A Kupka-Smale Theorem for Hamiltonian systems from Mañé's viewpoint, a control approach

Ludovic Rifford

Université de Nice - Sophia Antipolis & Institut Universitaire de France

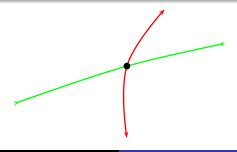
PICOF '12

The Kupka-Smale Theorem for vector fields

Theorem (Kupka '63, Smale '63)

Let M be a smooth compact manifold. For C^k $(k \ge 1)$ vector fields on M, the following properties are generic:

- 1. All closed orbits are hyperbolic.
- 2. Heteroclinic orbits are trasnversal, i.e. the intersections of stable and unstable manifolds of closed hyperbolic orbits are transversal.



Mañé generic Hamiltonians

Let M be a smooth compact manifold and let T^*M be its cotangent bundle equipped with the canonical symplectic form.

Let $H : T^*M \to \mathbb{R}$ be an Hamiltonian of class at least C^2 and X_H be the associated Hamiltonian vector field which reads (in local coordinates)

$$X_H(x,p) = \left(\frac{\partial H}{\partial p}(x,p), -\frac{\partial H}{\partial x}(x,p)\right)$$

Mañé generic Hamiltonians

Let M be a smooth compact manifold and let T^*M be its cotangent bundle equipped with the canonical symplectic form.

Let $H : T^*M \to \mathbb{R}$ be an Hamiltonian of class at least C^2 and X_H be the associated Hamiltonian vector field which reads (in local coordinates)

$$X_H(x,p) = \left(\frac{\partial H}{\partial p}(x,p), -\frac{\partial H}{\partial x}(x,p)\right)$$

Definition

Given an Hamiltonian $H : T^*M \to \mathbb{R}$, a property is called C^k Mañé generic if there is a residual set \mathcal{G} in $C^k(M; \mathbb{R})$ such that the property holds for any H + V with $V \in \mathcal{G}$.

Theorem (Rifford-Ruggiero '10)

Let $H : T^*M \to \mathbb{R}$ be a Tonelli Hamiltonian of class C^k with k > 2. The following properties are C^k Mañé generic:

- 1. Each closed orbit is either hyperbolic or no eigenvalue of the Poincaré transform of any closed orbit is a root of unity.
- 2. Heteroclinic orbits are trasnversal, i.e. the intersections of stable and unstable manifolds of closed hyperbolic orbits are transversal.

Recall that H is Tonelli if it is superlinear and uniformly convex in the fibers.

The Poincaré map

Let $\bar{\theta} = (\bar{x}, \bar{p})$ be a periodic point for the Hamiltonian flow of positive period T > 0. Fix a local section transversal to the flow at $\bar{\theta}$ and contained in the energy level of $\bar{\theta}$.

The Poincaré map

Let $\bar{\theta} = (\bar{x}, \bar{p})$ be a periodic point for the Hamiltonian flow of positive period T > 0. Fix a local section transversal to the flow at $\bar{\theta}$ and contained in the energy level of $\bar{\theta}$.

Then consider the Poincaré first return map

$$\begin{array}{cccc} P : \Sigma & \longrightarrow & \Sigma \\ \theta & \longmapsto & \phi^{H}_{\tau(\theta)}(\theta), \end{array}$$

which is a local diffeomorphism and for which $\bar{\theta}$ is a fixed point.

The Poincaré map

Let $\bar{\theta} = (\bar{x}, \bar{p})$ be a periodic point for the Hamiltonian flow of positive period T > 0. Fix a local section transversal to the flow at $\bar{\theta}$ and contained in the energy level of $\bar{\theta}$.

Then consider the Poincaré first return map

$$\begin{array}{cccc} P : \Sigma & \longrightarrow & \Sigma \\ \theta & \longmapsto & \phi^{H}_{\tau(\theta)}(\theta), \end{array}$$

which is a local diffeomorphism and for which $\bar{\theta}$ is a fixed point.

The Poincaré map is symplectic, i.e. it preserves the restriction of the symplectic form to $T_{\theta}\Sigma$.

The symplectic group

Let Sp(*m*) be the symplectic group in $M_{2m}(\mathbb{R})$ (m = n - 1), that is the smooth submanifold of matrices $X \in M_{2m}(\mathbb{R})$ satisfying

$$X^* \mathbb{J} X = \mathbb{J}$$
 where $\mathbb{J} := \begin{bmatrix} 0 & I_m \\ -I_m & 0 \end{bmatrix}$

Choosing a convenient set of coordinates, the differential of the Poincaré map is the symplectic matrix X(T) where $X : [0, T] \rightarrow Sp(m)$ is solution to the Cauchy problem

$$\begin{cases} \dot{X}(t) = A(t)X(t) \quad \forall t \in [0, T], \\ X(0) = I_{2m}, \end{cases}$$

where A(t) has the form

$$A(t) = \begin{pmatrix} 0 & I_m \\ -K(t) & 0 \end{pmatrix} \quad \forall t \in [0, T].$$

Perturbation of the Poincaré map

Let γ be the projection of the periodic orbit passing through $\bar{\theta},$ we are looking for a potential

$$V: M \longrightarrow \mathbb{R}$$

satisfying the following properties

$$V(\gamma(t)) = 0, \quad dV(\gamma(t)) = 0,$$

with

 $d^2V(\gamma(t))$ free.

Perturbation of the Poincaré map

Let γ be the projection of the periodic orbit passing through $\bar{\theta},$ we are looking for a potential

$$V: M \longrightarrow \mathbb{R}$$

satisfying the following properties

$$V(\gamma(t)) = 0, \quad dV(\gamma(t)) = 0,$$

with

 $d^2V(\gamma(t))$ free.

$$\implies d^2 V(\gamma(t))$$
 is the control.

A controllability problem on Sp(m)

The Poincaré map at time T associated with the new Hamiltonian

H + V

is given by X(T) where $X : [0, T] \rightarrow Sp(m)$ is solution to the control problem

$$\begin{cases} \dot{X}(t) = A(t)X(t) + \sum_{i \leq j=1}^{m} u_{ij}(t)\mathcal{E}(ij)X(t), \quad \forall t \in [0, T], \\ X(0) = I_{2m}, \end{cases}$$

where the $2m \times 2m$ matrices $\mathcal{E}(ij)$ are defined by

WI.

$$\mathcal{E}(ij) := \begin{pmatrix} 0 & 0 \\ E(ij) & 0 \end{pmatrix},$$

th
$$\begin{cases} (E(ii))_{k,l} := \delta_{ik}\delta_{il} \,\forall i = 1, \dots, m, \\ (E(ij))_{k,l} = \delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk} \,\forall i < j = 1, \dots, m. \end{cases}$$

First-order controllability

Lemma

Assume that there is $\overline{t} \in [0, T]$ such that

$$dim\left(Span\left\{[E(ij), K(\bar{t})] \mid i, j \in \{1, \dots, m\}, i < j\right\}\right)$$
$$= \frac{m(m-1)}{2}.$$

Then we can reach a neighborhood of $X_0(T)$.

First-order controllability

Lemma

Assume that there is $\overline{t} \in [0,\,T]$ such that

$$dim\left(Spanig\{[E(ij), K(ar{t})] \mid i, j \in \{1, \dots, m\}, i < jig\}
ight) \ = rac{m(m-1)}{2}.$$

Then we can reach a neighborhood of $X_0(T)$.

Lemma

The set of matrices $K \in \mathcal{S}(m)$ such that

$$dim\left(Span\left\{[E(ij),K] \mid i,j \in \{1,\ldots,m\}, i < j\right\}\right) = \frac{m(m-1)}{2}$$

is open and dense in $\mathcal{S}(m)$.

Thank you for your attention !!