gain of the linear quadratic approximation explicited

in proposition 4.

If such a smooth stabilizing law exists, it drives asymp-
totically the system towards the equilibrium whatever are
the initial conditions, with the same �rst order approxi-
mation of the control h than the linear-quadratic method

4
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at initial time, which is the most important weight in the

cost with large �.

The determination of such a stabilizing law is inspired by

the backstepping methods (see [6]). As we study a be-
havior near the equilibrium, we assume in the following

that the trajectories generated by these control laws do

not violate the biological constraints of the problem :

x 2 [0;K] and h 2 [0;H]:

Proposition 5 Let V be a strict controlled Lyapunov

function for the system _x = f(x) � h (s.t.s. V is de�nite

positive and there exists a feedback �(:) such that Vx(f��)

is de�nite negative). If f=x, Vx=x and �=x are all proper

smooth functions, then

v̂x = �=x� kx(kh � �h) + (kx � �x)f=x

�c2 (kx + �xf=x + Vx=x+ c1�=x)

v̂h = 1 + kx � �x � kh(kh � �h)

�c2(kh � �xf � c1)

with �(x; h) = �c1(h � �(x)) + �x(x)(f(x) � h) + Vx(x)
and c1; c2 positive constants, is a smooth control for the

the system (8) that globally asymptotically stabilizes (x; h).

Proof Let write�
z1 = h� �(x)
z2 = kxx+ khh � �(x; h)

and show that :

W (x; h; kx; kh) = V (x) +
z21
2
+
z22
2

is a strict controlled Lyapunov function for the system (8).

_z1 = kxx+ kh(� + z1) � �x(f � � � z1)
= z2 � c1z1 + Vx

_z2 = (kx � �x)(f � � � z1) + (kh � �h)(kxx
+kh(� + z1)) + vxx+ vh(� + z1)

Then :

_W = Vx(f � �) � Vxz1 + z1 _z1 + z2 _z2
= Vx(f � �) � c1z

2
1 + z1z2 + z2 _z2

= Vx(f � �) � c1z
2
1 + z2fx[��=x+ vx

+kx(kh � �h) + f=x(kx � �x)]

+(� + z1)[1 + vh � (kx � �x)
+kh(kh � �h)]g

But the function � can be factorized as follows :

� = x [�xf=x+ Vx=x+ c1�=x]� (� + z1)[�xf + c1]:

So, when vx = v̂x and vh = v̂h, we have :

_W = Vx(f(x) � �(x)) � c1(h� �(x))2 � c2z
2
2

which is de�nite negative in (x; h). So (x(t); h(t)) con-
verges towards (0; 0) by Lasalle theorem.

5 Application

At initial time, the system is typically at an equilibrium

point (x0; h0) of the dynamics (1), optimal for certain val-

ues of the parameters (p; c; �) but due to some evolution
of the market, the parameters might change and another

set point (xe; he) is desired, to be reached in a smooth

manner.

For the logistic law (2), the dynamics in coordinates

with origin at a given equilibrium point (xe; he) is :

_x = rx

�
1�

x+ 2xe

K

�
� h:

Then, for any positive constant c0, the functions :

V (x) =
x2

2
; �(x) = f(x) + c0x;

ful�ll the conditions of proposition 5.

We present here simulations for large values of �, for
which the method exposed in the previous section is rel-
evant. It turns out that, due to the degree of freedom on
the parameters c0; c1 and c2, we can scope with the state
constraints when the linear-quadratic approximated solu-
tion cannot.

Example : For (r;K; c; p; �) = (1; 1; 0:4; 1;30), the op-
timal equilibrium is : (xe; he) = (0:4079; 0:2415). With
bounds on the harvest and its derivativeH = 0:5, U = 0:2,
we obtain the following results :
1. Initial condition with x0 = xe+0:2 and (c0; c1; c2) =

(50; 0:5; 0:1) (see �gures 1 and 2).

Strategy J � 10�2 maxRe(�) remark

Bang-bang 33

LQ (� = 0:001) 30 �0:17 const. viol.

LQ (� = 0:055) 28 0:042 unstable

Back-stepping 29

2. Initial condition with x0 = xe�0:15 and (c0; c1; c2) =

(70; 0:25; 0:05) (see �gures 3 and 4).

Strategy J � 10�2 maxRe(�) remark

Bang-bang -28

LQ (� = 0:001) -33 �0:18 const. viol.

LQ (� = 0:04) -34 0:023 unstable

Back-stepping -33

We begin with � small (�gures 1 and 3) to compute the

linear-quadratic approximation gain G. Unfortunately,
the LQ controller violates the constraints on h. However,

the \back-stepping" controller is initialized with this value

5
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Figure 1: x0 � xe = 0:2; � = 0:001:
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Figure 2: x0 � xe = 0:2; � = 0:055:
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Figure 3: x0 � xe = �0:15; � = 0:001:
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Figure 4: x0 � xe = �0:15; � = 0:04:

of the gain but we choose (empirically) the coe�cient c0,
c1 and c2 such that the trajectory does not violate the
constraint. If we increase the penalty � on the control u
to force the LQ controller to respect the constraints (�g-
ures 2 and 4), we �nd a destabilizing controller with worse
performance than the back-stepping one.
The choice of the parameters c0, c1 and c2 and their in-

uence on the trajectory and the cost is not yet well un-
derstood but will be the matter of a future work.
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