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Setting

Let M be a smooth manifold of dimension n ≥ 2 be fixed. Let
H : T ∗M → R be a Hamiltonian of class C 2 satisfying the
following properties:

(H1) Superlinear growth:
For every K ≥ 0, there is C ∗(K ) ∈ R such that

H(x , p) ≥ K |p|+ C ∗(K ) ∀(x , p) ∈ T ∗M .

(H2) Uniform convexity:
For every (x , p) ∈ T ∗M , ∂2H

∂p2 (x , p) is positive definite.

(H3) Uniform boundedness: For every R ≥ 0, we have

A∗(R) := sup {H(x , p) | ‖p‖ ≤ R} <∞.

Assumption (H3) holds if M is compact.
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A first result of regularity

We are concerned with the regularity properties of viscosity
solutions of the Hamilton-Jacobi equation

H(x , dxu) = 0 on M (HJ).

Theorem (LR ’07)

Let H : T ∗M → R be a Hamiltonian of class C 2 satisfying
(H1)-(H2) and u : M → R be a viscosity solution of (HJ).
Then the function u is locally semiconcave on M. Moreover,
the singular set of u is nowhere dense in M and u is C 1,1

loc on

the open dense set M \ Σ(u).

Reminder:

Σ(u) =
{

x ∈ M | u not diff. at x
}
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An instructive example
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Characterization of viscosity solutions

Let L : TM → R be the Tonelli Lagrangian associated with H
by Legendre-Fenchel duality, that is

L(x , v) := max
p∈T∗

x M

{
p · v − H(x , p)

}
∀(x , v) ∈ TM .

Proposition

The function u : M → R is a viscosity solution of (HJ) iff:

(i) For every Lipschitz curve γ : [a, b]→ M, we have

u
(
γ(b)

)
− u
(
γ(a)

)
≤
∫ b

a

L
(
γ(t), γ̇(t)

)
ds.

(ii) ∀x ∈ M, there is a curve γx : (−T , 0]→ M such that

u
(
γ(b)

)
− u
(
γ(a)

)
=

∫ b

a

L
(
γ(t), γ̇(t)

)
ds ∀a < b < 0.
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Semiconcavity

b

b

b

γx x

x′

z = γx(−1)

γ′

u(x) = u(z) +

∫ 0

−1

L
(
γx(t), γ̇x(t)

)
dt

u(x ′) ≤ u(z) +

∫ 0

−1

L
(
γ′(t), γ̇′(t)

)
dt

Thus

u(x ′) ≤ u(x) +

∫ 0

−1

L
(
γ′(t), γ̇′(t)

)
− L
(
γx(t), γ̇x(t)

)
dt

Ludovic Rifford Regularity of weak KAM solutions



Limiting differentials and semi-calibrated curves

We can repeat the previous argument to show that for every
x ∈ M , every semi-calibrated curve γx : (−Tx , 0]→ M and
every t ∈ (0,T ), the graph of u at γx(−t) admits a support
function of class C 2 from below.
Moreover, we can show that for every x ∈ M , there is a
one-to-one correspondence between the limiting differential
of u at x ,

d∗x u := {lim dxk u | xk → x , u diff at xk} ,
and the set of semi-calibrated curves (p = ∂L

∂v
(γ̇(0))).

b

x
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The classical Dirichlet problem

Let M be an open set in Rn with compact boundary of class
C k,1 and H : Rn → R of class C k,1 (with k ≥ 2) satisfying
(H1)-(H3) and such that H(x , 0) < 0 for every x ∈ M̄ .

Proposition

The continuous function u : M̄ → R given by

u(x) := inf

{∫ t

0

L
(
γ(s), γ̇(s)

)
ds

}
,

where the infimum is taken among Lipschitz curves
γ : [0, t]→ M̄ with γ(0) ∈ ∂Ω, γ(t) = x is the unique
viscosity solution to the Dirichlet problem{

H
(
x , du(x)

)
= 0 ∀x ∈ M ,

u(x) = 0 ∀x ∈ ∂M .
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The classical Dirichlet problem (picture)

M

b

minimizing

b
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A Sard theorem

Let u be a solution to the previous Dirichlet problem. We call
critical point of u, any x ∈ M such that 0 ∈ ∂xu. Here, ∂x
denotes the Clarke generalized differential of u at x , i.e.

∂xu := conv (d∗x u) .

We denote by C(u) the set of critical points of u in M .

Theorem (LR ’07)

If k ≥ 2n2 + 4n + 1, then the set u(C(u)) has Lebesgue
measure zero.
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The distance function to the cut-locus

We call cut locus associated with this Dirichlet problem the
set

cut(u) := Σ(u).

The distance functon to the cut locus is defined as

τcut(x) := min {t ≥ 0 | exp(x , t) ∈ cut(u)} ,
for every x ∈ ∂M .

Theorem (Itoh-Tanaka ’01, Li-Nirenberg ’05)

The function tcut is Lipschitz.

Since cut(u) = {exp(x , tcut(x) | x ∈ ∂M}, we get

Corollary

The set cut(u) has a finite (n − 1)-dimensional Hausdorff
measure.
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Weak KAM solutions

Let M be a smooth compact manifold of dimension n ≥ 2 be
fixed. Let H : T ∗M → R be a Hamiltonian of class C k , with
k ≥ 2. We call critical value of H the constant c = c[H]
defined as

c[H] := inf
u∈C1(M;R)

{
max
x∈M

{
H
(
x , du(x)

)}}
.

Theorem (Fathi ’90s)

There is a viscosity solution u : M → R to the critical HJ
equation

H(x , dxu) = c[H] on M .

It is called a critical or a weak KAM solution of H.
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The Aubry set

Denote by S(H) the set of weak KAM solutions for H . The
Aubry set may be defined as

Ã(H) =
⋃

u∈S(H)

Graph(du).

Proposition

For every x ∈ M and every p ∈ d∗x u there is a semi-calibrated
curve γ = γx ,p : (−∞, 0]→ M such that

∂L

∂v
(γ̇(0)) = (x , p).

It satisfies
lim

t→−∞
dist (γ(t),A(H)) = 0.
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Two results of regularity

Theorem (Bernard ’07)

Assume that the Aubry set is exactly one hyperbolic periodic
orbit, then any critical solution is ”smooth” in a neighborhood
of A(H).

Theorem (Arnaud ’08)

Let M = T2 and H : T ∗M → R be an Hamiltonian of class C 2

satisfying (H1)-(H2). Let u : M → R be a solution of (HJ) of
class C 1 without singularities. Then u is C 1,1 and C 2 almost
everywhere.

We call singularity any equilibrium of the characteristic flow
of u, that is any x ∈ M such that ∂H

∂p
(x , dxu) = 0.
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Green bundles I

b

θ

Vθ

b

VφH
−t

(θ)

DφH
−t

(θ)φ
H
t

For every θ = (x , dxu) ∈ T ∗M and every t ∈ R, we define the
Lagrangian subspace G t

θ ⊂ TθT
∗M by (Vθ ' {0} × R2)

G t
θ :=

(
φH
t

)
∗

(
VφH−t(θ)

)
.
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Green bundles II

Definition

For every θ = (x , dxu), we define the positive and negative
Green bundles at θ as

G +
θ := lim

t→+∞
G t
θ and G−θ := lim

t→−∞
G t
θ

b

θ

Vθ

G−
θ

G+
θ
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Green bundles III

The following properties hold:

For every θ = (x , dxu), G−θ � G +
θ .

The function x ∈ M 7→ G +
(x ,dxu) is upper-semicontinuous.

The function x ∈ M 7→ G−(x ,dxu) is lower-semicontinuous.

So, if G +
(x ,dxu) = G−(x ,dxu) for some x then both functions

are continuous at x .

For every x ∈ M , we have

G−(x ,dxu) � HessCu(x) � G +
(x ,dxu),

where HessCu(x) denotes the Clarke generalized Hessian
of u at x .
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Thank you for your attention !!
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