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Setting

Let M be a smooth compact manifold of dimension n ≥ 2 be
fixed. Let H : T ∗M → R be a Hamiltonian of class C k , with
k ≥ 2, satisfying the following properties:

(H1) Superlinear growth:
For every K ≥ 0, there is C ∗(K ) ∈ R such that

H(x , p) ≥ K |p|+ C ∗(K ) ∀(x , p) ∈ T ∗M .

(H2) Uniform convexity:
For every (x , p) ∈ T ∗M , ∂2H

∂p2 (x , p) is positive definite.
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Critical value of H

Definition

We call critical value of H the constant c = c[H] defined as

c[H] := inf
u∈C1(M;R)

{
max
x∈M

{
H
(
x , du(x)

)}}
.

In other terms, c[H] is the infimum of numbers c ∈ R such
that there is a C 1 function u : M → R satisfying

H
(
x , du(x)

)
≤ c ∀x ∈ M .

Note that

min
x∈M
{H(x , 0)} ≤ c[H] ≤ max

x∈M
{H(x , 0)} .
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Critical subsolutions of H

Definition

We call critical subsolution any Lipschitz function
u : M → R such that

H
(
x , du(x)

)
≤ c[H] for a.e. x ∈ M .

Let L : TM → R be the Tonelli Lagrangian associated with H
by Legendre-Fenchel duality, that is

L(x , v) := max
p∈T∗

x M

{
p · v − H(x , p)

}
∀(x , v) ∈ TM .

A Lipschitz function u : M → R is a critical subsolution if and
only if

u
(
γ(b)

)
− u
(
γ(a)

)
≤
∫ b

a

L
(
γ(t), γ̇(t)

)
ds + c (b − a),

for every Lipschitz curve γ : [a, b]→ M .
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Ludovic Rifford Mañé’s Conjecture from the control viewpoint



The Fathi-Siconolfi-Bernard Theorem

Theorem (Fathi-Siconolfi, 2004; Bernard, 2007)

The set SS1(H) (resp. SS1,1(H)) of critical subsolutions of
class C 1 (resp. C 1,1) is nonempty.

As a consequence, the set of x ∈ M such that

u critical subsolution of class C 1

=⇒ H
(
x , du(x)

)
= c[H]

is nonempty.
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Projected Aubry set and Aubry set
Definition and Proposition

The projected Aubry set of H defined as

A(H) =
{

x ∈ M |H
(
x , du(x)

)
= c[H], ∀u ∈ SS1(H)

}
,

is compact and nonempty.

Any critical subsolution u is C 1 at any point of A(H) and
satisfies H

(
x , du(x)

)
= c[H],∀x ∈ A(H).

For every x ∈ A(H), the differential of a critical
subsolution at x does not depend on u.

The Aubry set of H defined by

˜A(H) :=
{(

x , du(x)
)
| x ∈ A(H), u crit. subsol.

}
⊂ T ∗M

is compact, invariant by φH
t , and is a Lipschitz graph over

A(H).
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Back to the critical value

Proposition

The critical value of H satisfies

c[H] = min
u∈C1(M;R)

{
max
x∈M

{
H
(
x , du(x)

)}}
.

Proposition

The critical value of H satisfies

c[H] = − inf

{
1

T

∫ T

0

L
(
γ(t), γ̇(t)

)
dt

}
,

where the infimum is taken over the Lipschitz curves
γ : [0,T ]→ M such that γ(0) = γ(T ).
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Examples

Let V : M → R be a potential of class C 2 and
H : T ∗M → R be the Hamiltonian defined by

H(x , p) =
1

2
|p|2 + V (x) ∀(x , p) ∈ T ∗M .

Then c[H] = maxM V and

Ã(H) =
{

(x , 0) |V (x) = max
M

V
}
.

Let X be a smooth vector field on M and L : TM → R
defined by

LX (x , v) =
1

2
|v − X (x)|2 ∀(x , v) ∈ TM .

Then c[H] = 0 and the projected Aubry set always
contains the set of recurrent points of the flow of X .
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The Mañé Conjecture

Conjecture (Mañé, 96)

For every Tonelli Hamiltonian H : T ∗M → R of class C k (with
k ≥ 2), there is a residual subset (i.e., a countable intersection
of open and dense subsets) G of C k(M) such that, for every
V ∈ G, the Aubry set of the Hamiltonian HV := H + V is
either an equilibrium point or a periodic orbit.

Strategy of proof:

Density result.

Stability result.
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Mañé’s density Conjecture

Proposition (Contreras-Iturriaga, 1999)

Let H : T ∗M → R be a Hamiltonian of class C k (with k ≥ 3)
whose Aubry set is an equilibrium point (resp. a periodic
orbit). Then, there is a smooth potential V : M → R, with
‖V ‖C k as small as desired, such that the Aubry set of HV is a
hyperbolic equilibrium (resp. a hyperbolic periodic orbit).

Conjecture (Mañé’s density conjecture)

For every Tonelli Hamiltonian H : T ∗M → R of class C k (with
k ≥ 2) there exists a dense set D in C k(M) such that, for
every V ∈ D, the Aubry set of the Hamiltonian HV is either
an equilibrium point or a periodic orbit.
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The C 1 closing Lemma

Theorem (Pugh, 1967)

Let M be a smooth compact manifold. Suppose that some
vector field X has a nontrivial recurrent trajectory through
x ∈ M and suppose that U is a neighborhood of X in the C 1

topology. Then there exists Y ∈ U such that Y has a closed
orbit through x.

Theorem (Pugh-Robinson, 1983)

Let (N , ω) be a symplectic manifold of dimension 2n ≥ 2 and
H : N → R be a given Hamiltonian of class C 2. Let X be the
Hamiltonian vector field associated with H and φH the
Hamiltonian flow. Suppose that X has a nontrivial recurrent
trajectory through x ∈ N and that U is a neighborhood of X
in the C 1 topology. Then there exists Y ∈ U such that Y is a
Hamiltonian vector field and Y has a closed orbit through x.
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Strategy of proof

Given a ”Tonelli” Hamiltonian, we need to find:

a potential V : M → R small,

a periodic orbit γ : [0,T ]→ M (γ(0) = γ(T )),

a Lipschitz function v : M → R,

in such a way that the following properties are satisfied:

HV

(
x , dv(x)

)
≤ 0 for a.e. x ∈ M ,

(⇒ c[HV ] ≤ 0)

∫ T

0
LV

(
γ(t), γ̇(t)

)
dt = 0.

(⇒ c[HV ] ≥ 0)
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A connecting problem

Let be given two solutions(
xi , pi

)
: [0, τ ] −→ Rn × Rn i = 1, 2,

of the Hamiltonian system{
ẋ(t) = ∇pH

(
x(t), p(t)

)
ṗ(t) = −∇xH

(
x(t), p(t)

)
.

Question

Can I add a potential V to the Hamiltonian H in such a way
that the solution of the new Hamiltonian system{

ẋ(t) = ∇pH
(
x(t), p(t)

)
ṗ(t) = −∇xH

(
x(t), p(t)

)
−∇V (x(t)),

starting at
(
x1(0), p1(0)

)
satisfies(

x(τ), p(τ)
)

=
(
x2(τ), p2(τ)

)
?
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ṗ(t) = −∇xH

(
x(t), p(t)

)
.

Question

Can I add a potential V to the Hamiltonian H in such a way
that the solution of the new Hamiltonian system{
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Picture

x2(·)

x1(·)
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Picture

x2(·)

x1(·)

Supp (V )
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Control approach

Study the mapping

E : L1([0, τ ];Rn) −→ Rn × Rn

u 7−→
(
xu(τ), pu(τ)

)
where (

xu, pu

)
: [0, τ ] −→ Rn × Rn

is the solution of{
ẋ(t) = ∇pH

(
x(t), p(t)

)
ṗ(t) = −∇xH

(
x(t), p(t)

)
− u(t),

starting at
(
x1(0), p1(0)

)
.

b b
u = 0
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Exercise

u = 0
u = 0

b
x0

b

xτ

Exercise

Given x , u : [0, τ ]→ Rn as above, does there exists a function
V : Rn → R whose the support is included in the dashed blue
square above and such that

∇V (x(t)) = u(t) ∀t ∈ [0, τ ] ?
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Exercise (solution)

There is a necessary condition∫ τ

0

〈ẋ(t), u(t)〉dt = 0.

As a matter of fact,∫ τ

0

〈ẋ(t), u(t)〉dt =

∫ τ

0

〈ẋ(t),∇V (x(t))〉dt

= V (xτ )− V (x0) = 0.

Proposition

If the above necessary condition is satisfied, then there is
V : Rn → R satisfying the desired properties such that

‖V ‖C1 ≤ K

r
‖u‖∞.
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〈ẋ(t), u(t)〉dt =

∫ τ

0
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Exercise (solution)

If x(t) = (t, 0), that is

b
x0

b

xτ

r

then we set

V (t, y) := φ
(
|y |/r

) [∫ t

0

u1(s) ds +
n−1∑
i=1

∫ yi

0

ui+1(t + s) ds

]
,

for every (t, y), with φ : [0,∞)→ [0, 1] satisfying

φ(s) = 1 ∀s ∈ [0, 1/3] and φ(s) = 0 ∀s ≥ 2/3.
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Closing Aubry sets in C 1 topology

Theorem (Figalli-R, 2010)

Let H : T ∗M → R be a Tonelli Hamiltonian of class C k with
k ≥ 4, and fix ε > 0. Then there exists a potential
V : M → R of class C k−2, with ‖V ‖C1 < ε, such that
c[HV ] = c[H] and the Aubry set of HV is either an
(hyperbolic) equilibrium point or a (hyperbolic) periodic orbit.

The above result is not satisfactory. The property ”having an
Aubry set which is an hyperbolic closed orbit” is not stable
under C 1 perturbations.
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Toward a proof of Mañé’s Conjecture in C 2

topology

Theorem (Figalli-R, 2010)

Assume that dim M ≥ 3. Let H : T ∗M → R be a Tonelli
Hamiltonian of class C k with k ≥ 4, and fix ε > 0. Assume
that there are a recurrent point x̄ ∈ A(H), a critical viscosity
subsolution u : M → R, and an open neighborhood V of
O+
(
x̄
)

such that

u is at least C k+1 on V .

Then there exists a potential V : M → R of class C k−1, with
‖V ‖C2 < ε, such that c[HV ] = c[H] and the Aubry set of HV

is either an (hyperbolic) equilibrium point or a (hyperbolic)
periodic orbit.
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Application to Mañé’s Lagrangians

Recall that given X a C k-vector field on M with k ≥ 2, the
Mañé Lagrangian LX : TM → R associated to X is defined by

LX (x , v) :=
1

2

∥∥v − X (x)
∥∥2

x
∀ (x , v) ∈ TM ,

while the Mañé Hamiltonian HX : TM → R is given by

HX (x , p) =
1

2

∥∥p
∥∥2

x
+ 〈p,X (x)〉 ∀ (x , p) ∈ T ∗M .

Corollary (Figalli-R, 2010)

Let X be a vector field on M of class C k with k ≥ 2. Then for
every ε > 0 there is a potential V : M → R of class C k , with
‖V ‖C2 < ε, such that the Aubry set of HX + V is either an
equilibrium point or a periodic orbit.
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Discussion

Theorem (Bernard, 2007)

Assume that the Aubry set is exactly one hyperbolic periodic
orbit, then any critical solution is ”smooth” in a neighborhood
of A(H). As a consequence, there is a ”smooth” critical
subsolution.

Conjecture (Regularity Conjecture for critical subsolutions)

For every Tonelli Hamiltonian H : T ∗M → R of class C∞

there is a set D ⊂ C∞(M) which is dense in C 2(M) (with
respect to the C 2 topology) such that the following holds: For
every V ∈ D, there is a smooth critical subsolution.
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Thank you for your attention !!
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