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Monge’s Optimal Transportation Problem

Let M be a separable metric space equipped with its Borel
σ-algebra, c : M ×M → IR be a cost function and µ, ν be two
compactly supported probability measures in M . Find a
measurable map T : M → M satisfying

T]µ = ν,

and in such a way that T minimizes the transportation cost
given by ∫

M

c(x ,T (x))dµ(x).

When the transport condition T]µ = ν is satisfied, we say that
T is a transport map.
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Two questions

Existence of an optimal transport map ?

Uniqueness ?
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Example 1: The Euclidean case

Assume that M = IRn and that the cost c is given by

c(x , y) = |x − y |2.

Theorem (Brenier’s Theorem,1991)

If µ is absolutely continuous with respect to the Lebesgue
measure, there is a unique optimal transport map T . It is
characterized by the existence of a convex function
ψ : IRn → IR such that

T (x) = ∇ψ(x) for µ a.e. x ∈ IRn.
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Example 2: The Riemannian case

Assume that (M , g) is a smooth complete Riemannian
manifold and denote by dg (·, ·) the Riemannian distance on
M ×M . Assume that the cost c is given by

c(x , y) = dg (x , y)2.

Theorem (McCann’s Theorem, 2001)

If µ is absolutely continuous with respect to the Lebesgue
measure on M, there is a unique optimal transport map T . It
is characterized by the existence of a semiconvex function
ψ : IRn → IR such that

T (x) = expx (∇ψ(x)) for µ a.e. x ∈ IRn.
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A Weak Formulation: Kantorovitch’s Problem

Let M be a separable metric space equipped with its Borel
σ-algebra, c : M ×M → IR be a cost function and µ, ν be two
compactly supported probability measures in M . Find a
probability measure γ on M ×M having marginals µ and ν, i.e.

(π1)]γ = µ and (π2)]γ = ν,

(where π1 : M ×M → M and π2 : M ×M → M are the
canonical projections), which minimizes the transportation
cost given by ∫

M×M

c(x , y)dγ(x , y).

When the transport condition (π1)]γ = µ, (π2)]γ = ν is
satisfied, we say that γ is a transport plan, and if γ minimizes
also the cost we call it an optimal transport plan.
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Kantorovitch’s Duality

Theorem

There are two continuous function φ1, φ2 : M → IR satisfying

φ1(x) = inf
y∈M
{c(x , y)− φ2(y)} ∀x ∈ M ,

φ2(y) = inf
x∈M
{c(x , y)− φ1(x)} ∀y ∈ M .

such that the following holds: a transport plan γ is optimal if
and only if one has

φ1(x)− φ2(y) = c(x , y) for γ a.e. (x , y) ∈ M ×M .

As a consequence, to obtain that an optimal transport plan
corresponds to a Monge’s optimal transport map, we have to
show that γ is concentrated on a graph.
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Proof of Brenier-McCann’s Theorem

The function x 7→ dg (x , y)2 is locally Lipschitz on M .

The function φ1 is locally Lipschitz on M . As a
consequence, by Rademacher’s Theorem, it is
differentiable µ-a.e.

Let x̄ ∈ supp(µ) be such that φ1 is differentiable at x̄ .
Let ȳ be such that

φ1(x̄) = dg (x̄ , ȳ)2 − φ2(ȳ).

Then we have,

dg (x , ȳ)2 ≥ φ1(x) + φ2(ȳ) ∀x ∈ M .

Which implies that ȳ = expx̄

(
−1

2
∇φ1(x̄)

)
. We set

ψ := −1

2
φ1.
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Strategy of proof

TWO ISSUES

Show that φ1 is differentiable µ-a.e. (for instance, by
showing that φ1 is locally Lipschitz on M).

Deduce that, if φ1 is differentiable at x̄ ∈ supp(µ), then
there is a unique ȳ ∈ M such that

φ1(x̄) = c(x̄ , ȳ)− φ2(ȳ).
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The sub-Riemannian Optimal Transport Problem

Let (M ,∆, g) be a complete sub-Riemannian structure of
dimension n and rank m < n. Let dSR(·, ·) be the
sub-Riemannian distance on M ×M . Let µ, ν be two
compactly supported probability measures on M . Find a
measurable map T : M → M satisfying

T]µ = ν,

and in such a way that T minimizes the transportation cost
given by ∫

M

dSR(x ,T (x))2dµ(x).
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A Theorem of Existence and Uniqueness

Let us denote by D the diagonal in M ×M .

Theorem (A. Figalli, L. Rifford, 2008)

Assume that there exists an open set Ω ⊂ M ×M such that
supp(µ× ν) ⊂ Ω, and d2

SR is locally Lipschitz on Ω \ D.
Let φ be the function provided by Kantorovitch’s duality.
Then, there is an open set Mφ such that and φ is locally
Lipschitz in a neighborhood of Mφ ∩ supp(µ). There exists a
unique optimal transport map which is defined µ-a.e. by

T (x) :=

{
expx(−1

2
dφ(x)) if x ∈Mφ ∩ supp(µ),

x if x ∈
(
M \Mφ

)
∩ supp(µ).

Ludovic Rifford Optimal Transportation on Sub-Riemannian Manifolds



Examples

Example 1: Two generating distributions

Proposition (A. Agrachev, P. Lee, 2008)

If ∆ is two-generating on M, then the squared sub-Riemannian
distance function is locally Lipschitz on M ×M.

Example 2: Generic sub-Riemannian structures

Proposition (Y. Chitour, F. Jean, E. Trélat, 2006)

Let (M , g) be a complete Riemannian manifold of dim ≥ 4.
Then, for any generic distribution of rank ≥ 3, the squared
sub-Riemannian distance function is locally semiconcave
(hence locally Lipschitz) on M ×M \ D.
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Examples again

Example 3: Medium-fat distributions
The distribution ∆ is called medium-fat if, for every
x ∈ M and every vector field X on M such that
X (x) ∈ ∆(x) \ {0}, there holds

TxM = ∆(x) + [∆,∆](x) + [X , [∆,∆]](x).

Proposition

Assume that ∆ is medium-fat. Then the squared
sub-Riemannian distance function is locally Lipschitz on
M ×M \ D.
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Thank you for your attention !
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