Mañé's Conjecture from the control viewpoint

Ludovic Rifford

Université de Nice - Sophia Antipolis

Ludovic Rifford Mañé's Conjecture from the control viewpoint

Let M be a smooth compact manifold of dimension $n \ge 2$ be fixed. Let $H: T^*M \to \mathbb{R}$ be a Hamiltonian of class C^k , with $k \ge 2$, satisfying the following properties:

- (H1) Superlinear growth: For every $K \ge 0$, there is $C^*(K) \in \mathbb{R}$ such that $H(x,p) \ge K|p| + C^*(K) \quad \forall (x,p) \in T^*M.$
- (H2) **Uniform convexity:** For every $(x, p) \in T^*M$, $\frac{\partial^2 H}{\partial p^2}(x, p)$ is positive definite.

Critical value of H

Definition

We call **critical value** of *H* the constant c = c[H] defined as

$$c[H] := \inf_{u \in C^1(M;\mathbb{R})} \Big\{ \max_{x \in M} \big\{ H\big(x, du(x)\big) \big\} \Big\}.$$

In other terms, c[H] is the infimum of numbers $c \in \mathbb{R}$ such that there is a C^1 function $u: M \to \mathbb{R}$ satisfying

$$H(x, du(x)) \leq c \qquad \forall x \in M.$$

Critical value of H

Definition

We call **critical value** of *H* the constant c = c[H] defined as

$$c[H] := \inf_{u \in C^1(M;\mathbb{R})} \Big\{ \max_{x \in M} \big\{ H\big(x, du(x)\big) \big\} \Big\}.$$

In other terms, c[H] is the infimum of numbers $c \in \mathbb{R}$ such that there is a C^1 function $u: M \to \mathbb{R}$ satisfying

$$H(x, du(x)) \leq c \qquad \forall x \in M.$$

Note that

$$\min_{x\in M} \left\{ H(x,0) \right\} \le c[H] \le \max_{x\in M} \left\{ H(x,0) \right\}.$$

Critical subsolutions of H

Definition

We call **critical subsolution** any Lipschitz function $u: M \to \mathbb{R}$ such that

 $H(x, du(x)) \le c[H]$ for a.e. $x \in M$.

Critical subsolutions of H

Definition

We call **critical subsolution** any Lipschitz function $u: M \to \mathbb{R}$ such that

$$H(x, du(x)) \leq c[H]$$
 for a.e. $x \in M$.

Let $L: TM \to \mathbb{R}$ be the Tonelli Lagrangian associated with H by Legendre-Fenchel duality, that is

$$L(x,v) := \max_{p \in T_x^*M} \left\{ p \cdot v - H(x,p) \right\} \qquad \forall (x,v) \in TM.$$

Critical subsolutions of H

Definition

We call **critical subsolution** any Lipschitz function $u: M \to \mathbb{R}$ such that

$$H(x, du(x)) \leq c[H]$$
 for a.e. $x \in M$.

Let $L : TM \to \mathbb{R}$ be the Tonelli Lagrangian associated with H by Legendre-Fenchel duality, that is

$$L(x,v) := \max_{p \in T_x^*M} \Big\{ p \cdot v - H(x,p) \Big\} \quad \forall (x,v) \in TM.$$

A Lipschitz function $u: M \to \mathbb{R}$ is a critical subsolution if and only if

$$u(\gamma(b)) - u(\gamma(a)) \leq \int_a^b L(\gamma(t), \dot{\gamma}(t)) ds + c(b-a),$$

for every Lipschitz curve $\gamma : [a, b] \rightarrow M$.

The Fathi-Siconolfi-Bernard Theorem

Theorem (Fathi-Siconolfi, 2004; Bernard, 2007)

The set $SS^{1}(H)$ (resp. $SS^{1,1}(H)$) of critical subsolutions of class C^{1} (resp. $C^{1,1}$) is nonempty.

Theorem (Fathi-Siconolfi, 2004; Bernard, 2007)

The set $SS^{1}(H)$ (resp. $SS^{1,1}(H)$) of critical subsolutions of class C^{1} (resp. $C^{1,1}$) is nonempty.

As a consequence, the set of $x \in M$ such that

u critical subsolution of class C^1

 $\implies H(x, du(x)) = c[H]$

is nonempty.

Definition and Proposition

• The projected Aubry set of H defined as

$$\mathcal{A}(H) = \left\{ x \in M \,|\, H(x, du(x)) = c[H], \, \forall u \in \mathcal{SS}^{1}(H) \right\},\,$$

is compact and nonempty.

Definition and Proposition

• The projected Aubry set of H defined as

$$\mathcal{A}(H) = \left\{ x \in M \,|\, H(x, du(x)) = c[H], \, \forall u \in \mathcal{SS}^{1}(H) \right\},\,$$

is compact and nonempty.

• Any critical subsolution u is C^1 at any point of $\mathcal{A}(H)$ and satisfies $H(x, du(x)) = c[H], \forall x \in \mathcal{A}(H)$.

Definition and Proposition

• The projected Aubry set of H defined as

 $\mathcal{A}(H) = \left\{ x \in M \,|\, H(x, du(x)) = c[H], \, \forall u \in \mathcal{SS}^{1}(H) \right\},\,$

is compact and nonempty.

- Any critical subsolution u is C^1 at any point of $\mathcal{A}(H)$ and satisfies $H(x, du(x)) = c[H], \forall x \in \mathcal{A}(H)$.
- For every x ∈ A(H), the differential of a critical subsolution at x does not depend on u.

Definition and Proposition

• The projected Aubry set of H defined as

 $\mathcal{A}(H) = \left\{ x \in M \,|\, H(x, du(x)) = c[H], \, \forall u \in \mathcal{SS}^{1}(H) \right\},\,$

is compact and nonempty.

- Any critical subsolution u is C^1 at any point of $\mathcal{A}(H)$ and satisfies $H(x, du(x)) = c[H], \forall x \in \mathcal{A}(H)$.
- For every x ∈ A(H), the differential of a critical subsolution at x does not depend on u.
- The Aubry set of H defined by

 $\mathcal{A}(H) := \{(x, du(x)) | x \in \mathcal{A}(H), u \text{ crit. subsol.}\} \subset T^*M$

is compact, invariant by ϕ_t^H , and is a Lipschitz graph over $\mathcal{A}(H)$.

Back to the critical value

Proposition

The critical value of H satisfies

$$c[H] = \min_{u \in C^1(M;\mathbb{R})} \left\{ \max_{x \in M} \left\{ H(x, du(x)) \right\} \right\}.$$

Proposition

The critical value of H satisfies

$$c[H] = -\inf\left\{\frac{1}{T}\int_0^T L(\gamma(t),\dot{\gamma}(t))dt\right\},$$

where the infimum is taken over the Lipschitz curves $\gamma : [0, T] \to M$ such that $\gamma(0) = \gamma(T)$.

Examples

• Let $V : M \to \mathbb{R}$ be a potential of class C^2 and $H : T^*M \to \mathbb{R}$ be the Hamiltonian defined by

$$H(x,p)=rac{1}{2}|p|^2+V(x) \qquad orall (x,p)\in T^*M.$$

Then $c[H] = \max_M V$ and

$$ilde{\mathcal{A}}(H) = \left\{ (x,0) \,|\, V(x) = \max_M V
ight\}.$$

 Let X be a smooth vector field on M and L : TM → ℝ defined by

$$L_X(x,v) = \frac{1}{2}|v - X(x)|^2 \quad \forall (x,v) \in TM.$$

Then c[H] = 0 and the projected Aubry set always contains the set of recurrent points of the flow of X.

Conjecture (Mañé, 96)

For every Tonelli Hamiltonian $H : T^*M \to \mathbb{R}$ of class C^k (with $k \ge 2$), there is a residual subset (i.e., a countable intersection of open and dense subsets) \mathcal{G} of $C^k(M)$ such that, for every $V \in \mathcal{G}$, the Aubry set of the Hamiltonian $H_V := H + V$ is either an equilibrium point or a periodic orbit.

Conjecture (Mañé, 96)

For every Tonelli Hamiltonian $H : T^*M \to \mathbb{R}$ of class C^k (with $k \ge 2$), there is a residual subset (i.e., a countable intersection of open and dense subsets) \mathcal{G} of $C^k(M)$ such that, for every $V \in \mathcal{G}$, the Aubry set of the Hamiltonian $H_V := H + V$ is either an equilibrium point or a periodic orbit.

Strategy of proof:

- Density result.
- Stability result.

Proposition (Contreras-Iturriaga, 1999)

Let $H : T^*M \to \mathbb{R}$ be a Hamiltonian of class C^k (with $k \ge 3$) whose Aubry set is an equilibrium point (resp. a periodic orbit). Then, there is a smooth potential $V : M \to \mathbb{R}$, with $\|V\|_{C^k}$ as small as desired, such that the Aubry set of H_V is a hyperbolic equilibrium (resp. a hyperbolic periodic orbit).

Proposition (Contreras-Iturriaga, 1999)

Let $H : T^*M \to \mathbb{R}$ be a Hamiltonian of class C^k (with $k \ge 3$) whose Aubry set is an equilibrium point (resp. a periodic orbit). Then, there is a smooth potential $V : M \to \mathbb{R}$, with $\|V\|_{C^k}$ as small as desired, such that the Aubry set of H_V is a hyperbolic equilibrium (resp. a hyperbolic periodic orbit).

Conjecture (Mañé's density conjecture)

For every Tonelli Hamiltonian $H : T^*M \to \mathbb{R}$ of class C^k (with $k \ge 2$) there exists a dense set \mathcal{D} in $C^k(M)$ such that, for every $V \in \mathcal{D}$, the Aubry set of the Hamiltonian H_V is either an equilibrium point or a periodic orbit.

Theorem (Pugh, 1967)

Let M be a smooth compact manifold. Suppose that some vector field X has a nontrivial recurrent trajectory through $x \in M$ and suppose that \mathcal{U} is a neighborhood of X in the C^1 topology. Then there exists $Y \in \mathcal{U}$ such that Y has a closed orbit through x.

Theorem (Pugh, 1967)

Let *M* be a smooth compact manifold. Suppose that some vector field *X* has a nontrivial recurrent trajectory through $x \in M$ and suppose that \mathcal{U} is a neighborhood of *X* in the C^1 topology. Then there exists $Y \in \mathcal{U}$ such that *Y* has a closed orbit through *x*.

Theorem (Pugh-Robinson, 1983)

Let (N, ω) be a symplectic manifold of dimension $2n \ge 2$ and $H: N \to \mathbb{R}$ be a given Hamiltonian of class C^2 . Let X be the Hamiltonian vector field associated with H and ϕ^H the Hamiltonian flow. Suppose that X has a nontrivial recurrent trajectory through $x \in N$ and that \mathcal{U} is a neighborhood of X in the C^1 topology. Then there exists $Y \in \mathcal{U}$ such that Y is a Hamiltonian vector field and Y has a closed orbit through x. Given a "Tonelli" Hamiltonian, we need to find:

- a potential $V: M \to \mathbb{R}$ small,
- a periodic orbit $\gamma : [0, T] \rightarrow M \ (\gamma(0) = \gamma(T))$,
- a Lipschitz function $v: M \to \mathbb{R}$,

in such a way that the following properties are satisfied:

Given a "Tonelli" Hamiltonian, we need to find:

- a potential $V: M \to \mathbb{R}$ small,
- a periodic orbit $\gamma : [0, T] \rightarrow M \ (\gamma(0) = \gamma(T))$,
- a Lipschitz function $v: M \to \mathbb{R}$,

in such a way that the following properties are satisfied:

•
$$H_V(x, dv(x)) \leq 0$$
 for a.e. $x \in M$, $(\Rightarrow c[H_V] \leq 0)$
• $\int_0^T L_V(\gamma(t), \dot{\gamma}(t)) dt = 0.$

Given a "Tonelli" Hamiltonian, we need to find:

- a potential $V: M \to \mathbb{R}$ small,
- a periodic orbit $\gamma : [0, T] \rightarrow M \ (\gamma(0) = \gamma(T))$,
- a Lipschitz function $v: M \to \mathbb{R}$,

in such a way that the following properties are satisfied:

•
$$H_V(x, dv(x)) \leq 0$$
 for a.e. $x \in M$, $(\Rightarrow c[H_V] \leq 0)$
• $\int_0^T L_V(\gamma(t), \dot{\gamma}(t)) dt = 0. \ (\Rightarrow c[H_V] \geq 0)$

A connecting problem

Let be given two solutions

$$(x_i, p_i)$$
 : $[0, \tau] \longrightarrow \mathbb{R}^n \times \mathbb{R}^n$ $i = 1, 2,$

of the Hamiltonian system

$$\begin{cases} \dot{x}(t) = \nabla_{p}H(x(t), p(t)) \\ \dot{p}(t) = -\nabla_{x}H(x(t), p(t)). \end{cases}$$

A connecting problem

Let be given two solutions

$$(x_i, p_i)$$
 : $[0, \tau] \longrightarrow \mathbb{R}^n \times \mathbb{R}^n$ $i = 1, 2,$

of the Hamiltonian system

$$\begin{cases} \dot{x}(t) = \nabla_{p}H(x(t), p(t)) \\ \dot{p}(t) = -\nabla_{x}H(x(t), p(t)). \end{cases}$$

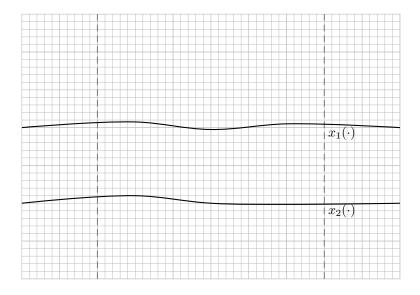
Question

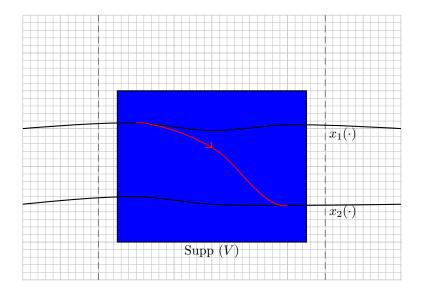
Can I add a potential V to the Hamiltonian H in such a way that the solution of the new Hamiltonian system

$$\begin{cases} \dot{x}(t) = \nabla_{p} H(x(t), p(t)) \\ \dot{p}(t) = -\nabla_{x} H(x(t), p(t)) - \nabla V(x(t)) \end{cases}$$

starting at $(x_1(0), p_1(0))$ satisfies

$$(x(\tau),p(\tau)) = (x_2(\tau),p_2(\tau))?$$





Control approach

Study the mapping

$$E : L^{1}([0,\tau];\mathbb{R}^{n}) \longrightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$$
$$\stackrel{u}{u} \longmapsto (x_{u}(\tau), p_{u}(\tau))$$

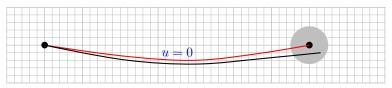
where

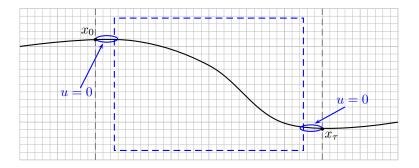
$$(x_u, p_u) : [0, \tau] \longrightarrow \mathbb{R}^n \times \mathbb{R}^n$$

is the solution of

$$\begin{cases} \dot{x}(t) = \nabla_{p} H(x(t), p(t)) \\ \dot{p}(t) = -\nabla_{x} H(x(t), p(t)) - u(t), \end{cases}$$

starting at $(x_1(0), p_1(0))$.





Exercise

Given $x, u : [0, \tau] \to \mathbb{R}^n$ as above, does there exists a function $V : \mathbb{R}^n \to \mathbb{R}$ whose the support is included in the dashed blue square above and such that

$$abla V(x(t)) = u(t) \qquad \forall t \in [0, \tau]?$$

There is a necessary condition

$$\int_0^\tau \langle \dot{x}(t), u(t) \rangle dt = 0.$$

There is a necessary condition

$$\int_0^\tau \langle \dot{x}(t), u(t) \rangle dt = 0.$$

As a matter of fact,

$$\int_0^\tau \langle \dot{x}(t), u(t) \rangle dt = \int_0^\tau \langle \dot{x}(t), \nabla V(x(t)) \rangle dt$$

= $V(x_\tau) - V(x_0) = 0.$

There is a necessary condition

$$\int_0^\tau \langle \dot{x}(t), u(t) \rangle dt = 0.$$

As a matter of fact,

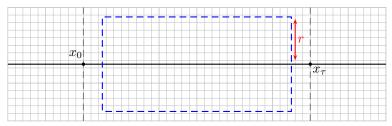
$$\int_0^\tau \langle \dot{x}(t), \boldsymbol{u}(t) \rangle dt = \int_0^\tau \langle \dot{x}(t), \nabla V(x(t)) \rangle dt$$
$$= V(x_\tau) - V(x_0) = 0.$$

Proposition

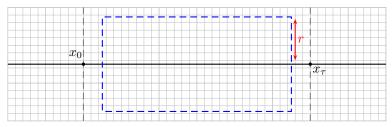
If the above necessary condition is satisfied, then there is $V : \mathbb{R}^n \to \mathbb{R}$ satisfying the desired properties such that

$$\|V\|_{C^1} \leq \frac{K}{r} \|u\|_{\infty}.$$

If x(t) = (t, 0), that is



If x(t) = (t, 0), that is



then we set

$$V(t,y) := \phi(|y|/r) \left[\int_0^t u_1(s) \, ds + \sum_{i=1}^{n-1} \int_0^{y_i} u_{i+1}(t+s) \, ds
ight],$$

for every (t,y), with $\phi:[0,\infty)\rightarrow [0,1]$ satisfying

 $\phi(s)=1 \quad orall s\in [0,1/3] \quad ext{and} \quad \phi(s)=0 \quad orall s\geq 2/3.$

Theorem (Figalli-R, 2010)

Let $H : T^*M \to \mathbb{R}$ be a Tonelli Hamiltonian of class C^k with $k \ge 4$, and fix $\epsilon > 0$. Then there exists a potential $V : M \to \mathbb{R}$ of class C^{k-2} , with $||V||_{C^1} < \epsilon$, such that $c[H_V] = c[H]$ and the Aubry set of H_V is either an (hyperbolic) equilibrium point or a (hyperbolic) periodic orbit.

Theorem (Figalli-R, 2010)

Let $H : T^*M \to \mathbb{R}$ be a Tonelli Hamiltonian of class C^k with $k \ge 4$, and fix $\epsilon > 0$. Then there exists a potential $V : M \to \mathbb{R}$ of class C^{k-2} , with $||V||_{C^1} < \epsilon$, such that $c[H_V] = c[H]$ and the Aubry set of H_V is either an (hyperbolic) equilibrium point or a (hyperbolic) periodic orbit.

The above result is not satisfactory. The property "having an Aubry set which is an hyperbolic closed orbit" is not stable under C^1 perturbations.

Toward a proof of Mañé's Conjecture in C^2 topology

Theorem (Figalli-R, 2010)

Assume that dim $M \geq 3$. Let $H : T^*M \to \mathbb{R}$ be a Tonelli Hamiltonian of class C^k with $k \geq 4$, and fix $\epsilon > 0$. Assume that there are a recurrent point $\bar{x} \in \mathcal{A}(H)$, a critical viscosity subsolution $u : M \to \mathbb{R}$, and an open neighborhood \mathcal{V} of $\mathcal{O}^+(\bar{x})$ such that

u is at least
$$C^{k+1}$$
 on \mathcal{V} .

Then there exists a potential $V : M \to \mathbb{R}$ of class C^{k-1} , with $\|V\|_{C^2} < \epsilon$, such that $c[H_V] = c[H]$ and the Aubry set of H_V is either an (hyperbolic) equilibrium point or a (hyperbolic) periodic orbit.

Application to Mañé's Lagrangians

Recall that given X a C^k -vector field on M with $k \ge 2$, the Mañé Lagrangian $L_X : TM \to \mathbb{R}$ associated to X is defined by

$$L_X(x, \mathbf{v}) := \frac{1}{2} \|\mathbf{v} - X(x)\|_x^2 \qquad \forall (x, \mathbf{v}) \in TM,$$

while the Mañé Hamiltonian $H_X : TM \to \mathbb{R}$ is given by

$$H_X(x,p) = \frac{1}{2} \|p\|_x^2 + \langle p, X(x) \rangle \qquad \forall (x,p) \in T^*M.$$

Corollary (Figalli-R, 2010)

Let X be a vector field on M of class C^k with $k \ge 2$. Then for every $\epsilon > 0$ there is a potential $V : M \to \mathbb{R}$ of class C^k , with $\|V\|_{C^2} < \epsilon$, such that the Aubry set of $H_X + V$ is either an equilibrium point or a periodic orbit.

Theorem (Bernard, 2007)

Assume that the Aubry set is exactly one hyperbolic periodic orbit, then any critical solution is "smooth" in a neighborhood of $\mathcal{A}(H)$. As a consequence, there is a "smooth" critical subsolution.

Theorem (Bernard, 2007)

Assume that the Aubry set is exactly one hyperbolic periodic orbit, then any critical solution is "smooth" in a neighborhood of $\mathcal{A}(H)$. As a consequence, there is a "smooth" critical subsolution.

Conjecture (Regularity Conjecture for critical subsolutions)

For every Tonelli Hamiltonian $H : T^*M \to \mathbb{R}$ of class C^{∞} there is a set $\mathcal{D} \subset C^{\infty}(M)$ which is dense in $C^2(M)$ (with respect to the C^2 topology) such that the following holds: For every $V \in \mathcal{D}$, there is a smooth critical subsolution. Thank you for your attention !!