Optimal Transportation on Sub-Riemannian Manifolds

Ludovic Rifford

Université de Nice - Sophia Antipolis

(Joint work with A. Figalli)

Monge's Optimal Transportation Problem

Let M be a separable metric space equipped with its Borel σ -algebra, $c: M \times M \to \mathbb{R}$ be a cost function and μ, ν be two compactly supported probability measures in M. Find a measurable map $T: M \to M$ satisfying

$$T_{\sharp}\mu = \nu,$$

and in such a way that $\ensuremath{\mathcal{T}}$ minimizes the transportation cost given by

$$\int_M c(x, T(x)) d\mu(x).$$

When the transport condition $T_{\sharp}\mu = \nu$ is satisfied, we say that T is a *transport map*.

• Existence of an optimal transport map ?

• Uniqueness ?

Assume that $M = \mathbb{R}^n$ and that the cost *c* is given by

$$c(x,y)=|x-y|^2.$$

Theorem (Brenier's Theorem, 1991)

If μ is absolutely continuous with respect to the Lebesgue measure, there is a unique optimal transport map T. It is characterized by the existence of a convex function $\psi : \mathbb{R}^n \to \mathbb{R}$ such that

$$T(x) = \nabla \psi(x)$$
 for μ a.e. $x \in \mathbb{R}^n$.

Example 2: The Riemannian case

Assume that (M, g) is a smooth complete Riemannian manifold and denote by $d_g(\cdot, \cdot)$ the Riemannian distance on $M \times M$. Assume that the cost c is given by

$$c(x,y)=d_g(x,y)^2.$$

Theorem (McCann's Theorem, 2001)

If μ is absolutely continuous with respect to the Lebesgue measure on M, there is a unique optimal transport map T. It is characterized by the existence of a semiconvex function $\psi : \mathbb{R}^n \to \mathbb{R}$ such that

$$T(x) = \exp_x (\nabla \psi(x))$$
 for μ a.e. $x \in \mathbb{R}^n$.

References

Papers:

- "Optimal transportation under nonholonomic constraints" by A. Agrachev and P. Lee. Trans. Amer. Math. Soc, to appear. Available on http://people.sissa.it/~agrachev/.
- "Optimal Transportation on Sub-Riemannian Manifolds" by A. Figalli and L. Rifford. Preprint, 2008. Available on http://math.unice.fr/~rifford/.

Books:

- "Topics in Mass Transportation" by C. Villani. *Graduate Studies in Mathematics Surveys*, Vol. 58. American Mathematical Society, 2003.
- "Optimal transport, old and new" by C. Villani. To appear in the *Grundlehren des mathematischen Wissenschaften* Springer series.

A Weak Formulation: Kantorovitch's Problem

Let M be a separable metric space equipped with its Borel σ -algebra, $c: M \times M \to \mathbb{R}$ be a cost function and μ, ν be two compactly supported probability measures in M. Find a probability measure γ on $M \times M$ having marginals μ and ν , i.e.

$$(\pi_1)_{\sharp}\gamma = \mu$$
 and $(\pi_2)_{\sharp}\gamma = \nu$,

(where $\pi_1: M \times M \to M$ and $\pi_2: M \times M \to M$ are the canonical projections), which minimizes the transportation cost given by

$$\int_{M\times M} c(x,y)d\gamma(x,y).$$

When the transport condition $(\pi_1)_{\sharp}\gamma = \mu$, $(\pi_2)_{\sharp}\gamma = \nu$ is satisfied, we say that γ is a *transport plan*, and if γ minimizes also the cost we call it an *optimal transport plan*.

Theorem

There are two continuous function $\phi_1, \phi_2 : M \to I\!\!R$ satisfying

$$\phi_1(x) = \inf_{y \in M} \{ c(x, y) - \phi_2(y) \} \qquad \forall x \in M,$$

$$\phi_2(y) = \inf_{x \in M} \{ c(x, y) - \phi_1(x) \} \qquad \forall y \in M.$$

such that the following holds: a transport plan γ is optimal if and only if one has

$$\phi_1(x) - \phi_2(y) = c(x, y)$$
 for γ a.e. $(x, y) \in M \times M$.

As a consequence, to obtain that an optimal transport plan corresponds to a Monge's optimal transport map, we have to show that γ is concentrated on a graph.

Proof of Brenier-McCann's Theorem

- The function $x \mapsto d_g(x, y)^2$ is locally Lipschitz on M.
- The function φ₁ is locally Lipschitz on *M*. As a consequence, by Rademacher's Theorem, it is differentiable μ-a.e.
- Let x̄ ∈ supp(µ) be such that φ₁ is differentiable at x̄.
 Let ȳ be such that

$$\phi_1(\bar{x}) = d_g(\bar{x},\bar{y})^2 - \phi_2(\bar{y}).$$

Then we have,

$$d_g(x, \bar{y})^2 \ge \phi_1(x) + \phi_2(\bar{y}) \qquad \forall x \in M.$$

Which implies that $\bar{y} = \exp_{\bar{x}} \left(-\frac{1}{2} \nabla \phi_1(\bar{x}) \right)$. We set

$$\psi := -\frac{1}{2}\phi_1.$$

TWO ISSUES

- Show that φ₁ is differentiable μ-a.e. (for instance, by showing that φ₁ is locally Lipschitz on M).
- Deduce that, if ϕ_1 is differentiable at $\bar{x} \in \text{supp}(\mu)$, then there is a unique $\bar{y} \in M$ such that

$$\phi_1(\bar{x}) = c(\bar{x}, \bar{y}) - \phi_2(\bar{y}).$$

Let (M, Δ, g) be a complete sub-Riemannian structure of dimension n and rank m < n. Let $d_{SR}(\cdot, \cdot)$ be the sub-Riemannian distance on $M \times M$. Let μ, ν be two compactly supported probability measures on M. Find a measurable map $T: M \to M$ satisfying

$$T_{\sharp}\mu=\nu,$$

and in such a way that \mathcal{T} minimizes the transportation cost given by

$$\int_M d_{SR}(x, T(x))^2 d\mu(x).$$

Let us denote by D the diagonal in $M \times M$.

Theorem (A. Figalli, L. Rifford, 2008)

Assume that there exists an open set $\Omega \subset M \times M$ such that $supp(\mu \times \nu) \subset \Omega$, and d_{SR}^2 is locally Lipschitz on $\Omega \setminus D$. Let ϕ be the function provided by Kantorovitch's duality. Then, there is an open set \mathcal{M}^{ϕ} such that and ϕ is locally Lipschitz in a neighborhood of $\mathcal{M}^{\phi} \cap supp(\mu)$. There exists a unique optimal transport map which is defined μ -a.e. by

$$T(x) := \begin{cases} \exp_x(-\frac{1}{2} d\phi(x)) & \text{if } x \in \mathcal{M}^\phi \cap supp(\mu), \\ x & \text{if } x \in (M \setminus \mathcal{M}^\phi) \cap supp(\mu). \end{cases}$$

• Example 1: Two generating distributions

Proposition (A. Agrachev, P. Lee, 2008)

If Δ is two-generating on M, then the squared sub-Riemannian distance function is locally Lipschitz on $M \times M$.

• Example 2: Generic sub-Riemannian structures

Proposition (Y. Chitour, F. Jean, E. Trélat, 2006)

Let (M, g) be a complete Riemannian manifold of dim ≥ 4 . Then, for any generic distribution of rank ≥ 3 , the squared sub-Riemannian distance function is locally semiconcave (hence locally Lipschitz) on $M \times M \setminus D$.

Examples again

Example 3: Medium-fat distributions
 The distribution Δ is called *medium-fat* if, for every x ∈ M and every vector field X on M such that X(x) ∈ Δ(x) \ {0}, there holds

$$T_x M = \Delta(x) + [\Delta, \Delta](x) + [X, [\Delta, \Delta]](x).$$

Proposition

Assume that Δ is medium-fat. Then the squared sub-Riemannian distance function is locally Lipschitz on $M \times M \setminus D$.

Thank you for your attention !