Regularity of solutions to Hamilton-Jacobi equations for Tonelli Hamiltonians

Ludovic Rifford

Université Nice Sophia Antipolis & Institut Universitaire de France

Nonlinear Analysis and Optimization Royal Society, London, 2015

In honour of Francis and Richard

Other students and friends

Thierry Champion, Cyril Imbert, Olivier Ley and Victor Filipe Martins-Da Rocha

Other students and friends

Thierry Champion, Cyril Imbert, Olivier Ley and Victor Filipe Martins-Da Rocha

Other students and friends

Thierry Champion, Cyril Imbert, Olivier Ley and Victor Filipe Martins-Da Rocha

Sébastien Cambier and Nicolas Deniau

Setting

Let M be a smooth compact manifold of dimension $n \ge 2$ be fixed. Let $H : T^*M \to \mathbb{R}$ be a Hamiltonian of class C^2 satisfying the following properties:

(H1) Superlinear growth:

For every $K \geq 0$, there is $C^*(K) \in \mathbb{R}$ such that

$$H(x,p) \geq K|p| + C^*(K) \qquad \forall (x,p) \in T^*M.$$

(H2) **Uniform convexity:** For every $(x, p) \in T^*M$, $\frac{\partial^2 H}{\partial p^2}(x, p)$ is positive definite.

Setting

Let M be a smooth compact manifold of dimension $n \ge 2$ be fixed. Let $H : T^*M \to \mathbb{R}$ be a Hamiltonian of class C^2 satisfying the following properties:

(H1) Superlinear growth:

For every $K \geq 0$, there is $C^*(K) \in \mathbb{R}$ such that

$$H(x,p) \geq K|p| + C^*(K) \qquad \forall (x,p) \in T^*M.$$

(H2) **Uniform convexity:** For every $(x, p) \in T^*M$, $\frac{\partial^2 H}{\partial p^2}(x, p)$ is positive definite.

For sake of simplicity, we may assume that $M = \mathbb{T}^n$, that is that $H : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ satisfies (H1)-(H2) and is periodic with respect to the x variable.

A first result of regularity

We are concerned with the regularity properties of **viscosity solutions** of the **Hamilton-Jacobi equation**

 $H(x, d_x u) = 0 \qquad \forall x \in M \qquad (HJ).$

A first result of regularity

We are concerned with the regularity properties of **viscosity solutions** of the **Hamilton-Jacobi equation**

 $H(x, d_x u) = 0 \qquad \forall x \in M$ (HJ).

Theorem (Rifford 2007)

Let $H : T^*M \to \mathbb{R}$ be a Hamiltonian of class C^2 satisfying (H1)-(H2) and $u : M \to \mathbb{R}$ be a viscosity solution of (HJ). Then the function u is semiconcave on M. Moreover, the singular set of u is nowhere dense in M and u is $C_{loc}^{1,1}$ on the open dense set $M \setminus \overline{\Sigma(u)}$.

A first result of regularity

We are concerned with the regularity properties of **viscosity solutions** of the **Hamilton-Jacobi equation**

 $H(x, d_x u) = 0 \qquad \forall x \in M$ (HJ).

Theorem (Rifford 2007)

Let $H : T^*M \to \mathbb{R}$ be a Hamiltonian of class C^2 satisfying (H1)-(H2) and $u : M \to \mathbb{R}$ be a viscosity solution of (HJ). Then the function u is semiconcave on M. Moreover, the singular set of u is nowhere dense in M and u is $C_{loc}^{1,1}$ on the open dense set $M \setminus \overline{\Sigma(u)}$.

Reminder:

$$\Sigma(u) = \left\{ x \in M \, | \, u \text{ not diff. at } x
ight\}$$

Semiconcave functions



A function $u: M \to \mathbb{R}$ is called **semiconcave** if it can be written locally (in charts) as

$$u = \mathbf{g} + \mathbf{h},$$

the sum of a smooth function g and a concave function h with a universal upper bound on the C^2 -norm of g.

Graph of a semiconcave function

Characterization of viscosity solutions

Let $L: TM \to \mathbb{R}$ be the Tonelli Lagrangian associated with H by Legendre-Fenchel duality, that is

$$L(x,v) := \max_{p \in T_x^*M} \Big\{ p \cdot v - H(x,p) \Big\} \quad \forall (x,v) \in TM.$$

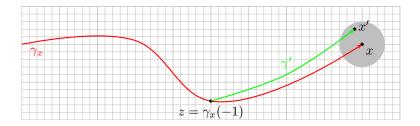
Proposition

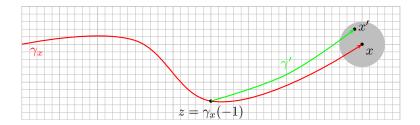
The function $u : M \to \mathbb{R}$ is a viscosity solution of (HJ) iff: (i) For every Lipschitz curve $\gamma : [a, b] \to M$, we have

$$u(\gamma(b)) - u(\gamma(a)) \leq \int_a^b L(\gamma(t), \dot{\gamma}(t)) ds.$$

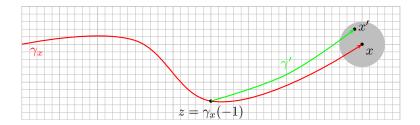
(ii) $\forall x \in M$, there is a curve $\gamma_x : (-\infty, 0] \to M$ such that

$$u(\gamma(b)) - u(\gamma(a)) = \int_a^b L(\gamma(t), \dot{\gamma}(t)) ds \quad \forall a < b < 0.$$

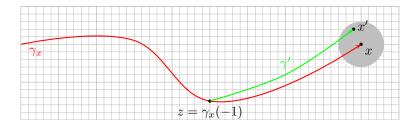




$$u(x) = u(z) + \int_{-1}^{0} L(\gamma_x(t), \dot{\gamma}_x(t)) dt$$



$$egin{aligned} u(x) &= u(z) + \int_{-1}^0 Lig(\gamma_x(t),\dot{\gamma}_x(t)ig) \,dt \ u(x') &\leq u(z) + \int_{-1}^0 Lig(\gamma'(t),\dot{\gamma}'(t)ig) \,dt \end{aligned}$$



$$u(x) = u(z) + \int_{-1}^{0} L(\gamma_x(t), \dot{\gamma}_x(t)) dt$$
$$u(x') \le u(z) + \int_{-1}^{0} L(\gamma'(t), \dot{\gamma}'(t)) dt$$

Thus

$$u(x') \leq u(x) + \int_{-1}^{0} L(\gamma'(t), \dot{\gamma}'(t)) - L(\gamma_x(t), \dot{\gamma}_x(t)) dt$$

Rest of the proof

We can repeat the previous argument to show that for every $x \in M$, every semi-calibrated curve $\gamma_x : (-\infty, 0] \to M$ and every t > 0, the graph of u at $\gamma_x(-t)$ admits a support function of class C^2 from below.

Rest of the proof

We can repeat the previous argument to show that for every $x \in M$, every semi-calibrated curve $\gamma_x : (-\infty, 0] \to M$ and every t > 0, the graph of u at $\gamma_x(-t)$ admits a support function of class C^2 from below. Moreover, we can show that

for every $x \in M$, there is a one-to-one correspondence between the limiting differential of u at x,

 $d^*u(x) := \{ \lim du(x_k) \, | \, x_k \to x, u \text{ diff at } x_k \} \, ,$

and the set of semi-calibrated curves.

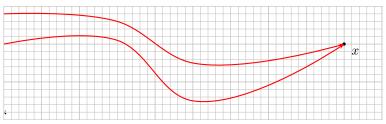
Rest of the proof

We can repeat the previous argument to show that for every $x \in M$, every semi-calibrated curve $\gamma_x : (-\infty, 0] \to M$ and every t > 0, the graph of u at $\gamma_x(-t)$ admits a support function of class C^2 from below. Moreover, we can show that

for every $x \in M$, there is a one-to-one correspondence between the limiting differential of u at x,

$$d^*u(x) := \{ \lim du(x_k) \, | \, x_k \to x, u \text{ diff at } x_k \} \, ,$$

and the set of semi-calibrated curves.



Let $M = \mathbb{T}^2$ and $H : T^*M \to \mathbb{R}$ be an Hamiltonian of class C^2 satisfying (H1)-(H2). Let $u : M \to \mathbb{R}$ be a solution of (HJ) of class C^1 without singularities. Then u is $C^{1,1}$

Let $M = \mathbb{T}^2$ and $H : T^*M \to \mathbb{R}$ be an Hamiltonian of class C^2 satisfying (H1)-(H2). Let $u : M \to \mathbb{R}$ be a solution of (HJ) of class C^1 without singularities. Then u is $C^{1,1}$ and C^2 almost everywhere.

Let $M = \mathbb{T}^2$ and $H : T^*M \to \mathbb{R}$ be an Hamiltonian of class C^2 satisfying (H1)-(H2). Let $u : M \to \mathbb{R}$ be a solution of (HJ) of class C^1 without singularities. Then u is $C^{1,1}$ and C^2 almost everywhere.

We call **singularity** any equilibrium of the characteristic flow of u, that is any $x \in M$ such that

$$\frac{\partial H}{\partial p}(x,d_xu)=0.$$

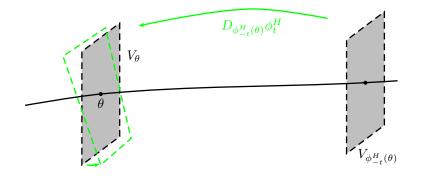
Let $M = \mathbb{T}^2$ and $H : T^*M \to \mathbb{R}$ be an Hamiltonian of class C^2 satisfying (H1)-(H2). Let $u : M \to \mathbb{R}$ be a solution of (HJ) of class C^1 without singularities. Then u is $C^{1,1}$ and C^2 almost everywhere.

We call **singularity** any equilibrium of the characteristic flow of u, that is any $x \in M$ such that

$$\frac{\partial H}{\partial p}(x,d_x u)=0.$$

Remark

Note that $u C^1 \Rightarrow u C^{1,1}$ and the graph of $x \mapsto d_x u$ is a Lipschitz Lagrangian submanifold of T^*M which is invariant by the Hamiltonian flow ϕ_t^H .



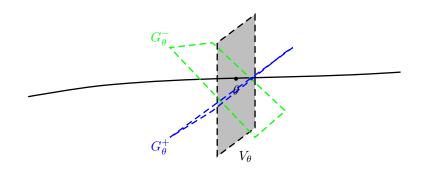
For every $\theta = (x, d_x u) \in T^*M$ and every $t \in \mathbb{R}$, we define the Lagrangian subspace $G_{\theta}^t \subset T_{\theta}T^*M$ by $(V_{\theta} \simeq \{0\} \times \mathbb{R}^2)$

$$G_{\theta}^{t} := \left(\phi_{t}^{H}\right)_{*} \left(V_{\phi_{-t}^{H}(\theta)}\right).$$

Definition

For every $\theta = (x, d_x u)$, we define the positive and negative Green bundles at θ as

$$G^+_{ heta} := \lim_{t o +\infty} G^t_{ heta}$$
 and $G^-_{ heta} := \lim_{t o -\infty} G^t_{ heta}$



The following properties hold:

• For every $\theta = (x, d_x u), \ G_{\theta}^- \preceq G_{\theta}^+$.

The following properties hold:

- For every $\theta = (x, d_x u), \ G_{\theta}^- \preceq G_{\theta}^+$.
- The function $x \in M \mapsto G^+_{(x,d_xu)}$ is upper-semicontinuous.

The following properties hold:

- For every $\theta = (x, d_x u)$, $G_{\theta}^- \preceq G_{\theta}^+$.
- The function $x \in M \mapsto G^+_{(x,d_x u)}$ is upper-semicontinuous.
- The function $x \in M \mapsto G^-_{(x,d_xu)}$ is lower-semicontinuous.

The following properties hold:

- For every $\theta = (x, d_x u)$, $G_{\theta}^- \preceq G_{\theta}^+$.
- The function $x \in M \mapsto G^+_{(x,d_xu)}$ is upper-semicontinuous.
- The function $x \in M \mapsto G^-_{(x,d_xu)}$ is lower-semicontinuous.
- So, if $G^+_{(x,d_xu)} = G^-_{(x,d_xu)}$ for some x then both functions are continuous at x.

The following properties hold:

- For every $\theta = (x, d_x u)$, $G_{\theta}^- \preceq G_{\theta}^+$.
- The function $x \in M \mapsto G^+_{(x,d_xu)}$ is upper-semicontinuous.
- The function $x \in M \mapsto G^-_{(x,d_xu)}$ is lower-semicontinuous.
- So, if $G^+_{(x,d_xu)} = G^-_{(x,d_xu)}$ for some x then both functions are continuous at x.
- For every $x \in M$, we have

$$G^{-}_{(x,d_{x}u)} \preceq \mathcal{H}ess_{\mathcal{C}}u(x) \preceq G^{+}_{(x,d_{x}u)},$$

where $\mathcal{H}ess_{C}u(x)$ denotes the Clarke generalized Hessian of u at x.

Thank you for your attention !!