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I. Statement of our optimal transportation problem
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Sub-Riemannian Manifolds

A (complete) sub-Riemannian manifold of dimension n ≥ 3
and rank m < n is given by a triple (M ,∆, g) where:

M is a smooth connected Riemannian manifold of
dimension n;

g is a complete smooth Riemannian metric on M ;

∆ is a nonholonomic distribution of rank m on M , that
is, for every x ∈ M , there is a local parametrization of ∆
by m linearly independant smooth vector fields f x

1 , · · · , f x
m

defined on an open neighborhood Vx such that

Lie {f x
1 , · · · , f z

m} (z) = TzM ∀z ∈ Vx .
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The Chow-Rashevsky Theorem

A curve γ : [0, 1]→ M is called horizontal if it belongs to
W 1,2([0, 1],M) and satisfies

γ̇(t) ∈ ∆(γ(t)) ∀t ∈ [0, 1].

Theorem (Chow 1939, Rashevsky 1938)

Let (M , g ,∆) be a sub-Riemannian manifold. Then, for any
x , y ∈ M, there is an horizontal path γ : [0, 1]→ M such that

γ(0) = x and γ(1) = y .
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Two Examples in IR3

The Heisenberg distribution: Let f1, f2 be the vector
fields in IR3 defined by

f1 =
∂

∂x1
, f2 =

∂

∂x2
+ x1

∂

∂x3
.

The distribution ∆ spanned by f1, f2 is nonholonomic.

The Martinet distribution: Let f1, f2 be the vector
fields in IR3 defined by

f1 =
∂

∂x1
, f2 =

∂

∂x2
+ x2

1

∂

∂x3
.

The distribution ∆ spanned by f1, f2 is nonholonomic.
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The sub-Riemannian distance

The length of an horizontal path γ : [0, 1]→ M is defined by

lengthg (γ) :=

∫ 1

0

√
gγ(t)(γ̇(t), ˙γ(t)dt.

The sub-Riemannian distance dSR(x , y) between two points
x , y of M is defined as

dSR(x , y) := inf
{

lengthg (γ)
}

where the infimum is taken over the horizontal paths
γ : [0, 1]→ M joining x to y .

Proposition

The function dSR is continuous on M ×M.
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Monge’s Optimal Transportation Problem

Let (M ,∆, g) be a complete sub-Riemannian structure of
dimension n and rank m < n. Let dSR(·, ·) be the
sub-Riemannian distance on M ×M . Let µ, ν be two
compactly supported probability measures on M . Find a
measurable map T : M → M satisfying

T]µ = ν,

and in such a way that T minimizes the transportation cost
given by ∫

M

dSR(x ,T (x))2dµ(x).
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II. Sketch of proof of the McCann Theorem
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Statement of the McCann Theorem

Let (M , g) be a smooth complete Riemannian manifold and
dg (·, ·) denote the Riemannian distance on M ×M . Let µ, ν
be two compactly supported probability measures in M , find a
measurable map T : M → M satisfying T]µ = ν, and in such
a way that T minimizes the transportation cost given by∫

M

dg (x ,T (x))2dµ(x).

Theorem (McCann’s Theorem, 2001)

If µ is absolutely continuous with respect to the Lebesgue
measure on M, then there is a unique optimal transport map
T . It is characterized by the existence of a locally semiconvex
function ψ : M → IR such that

T (x) = expx (∇ψ(x)) for µ a.e. x ∈ IRn.
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Kantorovitch’s Duality

Proposition

There are two continuous function φ1, φ2 : M → IR satisfying

φ1(x) = inf
y∈M

{
dg (x , y)2 − φ2(y)

}
∀x ∈ M ,

φ2(y) = inf
x∈M

{
dg (x , y)2 − φ1(x)

}
∀y ∈ M .

such that the following holds: a transport plan γ is optimal if
and only if one has

φ1(x) + φ2(y) = dg (x , y)2 for γ a.e. (x , y) ∈ M ×M .

As a consequence, to obtain that an optimal transport plan
corresponds to a Monge’s optimal transport map, we have to
show that γ is concentrated on a graph.
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Proof of McCann’s Theorem

The function x 7→ dg (x , y)2 is locally Lipschitz on M .

The function φ1 is locally Lipschitz on M . As a
consequence, by Rademacher’s Theorem, it is
differentiable µ-a.e.

Let x̄ ∈ supp(µ) be such that φ1 is differentiable at x̄ .
Let ȳ be such that

φ1(x̄) + φ2(ȳ) = dg (x̄ , ȳ)2.

Then we have,

dg (x , ȳ)2 ≥ φ1(x) + φ2(ȳ) ∀x ∈ M .

Which implies that ȳ = expx̄

(
−1

2
∇φ1(x̄)

)
. We set

ψ := −1

2
φ1.
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Strategy of proof

TWO ISSUES

Issue 1: Show that φ1 is differentiable µ-a.e. (for
instance, by showing that φ1 is locally Lipschitz on M).

Issue 2: Deduce that, if φ1 is differentiable at
x̄ ∈ supp(µ), then there is a unique ȳ ∈ M such that

φ1(x̄) = c(x̄ , ȳ)− φ2(ȳ).
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III. The sub-Riemannian world
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Sub-Riemannian minimizing geodesics I

Let x 6= y ∈ M be fixed. By completeness, there is an
horizontal path γ̄ : [0, 1]→ M joining x to y such that

dSR(x , y) = lengthg (γ̄).

If γ̄ is parametrized by arc-length, then it minimizes the
quantity ∫ 1

0

gγ(t)(γ̇(t), γ̇(t))dt = energyg (γ).

over all horizontal paths γ joining x to y . One has

eSR(x , y) = dSR(x , y)2 ∀x , y ∈ M .
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Sub-Riemannian minimizing geodesics II

Denote by Ω∆(x) the set of horizontal paths starting from x .
The End-Point Mapping from x is defined by

Ex : Ω∆(x) −→ M
γ 7−→ γ(1).

The Cost Function is given by

C : Ω∆(x) −→ IR
γ 7−→ energyg (γ).

By the Lagrange Multiplier Theorem, there is λ ∈ T ∗x M and
λ0 ∈ {0, 1} such that

λ · dEx(γ̄) = λ0dC (γ̄).
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Sub-Riemannian minimizing geodesics III

Two Cases may appear:

λ0 = 1.

λ0 = 0
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Sub-Riemannian minimizing geodesics IV

First case: λ0 = 1.

The Sub-Riemannian Hamiltonian H : T ∗M → IR associated
with M ,∆, g) is defined by

H(x , p) := max

{
p(v)2 − 1

2
gx(v , v) | v ∈ ∆(x)

}
.

Proposition

There is an smooth extremal ψ = (γ̄, p) : [0, 1]→ T ∗M with
p(1) = λ/2 such that

˙̄γ(t) =
∂H

∂p
(γ̄(t), p(t)), ṗ(t) = −∂H

∂x
(γ̄(t), p(t)),

In particular, the path γ̄ is smooth on [0, 1].
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Sub-Riemannian minimizing geodesics V

Second case: λ0 = 0.

The path γ̄ must be a critical point of the mapping Ex .
Such an horizontal path is called singular.

Examples:

The Heisenberg distribution: No nontrivial horizontal
path is singular. Any minimizing horizontal path is a
projection of a smooth extremal.

The Martinet distribution: All the horizontal paths
which are contained in the plane {x1 = 0} are singular.
For any smooth Riemannian metric g , such horizontal
paths are locally minimizing !
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The exponential mapping

The sub-Riemannian exponential mapping from x is defined by

expx : T ∗x M −→ M
p 7−→ π(ψ(1))

where ψ is the extremal such that ψ(0) = (x , p) in local
coordinates.

Proposition (Agrachev, Rifford, Trélat, 2008)

For every x ∈ M, the set expx(T ∗x M) contains an open dense
subset of M.
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Sketch of proof of our result I

Issue 2: Let x̄ be such that φ1 is differentiable at x̄ . Let
ȳ be such that

φ1(x̄) + φ2(ȳ) = dSR(x̄ , ȳ)2.

Let γ̄ : [0, 1→ M be a minimizing horiazontal path
between x and y . Then we have,

dSR(x , ȳ)2 − φ1(x) ≥ φ2(ȳ) ∀x ∈ M .

Which yields that for every γ ∈ Ω∆(y),

energyg (γ)− φ1(γ(1)) ≥ dSR(γ(1), y)2 − φ1(γ(1))

≥ φ2(ȳ) = energyg (γ̄)− φ1(γ̄(1)).

Therefore, ȳ = expx̄

(
−1

2
dx̄φ1

)
.
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Sketch of proof of our result II

Issue 1: Outside the diagonal in M ×M and in absence
of singular minimizing horizontal paths, the
sub-Riemannian distance dSR shares the same regularity
properties as the Riemannian distance.

Let us denote by D the diagonal in M ×M .

Proposition

Let (M ,∆, g) be a (complete) sub-Riemannian manifold
admitting no nontrivial singular minimizing horizontal paths.
Then, the sub-Riemannian distance is locally semiconcave on
M ×M \ D.
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IV. Statements of our results
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A Theorem of Existence and Uniqueness

Theorem (A. Figalli, L. Rifford, 2008)

Assume that there exists an open set Ω ⊂ M ×M such that
supp(µ× ν) ⊂ Ω, and d2

SR is locally Lipschitz on Ω \ D.
Let φ be the function provided by Kantorovitch’s duality.
Then, there is an open set Mφ such that and φ is locally
Lipschitz in a neighborhood of Mφ ∩ supp(µ). There exists a
unique optimal transport map which is defined µ-a.e. by

T (x) :=

{
expx(−1

2
dφ(x)) if x ∈Mφ ∩ supp(µ),

x if x ∈
(
M \Mφ

)
∩ supp(µ).
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Examples

Example 1: Two generating distributions

Proposition (A. Agrachev, P. Lee, 2008)

If ∆ is two-generating on M, then the squared sub-Riemannian
distance function is locally Lipschitz on M ×M.

Example 2: Generic sub-Riemannian structures

Proposition (Y. Chitour, F. Jean, E. Trélat, 2006)

Let (M , g) be a complete Riemannian manifold of dim ≥ 4.
Then, for any generic distribution of rank ≥ 3, the squared
sub-Riemannian distance function is locally semiconcave
(hence locally Lipschitz) on M ×M \ D.
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Examples again

Example 3: Medium-fat distributions
The distribution ∆ is called medium-fat if, for every
x ∈ M and every vector field X on M such that
X (x) ∈ ∆(x) \ {0}, there holds

TxM = ∆(x) + [∆,∆](x) + [X , [∆,∆]](x).

Proposition

Assume that ∆ is medium-fat. Then the squared
sub-Riemannian distance function is locally Lipschitz on
M ×M \ D.
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Thank you for your attention !
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