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Abstract

We study the optimal transport problem in sub-Riemannian manifolds where
the cost function is given by the square of the sub-Riemannian distance. Under ap-
propriate assumptions, we generalize Brenier-McCann’s Theorem proving existence
and uniqueness of the optimal transport map. We show the absolute continuity
property of Wassertein geodesics, and we address the regularity issue of the op-
timal map. In particular, we are able to show its approximate differentiability
a.e. in the Heisenberg group (and under some weak assumptions on the measures
the differentiability a.e.), which allows to write a weak form of the Monge-Ampère
equation.

1 Introduction

The optimal transport problem can be stated as follows: given two probability measures
µ and ν, defined on measurable spaces X and Y respectively, find a measurable map
T : X → Y with

T]µ = ν (i.e. ν(A) = µ
(
T−1(A)

)
for all A ⊂ Y measurable),

and in such a way that T minimizes the transportation cost. This last condition means∫
X
c(x, T (x)) dµ(x) = min

S]µ=ν

{∫
X
c(x, S(x)) dµ(x)

}
,

where c : X × Y → IR is some given cost function, and the minimum is taken over all
measurable maps S : X → Y with S]µ = ν. When the transport condition T]µ = ν is
satisfied, we say that T is a transport map, and if T minimizes also the cost we call it an
optimal transport map. Up to now the optimal transport problem has been intensively
studied in a Euclidean or a Riemannian setting by many authors, and it turns out
that the particular choice c(x, y) = d2(x, y) (here d denotes a Riemannian distance)
is suitable for studying some partial differential equations (like the semi-geostrophic
or porous medium equations), for studying functional inequalities (like Sobolev and
Poincaré-type inequalities) and for applications in geometry (for example, in the study
of lower bound on the Ricci curvature of the manifolds). We refer to the books [6, 37, 38]
for an excellent presentation.
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After the existence and uniqueness results of Brenier for the Euclidean case [11]
and McCann for the Riemannian case [27], people tried to extend the theory in a sub-
Riemannian setting. In [7] Ambrosio and Rigot studied the optimal transport problem
in the Heisenberg group, and recently Agrachev and Lee were able to extend their
result to more general situations such as sub-Riemannian structures corresponding to
2-generating distributions [2].

Two key properties of the optimal transport map result to be useful for many ap-
plications: the first one is the fact that the transport map is differentiable a.e. (this for
example allows to write the Jacobian of the transport map a.e.), and the second one is
that, if µ and ν are absolutely continuous with respect to the volume measure, so are all
the measure belonging to the (unique) Wasserstein geodesic between them. Both these
properties are true in the Euclidean case (see for example [6]) or on compact Rieman-
nian manifolds (see [18, 9]). If the manifold is noncompact, the second property still
remains true (see [20, Section 5]), while the first one holds in a weaker form. Indeed,
although one cannot hope for its differentiability in the non-compact case, as it is done
in [22, Section 3] the transport map can be shown to be approximately differentiable
a.e., which turns out to be enough for extending many results from the compact to
the non-compact case. Up to now, the only available results in these directions in a
sub-Riemannian setting were proved in [23], where the authors show that the absolute
continuity property along Wassertein geodesics holds in the Heisenberg group.

The aim of this paper is twofold: on the one hand, we prove new existence and
uniqueness results for the optimal transport map on sub-Riemannian manifolds. In
particular, we show that the structure of the optimal transport map is more or less the
same as in the Riemannian case (see [27]). On the other hand, in a still large class of
cases, we prove that the transport map is (approximately) differentiable almost every-
where, and that the absolute continuity property along Wasserstein geodesics holds.
This settles several open problems raised in [7, Section 7]: first of all, regarding prob-
lem [7, Section 7 (a)], we are able to extend the results of Ambrosio and Rigot [7] and
of Agrachev and Lee [2] to a large class of sub-Riemannian manifolds, not necessarily
two-generating. Concerning question [7, Section 7 (b)], we can prove a regularity result
on optimal transport maps, showing that under appropriate assumptions (including
the Heisenberg group) they are approximately differentiable a.e. Moreover, under some
weak assumptions on the measures, the transport map is shown to be truly differen-
tiable a.e. (see Theorem 3.7 and Remark 3.8). This allows for the first time in this
setting to apply the area formula, and to write a weak formulation of the Monge-Ampère
equation (see Remark 3.9). Finally, Theorem 3.5 answers to problem [7, Section 7 (c)]
not only in the Heisenberg group (which was already solved in [23]) but also in more
general cases.

The structure of the paper is the following:
In Section 2, we introduce some concepts of sub-Riemannian geometry and optimal

transport appearing in the statements of the results.
In Section 3, we present our results on the mass transportation problem in sub-

Riemannian geometry: existence and uniqueness theorems on optimal transport maps
(Theorems 3.2 and 3.3), absolute continuity property along Wassertein geodesics (The-
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orem 3.5) , and finally regularity of the optimal transport map and its consequences
(Theorem 3.7 and Remarks 3.8, 3.9). For sake of simplicity, all the measures appearing
in these results are assumed to have compact supports. In the last paragraph of Section
3, we discuss the possible extensions of our results to the non-compact case.

In Section 4, we give a list of sub-Riemannian structures for which our different
results may be applied. These cases include fat distributions, two-generating distribu-
tions, generic distribution of rank≥ 3, nonholonomic distributions on three-dimensional
manifolds, medium-fat distributions, codimension-one nonholonomic distributions, and
rank-two distributions in four-dimensional manifolds.

Since the proofs of the theorems require lots of tools and results from sub-Riemannian
geometry, we provide in Section 5 a short course in sub-Riemannian geometry. First,
for sake of completeness, we recall and give the proofs of basic facts in sub-Riemannian
geometry, such as the characterization of singular horizontal paths, the description of
sub-Riemannian minimizing geodesics, or the properties of the sub-Riemannian ex-
ponential mapping. Then, we present some results concerning the regularity of the
sub-Riemannian distance function and its cut locus. These latter results are the key
tools in the proofs of the our transport theorems; some of them were already known
(Theorem 5.9 has almost been proved in this form in [12]) while others are completely
new under our assumptions.

In Section 6, taking advantage of the regularity properties obtained in the previous
section, we provide all the proofs of the results stated in Section 3.

Finally, in Appendix A, we recall some classical facts in nonsmooth analysis, while
in Appendix B we prove auxiliary results needed in Section 4.

2 Preliminaries

2.1 Sub-Riemannian manifolds

A sub-Riemannian manifold is given by a triple (M,∆, g) where M denotes a smooth
connected manifold of dimension n, ∆ is a smooth nonholonomic distribution of rank
m < n onM , and g is a Riemannian metric onM1. We recall that a smooth distribution
of rank m on M is a rank m subbundle of TM . This means that, for every x ∈ M ,
there exist a neighborhood Vx of x in M , and a m-tuple (fx

1 , . . . , f
x
m) of smooth vector

fields on Vx, linearly independent on Vx, such that

∆(z) = Span {fx
1 (z), . . . , fx

m(z)} ∀z ∈ Vx.

One says that them-tuple of vector fields (fx
1 , . . . , f

x
m) represents locally the distribution

∆. The distribution ∆ is said to be nonholonomic (also called totally nonholonomic
e.g. in [3]) if, for every x ∈ M , there is a m-tuple (fx

1 , . . . , f
x
m) of smooth vector fields

on Vx which represents locally the distribution and such that

Lie {fx
1 , . . . , f

x
m} (z) = TzM ∀z ∈ Vx,

1Note that in general, the definition of a sub-Riemannian structure only involves a Riemannian
metric on the distribution. However, since in the sequel we need a global Riemannian distance on the
ambient manifold and we need to use Hessians, we prefer to work with a metric defined globally on
TM .
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that is, such that the Lie algebra2 spanned by fx
1 , . . . , f

x
m, is equal to the whole tangent

space TzM at every point z ∈ Vx. This Lie algebra property is often called Hörmander’s
condition.

A curve γ : [0, 1] →M is called a horizontal path with respect to ∆ if it belongs to
W 1,2([0, 1],M) and satisfies

γ̇(t) ∈ ∆(γ(t)) for a.e. t ∈ [0, 1].

According to the classical Chow-Rashevsky Theorem (see [8, 16, 29, 31, 32]), since the
distribution is nonholonomic on M , any two points of M can be joined by a horizontal
path. That is, for every x, y ∈ M , there is a horizontal path γ : [0, 1] → M such that
γ(0) = x and γ(1) = y. For x ∈ M , let Ω∆(x) denote the set of horizontal paths
γ : [0, 1] → M such that γ(0) = x. The set Ω∆(x), endowed with the W 1,2-topology,
inherits of a Hilbert manifold structure (see [29]). The end-point mapping from x is
defined by

Ex : Ω∆(x) −→ M
γ 7−→ γ(1)

It is a smooth mapping. A path γ is said to be singular if it is horizontal and if it is
a critical point for the end-point mapping Ex, that is if the differential of Ex at γ is
singular (i.e. not onto). A horizontal path which is not singular is called nonsingular
or regular. Note that the regularity or singularity property of a given horizontal path
depends only on the distribution, not on the metric g.

The length of a path γ ∈ Ω∆(x) is defined by

lengthg(γ) :=
∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt. (2.1)

The sub-Riemannian distance dSR(x, y) (also called Carnot-Carathéodory distance)
between two points x, y of M is the infimum over the lengths of the horizontal paths
joining x and y. According to the Chow-Rashevsky Theorem (see [8, 16, 29, 31, 32]),
since the distribution is nonholonomic on M , the sub-Riemannian distance is finite and
continuous3 on M ×M . Moreover, if the manifold M is a complete metric space4 for
the sub-Riemannian distance dSR, then, since M is connected, for every pair x, y of
points of M there exists a horizontal path γ joining x to y such that

dSR(x, y) = lengthg(γ).

2We recall that, for any family F of smooth vector fields on M , the Lie algebra of vector fields
generated by F , denoted by Lie(F), is the smallest vector space S satisfying

[X, Y ] ⊂ S ∀X ∈ F , ∀Y ∈ S,

where [X, Y ] is the Lie bracket of X and Y .
3In fact, thanks to the so-called Mitchell’s ball-box Theorem (see [29]), the sub-Riemannian can be

shown to be locally Hölder continuous on M ×M .
4Note that, since the distribution ∆ is nonholonomic on M , the topology defined by the sub-

Riemannian distance dSR coincides with the original topology of M (see [8, 29]). Moreover, it can be
shown that if the Riemannian manifold (M, g) is complete then, for any nonholonomic distribution ∆
on M , the sub-Riemannian manifold (M, ∆, g) equipped with its sub-Riemannian distance is complete.
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Such a horizontal path is called a sub-Riemannian minimizing geodesic between x and y.

Assuming that (M,dSR) is complete, denote by T ∗M the cotangent bundle of M ,
by ω the canonical symplectic form on T ∗M , and by π : T ∗M → M the canonical
projection. The sub-Riemannian Hamiltonian H : T ∗M → IR which is canonically
associated with the sub-Riemannian structure is defined as follows: for every x ∈ M ,
the restriction of H to the fiber T ∗xM is given by the nonnegative quadratic form

p 7−→ 1
2

max
{

p(v)2

gx(v, v)
| v ∈ ∆(x) \ {0}

}
. (2.2)

Let
−→
H denote the Hamiltonian vector field on T ∗M associated to H, that is, ι−→

H
ω =

−dH. A normal extremal is an integral curve of
−→
H defined on [0, 1], i.e., a curve

ψ(·) : [0, 1] → T ∗M satisfying

ψ̇(t) =
−→
H (ψ(t)), ∀t ∈ [0, 1].

Note that the projection of a normal extremal is a horizontal path with respect to ∆.
For every x ∈M , the exponential mapping with respect to x is defined by

expx : T ∗xM −→ M
p 7−→ ψ(1),

where ψ is the normal extremal such that ψ(0) = (x, p) in local coordinates. We stress
that, unlike the Riemannian setting, the sub-Riemannian exponential mapping with
respect to x is defined on the cotangent space at x.

Remark: from now on, all sub-Riemannian manifolds appearing in the paper are
assumed to be complete with respect to the sub-Riemannian distance.

2.2 Preliminaries in optimal transport theory

As we already said in the introduction, we recall that, given a cost function c : X×Y →
IR, we are looking for a transport map T : X → Y which minimizes the transportation
cost

∫
c(x, T (x)) dµ. The constraint T#µ = ν being highly non-linear, the optimal

transport problem is quite difficult from the viewpoint of calculus of variation. The
major advance on this problem was due to Kantorovich, who proposed in [24, 25]
a notion of weak solution of the optimal transport problem. He suggested to look
for plans instead of transport maps, that is probability measures γ in X × Y whose
marginals are µ and ν, i.e.

(πX)]γ = µ and (πY )]γ = ν,

where πX : X × Y → X and πY : X × Y → Y are the canonical projections. Denoting
by Π(µ, ν) the set of plans, the new minimization problem becomes the following:

C(µ, ν) = min
γ∈Π(µ,ν)

{∫
M×M

c(x, y) dγ(x, y)
}
. (2.3)

5



If γ is a minimizer for the Kantorovich formulation, we say that it is an optimal plan.
Due to the linearity of the constraint γ ∈ Π(µ, ν), it is simple, using weak topologies,
to prove existence of solutions to (2.3): this happens for instance whenever X and
Y are Polish spaces, and c is lower semicontinuous and bounded from below (see for
instance [37, 38]). The connection between the formulation of Kantorovich and that
of Monge can be seen by noticing that any transport map T induces the plan defined
by (Id× T )]µ which is concentrated on the graph of T . Thus, the problem of showing
existence of optimal transport maps can be reduced to prove that an optimal transport
plan is concentrated on a graph. Moreover, if one can show that any optimal plan in
concentrated on a graph, since γ1+γ2

2 is optimal if so are γ1 and γ2, uniqueness of the
transport map easily follows.

Definition 2.1. A function φ : X → IR is said c-concave if there exists a function
φc : Y → IR ∪ {−∞}, with φc 6≡ −∞, such that

φ(x) = inf
y∈Y

{c(x, y)− φc(y)} .

If φ is c-concave, we define the c-superdifferential of φ at x as

∂cφ(x) := {y ∈ Y | φ(x) + φc(y) = c(x, y)}.

Moreover we define the c-superdifferential of φ as

∂cφ := {(x, y) ∈ X × Y | y ∈ ∂cφ(x)}.

As we already said in the introduction, we are interested in studying the optimal
transport problem on M ×M (M being a complete sub-Riemannian manifold) with
the cost function given by c(x, y) = d2

SR(x, y).

Definition 2.2. Denote by Pc(M) the set of compactly supported probability measures
in M and by P2(M) the set of Borel probability measures on M with finite 2-order
moment, that is the set of µ satisfying∫

M
d2

SR(x, x0) dµ(x) < +∞ for a certain x0 ∈M .

Moreover, we denote by P ac
c (M) (resp. P ac

2 (M)) the subset of Pc(M) (resp. P2(M))
that consists of the probability measures on M which are absolutely continuous with
respect to the volume measure.

Obviously Pc(M) ⊂ P2(M). Moreover we remark that, by the triangle inequality
for dSR, the definition of P2(M) does not depends on x0. The space P2(M) can be
endowed with the so-called Wasserstein distance W2:

W 2
2 (µ, ν) := min

γ∈Π(µ,ν)

{∫
M×M

d2(x, y) dγ(x, y)
}
.

(note that W 2
2 is nothing else than the infimum in the Kantorovich problem). As

W2 defines a finite metric on P2(M), one can speak about geodesic in the metric space
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(P2,W2). This space turns out, indeed, to be a length space (see for example [6, 37, 38]).

From now on, supp(µ) and supp(ν) will denote the supports of µ and ν respectively,
i.e. the smallest closed sets on which µ and ν are respectively concentrated.

The following result is well-known (see for instance [38, Chapter 5]):

Theorem 2.3. Let us assume that µ, ν ∈ P2(M). Then there exists a c-concave func-
tion φ such that the following holds: a transport plan γ ∈ Π(µ, ν) is optimal if and only
if γ(∂cφ) = 1 (that is, γ is concentrated on the c-superdifferential of φ). Moreover one
can assume that the following holds:

φ(x) = inf
y∈supp(ν)

{
d2

SR(x, y)− φc(y)
}

∀x ∈M,

φc(y) = inf
x∈supp(µ)

{
d2

SR(x, y)− φ(x)
}

∀y ∈M.

In addition, if µ, ν ∈ Pc(M), then both infima are indeed minima (so that ∂cφ(x) ∩
supp(ν) 6= ∅ for µ-a.e. x), and the functions φ and φc are continuous.

By the above theorem we see that, in order to prove existence and uniqueness of
optimal transport maps, it suffices to prove that there exist two Borel sets Z1, Z2 ⊂M ,
with µ(Z1) = ν(Z2) = 1, such that and ∂cφ is a graph inside Z1 × Z2 (or equivalently
that ∂cφ(x) ∩ Z2 is a singleton for all x ∈ Z1).

3 Statement of the results

3.1 Sub-Riemannian versions of Brenier-McCann’s Theorems

The main difficulty appearing in the sub-Riemannian setting (unlike the Riemannian
situation) is that, in general, the squared distance function is not locally Lipschitz
on the diagonal. This gives rise to difficulties which make the proofs more technical
than in the Riemannian case (and some new ideas are also needed). In order to avoid
technicalities which would obscure the main ideas of the proof, we will state our results
under some simplifying assumptions on the measures, and in Paragraph 3.4 we will
explain how to remove them.

Before stating our first existence and uniqueness result, we introduce a definition:

Definition 3.1. Given a c-concave function φ : M → IR, we call “moving” set Mφ

and “static” set Sφ respectively the sets defined as follows:

Mφ := {x ∈M | x 6∈ ∂cφ(x)}, (3.1)

Sφ := M \Mφ = {x ∈M | x ∈ ∂cφ(x)}. (3.2)

We will also denote by π1 : M ×M → M and π2 : M ×M → M the canonical
projection on the first and on the second factor, respectively. In the sequel, D denotes
the diagonal in M ×M , that is

D := {(x, y) ∈M ×M | x = y} .

Furthermore, we refer the reader to Appendix A for the definition of a locally semicon-
cave function.
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Theorem 3.2 (Optimal transport map for absolutely continuous measures).
Let µ ∈ P ac

c (M), ν ∈ Pc(M). Assume that there exists an open set Ω ⊂ M ×M such
that supp(µ×ν) ⊂ Ω, and d2

SR is locally semiconcave (resp. locally Lipschitz) on Ω\D.
Let φ be the c-concave function provided by Theorem 2.3. Then:

(i) Mφ is open, and φ is locally semiconcave (resp. locally Lipschitz) in a neighbor-
hood of Mφ ∩ supp(µ). In particular φ is differentiable µ-a.e. in Mφ.

(ii) For µ-a.e. x ∈ Sφ, ∂cφ(x) = {x}.

In particular, there exists a unique optimal transport map defined µ-a.e. by5

T (x) :=
{

expx(−1
2 dφ(x)) if x ∈Mφ ∩ supp(µ),
x if x ∈ Sφ ∩ supp(µ),

and for µ-a.e. x there exists a unique minimizing geodesic between x and T (x).

As can be seen from the proof (given in Section 6), assertion (ii) in Theorem 3.2
always holds without any assumption on the sub-Riemannian distance. That is, for
any optimal transport problem on a complete sub-Riemannian manifold between two
measures µ ∈ P ac

c (M) and ν ∈ Pc(M), we always have

T (x) = x for µ-a.e. x ∈ Sφ,

where φ is the c-concave function provided by Theorem 2.3.

Theorem 3.2 above can be refined if the sub-Riemannian distance is assumed to
be locally Lipschitz on the diagonal. In that way, we obtain the sub-Riemannian ver-
sion of McCann’s Theorem on Riemannian manifolds (see [27]), improving the result
of Agrachev and Lee (see [2]).

Theorem 3.3 (Optimal transport map for more general measures). Let µ, ν ∈
Pc(M), and suppose that µ gives no measure to countably (n−1)-rectifiable sets. Assume
that there exists an open set Ω ⊂M ×M such that supp(µ× ν) ⊂ Ω, and d2

SR is locally
semiconcave on Ω \D. Suppose further that d2

SR is locally Lipschitz on Ω, and let φ be
the c-concave function provided by Theorem 2.3. Then:

(i) Mφ is open, and φ is locally semiconcave in a neighborhood of Mφ ∩ supp(µ). In
particular φ is differentiable µ-a.e. in Mφ.

(ii) For µ-a.e. x ∈ Sφ, ∂cφ(x) = {x}.

In particular, there exists a unique optimal transport map defined µ-a.e. by

T (x) :=
{

expx(−1
2 dφ(x)) if x ∈Mφ ∩ supp(µ),
x if x ∈ Sφ ∩ supp(µ),

and for µ-a.e. x there exists a unique minimizing geodesic between x and T (x).
5The factor 1

2
appearing in front of dφ(x) is due to the fact that we are considering the cost function

d2
SR(x, y) instead of the (equivalent) cost 1

2
d2

SR(x, y)
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The regularity properties of the sub-Riemannian distance functions required in the
two results above are satisfied by many sub-Riemannian manifolds. In particular, The-
orem 3.2 holds as soon as there are no singular sub-Riemannian minimizing geodesic
between two distinct points in Ω. In Section 4, we provide a list of sub-Riemannian
manifolds which satisfy the assumptions of our different results.

3.2 Wasserstein geodesics

By Theorem 3.2, it is not difficult to deduce the uniqueness of the Wasserstein geodesic
between µ and ν. Moreover the structure of the transport map allows to prove, as in the
Riemannian case, that all the measures inside the geodesic are absolutely continuous if
µ is. This last property requires however that, if (x, y) ∈ Ω, then all geodesics from x
to y do not “exit from Ω”:

Definition 3.4. Let Ω ⊂M ×M be an open set. We say that Ω is totally geodesically
convex if for every (x, y) ∈ Ω and every geodesic γ : [0, 1] →M from x to y, one has

(x, γ(t)), (γ(t), y) ∈ Ω ∀t ∈ [0, 1].

Observe that, if Ω = U × U with U ⊂ M , then the above definition reduces to say
that U is totally geodesically convex in the classical sense.

Theorem 3.5 (Absolute continuity of Wasserstein geodesics). Let µ ∈ P ac
c (M),

ν ∈ Pc(M). Assume that there exists an open set Ω ⊂M×M such that supp(µ×ν) ⊂ Ω,
and d2

SR is locally semiconcave on Ω \D. Let φ be the c-concave function provided by
Theorem 2.3. Then there exists a unique Wasserstein geodesic (µt)t∈[0,1] joining µ = µ0

to ν = µ1, which is given by µt := (Tt)#µ for t ∈ [0, 1], with

Tt(x) :=
{

expx(− t
2 dφ(x)) if x ∈Mφ ∩ supp(µ),
x if x ∈ Sφ ∩ supp(µ).

Moreover, if Ω is totally geodesically convex, then µt ∈ P ac
c (M) for all t ∈ [0, 1).

3.3 Regularity of the transport map and the Monge-Ampère equation

The structure of the transport map provided by Theorem 3.2 allows also to prove in
certain cases the approximate differentiability of the optimal transport map, and a
useful Jacobian identity. Let us first recall the notion of approximate differential:

Definition 3.6 (Approximate differential). We say that f : M → IR has an ap-
proximate differential at x ∈M if there exists a function h : M → IR differentiable at x
such that the set {f = h} has density 1 at x with respect to the volume measure. In this
case, the approximate value of f at x is defined as f̃(x) = h(x), and the approximate
differential of f at x is defined as d̃f(x) = dh(x).

It is not difficult to show that the above definitions make sense. In fact, h(x) and
dh(x) do not depend on the choice of h, provided x is a density point of the set {f = h}.

To write the formula of the Jacobian of T , we will need to use the notion of Hessian.
We recall that the Hessian of a function f : M → IR is defined as the covariant derivative
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of df : Hess f(x) = ∇df(x) : TxM ×TxM →M . Observe that the notion of the Hessian
depends on the Riemannian metric on TM . However, since the transport map depends
only on dSR, which in turn depends only on the restriction of metric to the distribution,
a priori it may seem strange that the Jacobian of T is expressed in terms of Hessians.
However, as we will see below, the Jacobian of T depends on the Hessian of the function
z 7→ φ(z) − d2

SR(z, T (x)) computed at z = x. But since φ(z) − d2
SR(z, T (x)) attains a

maximum at x, x is a critical point for the above function, and so its Hessian at x is
indeed independent on the choice of the metric.

The following result is the sub-Riemannian version of the properties of the transport
map in the Riemannian case. It was proved on compact manifolds in [18], and extended
to the noncompact case in [22]. The problem in our case is that the structure of
the sub-Riemannian cut-locus is different from the Riemannian case (see for example
Proposition 5.10), and so many complications arise when one tries to generalize the
Riemannian argument to our setting. Trying to extend the differentiability of the
transport map in great generality would need some new results on the sub-Riemannian
cut-locus which go behind the scope of this paper (see the Open Problem in Paragraph
5.8). For this reason, we prefer to state the result under some simplifying assumptions,
which however holds in the important case of the Heisenberg group (see [29]), or for
example for the standard sub-Riemannian structure on the three-sphere (see [10]).

We refer the reader to Paragraph 5.8 for the definitions of the global cut-locus
CutSR(M).

Theorem 3.7 (Approximate differentiability and jacobian identity). Let µ ∈
P ac

c (M), ν ∈ Pc(M). Assume that there exists a totally geodesically convex open set Ω ⊂
M ×M such that supp(µ× ν) ⊂ Ω, d2

SR is locally semiconcave on Ω \D, and for every
(x, y) ∈ CutSR(M)∩(Ω \D), there are at least two distinct sub-Riemannian minimizing
geodesics joining x to y. Let φ be the c-concave function provided by Theorem 2.3.
Then the optimal transport map is differentiable µ-a.e. inside Mφ ∩ supp(µ), and it is
approximately differentiable at µ-a.e. x. Moreover

Y (x) := d(expx)
−1

2dφ(x) and H(x) :=
1
2
Hess d2

SR(·, T (x))|z=x

exists for µ-a.e. x ∈ Mφ ∩ supp(µ), and the approximate differential of T is given by
the formula

d̃T (x) =
{
Y (x)

(
H(x)− 1

2Hessφ(x)
)

if x ∈Mφ ∩ supp(µ),
Id if x ∈ Sφ ∩ supp(µ),

where Id : TxM → TxM denotes the identity map.
Finally, assuming both µ and ν absolutely continuous with respect to the volume

measure, and denoting by f and g their respective density, the following Jacobian iden-
tity holds: ∣∣det

(
d̃T (x)

)∣∣ =
f(x)

g(T (x))
6= 0 µ-a.e. (3.3)

In particular, f(x) = g(x) for µ-a.e. x ∈ Sφ ∩ supp(µ).
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Remark 3.8 (Differentiability a.e. of the transport map). If we assume that
f 6= g µ-a.e., then by the above theorem we deduce that T (x) 6= x µ-a.e. (or equivalently
x 6∈ ∂cφ(x) µ-a.e.). Therefore the optimal transport is given by

T (x) = expx(−1
2dφ(x)) µ-a.e.,

and in particular T is differentiable (and not only approximate differentiable) µ-a.e.

Remark 3.9 (The Monge-Ampère equation). Since the function z 7→ φ(z) −
d2

SR(z, T (x)) attains a maximum at T (x) for µ-a.e. x, it is not difficult to see that the
matrix H(x)− 1

2Hessφ(x) (defined in Theorem 3.7) is nonnegative definite µ-a.e. This
fact, together with (3.3), implies that the function φ satisfies the Monge-Ampère type
equation

det
(
H(x)− 1

2Hessφ(x)
)

= f(x)
| det(Y (x))|g(T (x)) for µ-a.e. x ∈Mφ.

In particular, thanks to Remark 3.8,

det
(
H(x)− 1

2Hessφ(x)
)

= f(x)
| det(Y (x))|g(T (x)) µ-a.e.

provided that f 6= g µ-a.e.

3.4 The non-compact case

Let us briefly show how to remove the compactness assumption on µ and ν, and how to
relax the hypothesis supp(µ× ν) ⊂ Ω. We assume µ, ν ∈ P2(M) (so that Theorem 2.3
applies), and that µ × ν(Ω) = 1. Take an increasing sequence of compact set Kl ⊂ Ω
such that ∪lKl = Ω. We consider

ψl(x) := inf
{
d2

SR(x, y)− φc(y) | y s.t. (x, y) ∈ Kl

}
.

Since now φc is not a priori continuous (and so ∂cψl is not necessarily closed), we first
define

φc
l (y) := inf

{
d2

SR(x, y)− ψl(x) | x s.t. (x, y) ∈ Kl

}
,

and then consider

φl(x) := inf
{
d2

SR(x, y)− φc
l (y) | y s.t. (x, y) ∈ Kl

}
.

In this way the following properties holds (see for example the argument in the proof
of [38, Proposition 5.8]):

- φl and φc
l are both continuous;

- ψl(x) ≥ φ(x) for all x ∈M ;

- φc(y) ≤ φc
l (y) for all y ∈ π2(Kl);

- φl(x) = ψl(x) for all x ∈ π1(Kl).

11



This implies that ∂cφ ∩Kl ⊂ ∂cφl, and so

∂cφ ∩ Ω ⊂ ∪l∂
cφl.

One can therefore prove (i) and (ii) in Theorem 3.2 with φl in place of φ, and from
this and the hypothesis µ × ν(Ω) = 1 it is not difficult to deduce that (x, ∂cφ(x)) ∩ Ω
is a singleton for µ-a.e. x (see the argument in the proof of Theorem 3.2). This proves
existence and uniqueness of the optimal transport map.

Although in this case we cannot hope for any semiconcavity result for φ (since, as
in the non-compact Riemannian case, φ is just a Borel function), the above argument
shows that the graph of the optimal transport map is contained in the union of ∂cφl.
Thus, as in [20, Section 5], one can use ∂cφl to construct the (unique) Wasserstein
geodesic between µ and ν, and in this way obtain the absolutely continuity of all
measures belonging to the geodesic follows as in the compactly supported case.

Finally, the fact that the graph of the optimal transport map is contained in ∪l∂
cφl

allows also to prove the approximate differentiability of the transport map and the
Jacobian identity, provided that one replaces the hessian of φ with the approximate
hessian (see [22, Section 3] for see how this argument works in the Riemannian case).

4 Examples

The aim of the present section is to provide a list of examples where some of our
theorems apply. For each kind of sub-Riemannian manifold that we present, we provide
a regularity result for the associated squared sub-Riemannian distance function. We
let the reader to see in each case what theorem holds under that regularity property.
Before giving examples, we recall that if ∆ is a smooth distribution on M , we call
section of ∆ any smooth vector field X satisfying X(x) ∈ ∆(x) for any x ∈M . For any
smooth vector field Z on M and every x ∈M , we shall denote by [Z,∆](x), [∆,∆](x),
and [Z, [∆,∆]] the subspaces of TxM given by

[Z,∆](x) := {[Z,X](x) | X section of ∆} ,

[∆,∆](x) := Span {[X,Y ](x) | X,Y sections of ∆} ,

and
[Z, [∆,∆]](x) := Span {[Z, [X,Y ]](x) | X,Y sections of ∆} .

4.1 Fat distributions

The distribution ∆ is called fat if, for every x ∈M and every vector field X on M such
that X(x) ∈ ∆(x) \ {0}, there holds

TxM = ∆(x) + [X,∆](x).

The condition above being very restrictive, there are very few fat distributions (see
[29]). Fat distributions on three-dimensional manifolds are the rank-two distributions
∆ satisfying

TxM = Span{f1(x), f2(x), [f1, f2](x)} ∀x ∈M,

12



where (f1, f2) is a 2-tuple of vector fields representing locally the distribution ∆. A
classical example of fat distribution in IR3 is given by the distribution spanned by the
vector fields

X1 =
∂

∂x1
, X2 =

∂

∂x2
+ x1

∂

∂x3
.

This is the distribution appearing in the Heisenberg group (see [7, 8, 23]). It can be
shown that, if ∆ is a fat distribution, then any nontrivial (i.e. not constant) horizontal
path with respect to ∆ is nonsingular (see [12, 29, 32]). As a consequence, Theorems
5.9 and 5.16 yield the following result.

Proposition 4.1. If ∆ is fat on M , then the squared sub-Riemannian distance function
is locally Lipschitz on M ×M and locally semiconcave on M ×M \D.

4.2 Two-generating distributions

A distribution ∆ is called two-generating if

TxM = ∆(x) + [∆,∆](x) ∀x ∈M.

Any fat distribution is two-generating. Moreover, if the ambient manifold M has di-
mension three, then any two-generating distribution is fat. The distribution ∆ in IR4

which is spanned by the vector fields

X1 =
∂

∂x1
, X2 =

∂

∂x2
, X3 =

∂

∂x3
+ x1

∂

∂x4
,

provides an example of distribution which is two-generating but not fat. It is easy to see
that, if the distribution is two-generating, then there are no Goh paths (see Paragraph
5.9 for the definition of Goh path). As a consequence, by Theorem 5.16, we have:

Proposition 4.2. If ∆ is two-generating on M , then the squared sub-Riemannian
distance function is locally Lipschitz on M ×M .

The above result and its consequences in optimal transport are due to Agrachev
and Lee (see [2]).

4.3 Generic sub-Riemannian structures

Let (M, g) be a complete Riemannian manifold of dimension ≥ 4, and m ≥ 3 be a
positive integer. Denote by Dm the space of rank m distributions on M endowed
with the Whitney C∞ topology. Chitour, Jean and Trélat proved that there exists an
open dense subset Om of Dm such that every element of Om does not admit nontrivial
minimizing singular paths (see [14, 15]). As a consequence, we have

Proposition 4.3. Let (M, g) be a complete Riemannian manifold of dimension ≥ 4.
Then for any generic distribution of rank ≥ 3, the squared sub-Riemannian distance
function is locally semiconcave on M ×M \D.

This result implies in particular that, for generic sub-Riemannian manifolds, we
have existence and uniqueness of optimal transport maps, and absolute continuity of
Wasserstein geodesics.
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4.4 Nonholonomic distributions on three-dimensional manifolds

Assume that M has dimension 3 and that ∆ is a nonholonomic rank-two distribution
on M , and define

Σ∆ :=
{
x ∈M | ∆(x) + [∆,∆](x) 6= IR3

}
.

The set Σ∆ is called the singular set or the Martinet set of ∆. As an example, take
the nonholonomic distribution ∆ in IR3 which is spanned by the vector fields

f1 =
∂

∂x1
, f2 =

∂

∂x2
+ x2

1

∂

∂x3
.

It is easy to show that the singular set of ∆ is the plane {x1 = 0}. This distribution
is often called the Martinet distribution, and Σ∆ the Martinet surface. The singular
horizontal paths of ∆ correspond to the horizontal paths which are included in Σ∆.
This means that necessarily any singular horizontal path is, up to reparameterization,
a restriction of an arc of the form t 7→ (0, t, x̄3) ∈ IR3 with x̄3 ∈ IR. This kind of
result holds for any rank-two distribution in dimension three (we postpone its proof to
Appendix B):

Proposition 4.4. Let ∆ be a nonholonomic distribution on a three-dimensional man-
ifold. Then, the set Σ∆ is a closed subset of M which is countably 2-rectifiable. More-
over, a nontrivial horizontal path γ : [0, 1] →M is singular if and only if it is included
in Σ∆.

Proposition 4.4 implies that for any pair (x, y) ∈M ×M (with x 6= y) such that x
or y does not belong to Σ∆, any sub-Riemannian minimizing geodesic between x and
y is nonsingular. As a consequence, thanks to Theorems 5.9 and 5.16, the following
result holds:

Proposition 4.5. Let ∆ be a nonholonomic distribution on a three-dimensional man-
ifold. The squared sub-Riemannian distance function is locally Lipschitz on M ×M \
(Σ∆ × Σ∆) and locally semiconcave on M ×M \ (D ∪ Σ∆ × Σ∆).

We observe that, since Σ∆ is countably 2-rectifiable, for any pair of measures µ, ν ∈
Pc(M) such that µ gives no measure to countably 2-rectifiable sets, the conclusions of
Theorem 3.3 hold.

4.5 Medium-fat distributions

The distribution ∆ is called medium-fat if, for every x ∈ M and every vector field X
on M such that X(x) ∈ ∆(x) \ {0}, there holds

TxM = ∆(x) + [∆,∆](x) + [X, [∆,∆]](x).

Any two-generating distribution is medium-fat. An example of medium-fat distribution
which is not two-generating is given by the rank-three distribution in IR4 which is
spanned by the vector vector fields

f1 =
∂

∂x1
, f2 =

∂

∂x2
, f3 =

∂

∂x3
+ (x1 + x2 + x3)2

∂

∂x4
.
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Medium-fat distribution were introduced by Agrachev and Sarychev in [4] (we refer the
interested reader to that paper for a detailed study of this kind of distributions). It
can easily be shown that medium-fat distributions do not admit nontrivial Goh paths.
As a consequence, Theorem 5.16 yields:

Proposition 4.6. Assume that ∆ is medium-fat. Then the squared sub-Riemannian
distance function is locally Lipschitz on M ×M \D.

Let us moreover observe that, given a medium-fat distribution, it can be shown
that, for a generic smooth complete Riemannian metric on M , the distribution does
not admit nontrivial singular sub-Riemannian minimizing geodesics (see [14, 15]). As
a consequence, we have:

Proposition 4.7. Let ∆ be a medium-fat distribution on M . Then, for “generic” Rie-
mannian metrics, the squared sub-Riemannian distance function is locally semiconcave
on M ×M \D.

Notice that, since two-generating distributions are medium-fat, the latter result
holds for two-generating distributions.

4.6 Codimension-one nonholonomic distributions

Let M have dimension n, and ∆ be a nonholonomic distribution of rank n− 1. As in
the case of nonholonomic distributions on three-dimensional manifolds, we can define
the singular set associated to the distribution as

Σ∆ := {x ∈M | ∆(x) + [∆,∆](x) 6= TxM} .

The following result holds (we postpone its proof to Appendix B):

Proposition 4.8. If ∆ is a nonholonomic distribution of rank n− 1, then the set Σ∆

is a closed subset of M which is countably (n− 1)-rectifiable. Moreover, any Goh path
is contained in Σ∆.

From Theorem 5.16, we have:

Proposition 4.9. The squared sub-Riemannian distance function is locally Lipschitz
on M ×M \ (Σ∆ × Σ∆).

Note that, as for medium-fat distributions, for generic metrics the function d2
SR is

locally semiconcave on M ×M \ (D ∪ Σ∆ × Σ∆).

4.7 Rank-two distributions in dimension four

Let (M,∆, g) be a complete sub-Riemannian manifold of dimension four, and let ∆ be
a regular rank-two distribution, that is

TxM = Span {f1(x), f2(x), [f1, f2](x), [f1, [f1, f2]](x), [f2, [f1, f2]](x)}

for any local parametrization of the distribution. In [36], Sussmann shows that there
is a smooth horizontal vector field X on M such that the singular horizontal curves
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γ parametrized by arc-length are exactly the integral curves of X, i.e. the curves
satisfying

γ̇(t) = X(γ(t)).

By the way, it can also be shown that those curves are locally minimizing between their
end-points (see [26, 36]). For every x ∈ M , denote by O(x) the orbit of x by the flow
of X and set

Ω := {(x, y) ∈M ×M | y /∈ O(x)} .

Sussmann’s Theorem, together with Theorem 5.9, yields the following result:

Proposition 4.10. Under the assumption above, the function d2
SR is locally semicon-

cave in the interior of Ω.

As an example, consider the distribution ∆ in IR4 spanned by the two vector fields

f1 =
∂

∂x1
, f2 =

∂

∂x2
+ x1

∂

∂x3
+ x3

∂

∂x4
.

It is easy to show that a horizontal path γ : [0, 1] → IR4 is singular if and only if it
satisfies, up to reparameterization by arc-length,

γ̇(t) = f1(γ(t)), ∀t ∈ [0, 1].

By Proposition 4.10, we deduce that, for any complete metric g on IR4, the function
d2

SR is locally semiconcave on the set

Ω =
{
(x, y) ∈ IR4 × IR4 | (y − x) /∈ Span{e1}

}
,

where e1 denotes the first vector in the canonical basis of IR4. Consequently, for any
pair of measures µ ∈ P ac

c (M), ν ∈ Pc(M) satisfying supp(µ × ν) ⊂ Ω, Theorem 3.2
applies (or more in general, if µ× ν(Ω) = 1, we can apply the argument in Paragraph
3.4).

5 A short course in sub-Riemannian geometry

Throughout this section, (M,∆, g) denotes a sub-Riemannian manifold of rank m < n
which is assumed to be complete with respect to the sub-Riemannian distance. As in
the Riemannian case, the Hopf-Rinow Theorem holds. In particular, any two points
in M can be joined by a minimizing geodesics, and any sub-Riemannian ball of finite
radius is a compact subset of M . We refer the reader to [29, Appendix D] for the proofs
of those results.

5.1 Nonholonomic distributions vs. nonholonomic control systems

Any nonholonomic distribution can be parametrized locally by a nonholonomic control
system, that is by a smooth dynamical system with parameters called controls. Indeed,
assume that V is an open subset of M such that there are m smooth vector fields
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f1, . . . , fm on V which parametrize the nonholonomic distribution ∆ on V, that is
which satisfy

∆(x) = Span {f1(x), . . . , fm(x)} ∀x ∈ V,

and
Lie {f1, . . . , fm} (x) = TxM ∀x ∈ V.

Given x ∈ V, there is a correspondence between the set of horizontal paths in Ω∆(x)
which remain in V and the set of admissible controls of the control system

ẋ =
m∑

i=1

uifi(x).

A control u ∈ L2([0, 1], IRm) is called admissible with respect to x and V if the solution
γx,u to the Cauchy problem

ẋ(t) =
m∑

i=1

ui(t)fi(x(t)) for a.e. t ∈ [0, 1], x(0) = x,

is well-defined on [0, 1] and remains in V. The set Ux of admissible controls is an open
subset of L2([0, 1], IRm).

Proposition 5.1. Given x ∈M , the mapping

Ux −→ Ω∆(x)
u 7−→ γx,u

is one-to-one.

Given x ∈M , the end-point-mapping from x, from the control viewpoint, takes the
following form

Ex : Ux −→ M
u 7−→ γx,u(1)

This mapping is smooth. The derivative of the end-point mapping from x at u ∈ Ux,
that we shall denote by dEx(u), is given by

dEx(u)(v) = dΦu(1, x)
∫ 1

0
(dΦu(t, x̄))−1

( m∑
i=1

vi(t)fi(γx,u(t))
)
dt ∀v ∈ L2([0, 1], IRm),

where Φu(t, x) denotes the flow of the time-dependent vector field Xu defined by

Xu(t, x) :=
m∑

i=1

ui(t)fi(x) for a.e. t ∈ [0, 1], ∀x ∈ V,

(note that the flow is well-defined in a neighborhood of x). We say that an admissible
control u is singular with respect to x if dEx is singular at u. Observe that this is
equivalent to say that its associated horizontal path is singular (see the definition of
singular path given in Section 2). It is important to notice that the singularity of a
given horizontal path does not depend on the metric but only on the distribution.

17



5.2 Characterization of singular horizontal paths

Denote by ω the canonical symplectic form on T ∗M and by ∆⊥ the annihilator of ∆
in T ∗M minus its zero section. Define ω as the restriction of ω to ∆⊥. An absolutely
continuous curve

ψ : [0, 1] → ∆⊥ (5.1)

such that ψ̇(t) ∈ kerω(ψ(t)) for a.e. t ∈ [0, 1] (5.2)

is called an abnormal extremal of ∆.

Proposition 5.2. A horizontal path γ : [0, 1] → M is singular if and only if it is the
projection of an abnormal extremal ψ of ∆. The curve ψ is said to be an abnormal
extremal lift of γ.

If the distribution is parametrized by a family of m smooth vector fields f1, . . . , fm

on some open set V ⊂M , and if in addition the cotangent bundle T ∗M is trivializable
over V, then the singular controls, or equivalently the singular horizontal paths which
are contained in V, can be characterized as follows. Define the pseudo-Hamiltonian
H0 : V × (IRn)∗ × (IRm) 7−→ IR by

H0(x, p, u) =
m∑

i=1

uip(fi(x)). (5.3)

Proposition 5.3. Let x ∈ V and u be an admissible control with respect to x and
V. Then, the control u is singular (with respect to x) if and only if there is an arc
p : [0, 1] −→ (IRn)∗ \ {0} in W 1,2 such that the pair (x = γx,u, p) satisfies{

ẋ(t) = ∂H0
∂p (x(t), p(t), u(t)) =

∑m
i=1 ui(t)fi(x(t))

ṗ(t) = −∂H0
∂x (x(t), p(t), u(t)) = −

∑m
i=1 ui(t)p(t) · dfi(x(t))

(5.4)

for a.e. t ∈ [0, 1] and

p(t) · fi(x(t)) = 0 ∀t ∈ [0, 1], ∀i = 1, . . . ,m. (5.5)

Note that properties (5.4) and (5.5) are nothing more than the conditions (5.2) and
(5.1) written in local coordinates (with ψ(t) = (γ(t) = γx,u(t), p(t))). As a consequence,
by a gluing process 6 along the horizontal path, Proposition 5.2 can be seen as a corollary
of Proposition 5.3.

6For every t ∈ (0, 1], denote by Et
x : Ω∆(x) → M the end point-mapping from x at time t. If

we parametrized γ in a neighborhood of γ(1) (so that the cotangent bundle T ∗M is trivializable
in such neighborhood) and rewrite the proof of Proposition 5.3 in that neighborhood, then we can
construct for some t ∈ (0, 1) a covector p : [t, 1] → (IRn)∗ \ {0} satisfying (5.4)-(5.5) and such that
p(t) · dEt

x(γ)(v) = 0 for every v ∈ TγΩ∆(x). Repeating the contruction of p in a neighborhood of γ(t)
and using the compactness of the set γ([0, 1]), we obtain an abnormal extremal lift of γ on the whole
interval [0, 1].
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Proof. Doing a change of coordinates if necessary, we can assume that V is an open
subset of IRn. In that case, the differential of Ex at u is given by

dEx(u)(v) = S(1)
∫ 1

0
S(t)−1B(t)v(t)dt ∀v ∈ L2([0, 1], IRm), (5.6)

where for every t ∈ [0, 1], B(t) is the n×m matrix given by

B(t) := (f1(xu(t)), . . . , fm(xu(t)))

and S(·) is the solution of the Cauchy problem

Ṡ(t) = A(t)S(t) for a.e. t ∈ [0, 1], S(0) = In, (5.7)

with

A(t) :=
m∑

i=1

ui(t)dfi(x(t)) for a.e. t ∈ [0, 1].

If dEx(u) is not surjective, then there exists p ∈ (IRn)∗ \ {0} such that

p · dEx(u)(v) = 0 ∀v ∈ L2([0, 1], IRm).

Owing to (5.6), the above identity can be written as∫ 1

0
p · S(1)S(t)−1B(t)v(t)dt = 0

for any v ∈ L2([0, 1], IRm). By the arbitrariness of v and the continuity of S(t) and
B(t), we deduce that p · S(1)S(t)−1B(t) = 0 for any t ∈ [0, 1]. Let us now define, for
each t ∈ [0, 1],

p(t) := p · S(1)S(t)−1.

By construction, p : [0, 1] → IRn is a W 1,2 arc for which (5.5) is satisfied. Since p 6= 0
and S(t) is invertible for all t ∈ [0, 1], p(t) does not vanish on [0, 1]. By (5.7) we
conclude that the pair (x, p) satisfies also (5.4).
Conversely, let us assume that there exists an arc p : [0, 1] → (IRn)∗ \{0} in W 1,2 which
satisfies (5.4) and (5.5). This implies that

ṗ(t) = −p(t) ·A(t) for a.e. t ∈ [0, 1],

and
p(t) ·B(t) = 0 ∀t ∈ [0, 1].

Setting p := p(1) 6= 0, we have, for any t ∈ [0, 1],

p(t) = p · S(1)−1S(t).

Hence, we obtain
p · S(1)S(t)−1B(t) = 0,

which gives
p · dEx(u)(v) = 0 ∀v ∈ L2([0, 1], IRm).

This concludes the proof.

A control or a horizontal path which is singular is sometimes called abnormal. If it
is not singular, we call it nonsingular or regular.
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5.3 Sub-Riemannian minimizing geodesics

As we said in Section 2, since the metric space (M,dSR) is assumed to be complete, for
every pair x, y ∈M there is a horizontal path γ joining x to y such that

dSR(x, y) = lengthg(γ).

If γ is parametrized by arc-length, then using Cauchy-Schwarz inequality it is easy to
show that γ minimizes the quantity∫ 1

0
gγ(t)(γ̇(t), γ̇(t))dt =: energyg(γ),

over the horizontal paths joining x to y. This infimum, denoted by eSR(x, y), is called
the sub-Riemannian energy between x and y. Since M is assumed to be complete,
the infimum is always attained, and the horizontal paths which minimize the sub-
Riemannian energy are those which minimize the sub-Riemannian distance and which
are parametrized by arc-length. In particular, one has

eSR(x, y) = d2
SR(x, y) ∀x, y ∈M.

Assume from now that γ is a given horizontal path minimizing energyg(γ) between x
and y. Such a path is called a sub-Riemannian minimizing geodesic. Since γ minimizes
also the distance, it has no self intersection. Hence we can parametrize the distribution
along γ: there is an open neighborhood V of γ([0, 1]) in M and an orthonormal family
(with respect to the metric g) of m smooth vector fields f1, . . . , fm such that

∆(z) = Span {f1(z), . . . , fm(z)} ∀z ∈ V.

Moreover, since γ belongs to W 1,2([0, 1],M), there is a control uγ ∈ L2([0, 1], IRm) (in
fact, |uγ(t)|2 is constant), which is admissible with respect to x and V, such that

γ̇(t) =
m∑

i=1

uγ
i (t)fi(γ(t))dt for a.e. t ∈ [0, 1].

By the discussion above, we know that uγ minimizes the quantity∫ 1

0
gγx,u(t)

( m∑
i=1

ui(t)fi(γx,u(t)),
m∑

i=1

ui(t)fi(γx,u(t))
)
dt =

∫ 1

0

m∑
i=1

ui(t)2dt =: C(u),

among all controls u ∈ L2([0, 1], IRm) which are admissible with respect to x and V,
and which satisfy the constraint

Ex(u) = y.

By the Lagrange Multiplier Theorem, there is λ ∈ (IRn)∗ and λ0 ∈ {0, 1} such that

λ · dEx(uγ)− λ0dC(uγ) = 0. (5.8)

Two cases may appear, either λ0 = 0 or λ0 = 1. By restricting V if necessary, we
can assume that the cotangent bundle T ∗M is trivializable with coordinates (x, p) ∈
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IRn × (IRn)∗ over V.

First case: λ0 = 0. The linear operator dEx(uγ) : L2([0, 1], IRm) → TyM cannot be
onto, which means that the control u is necessarily singular. Hence there is an arc
p : [0, 1] −→ (IRn)∗ \ {0} in W 1,2 satisfying (5.4) and (5.5). In other terms, γ = γx,uγ

admits an abnormal extremal lift in T ∗M . We also says that γ is an abnormal mini-
mizing geodesic.

Second case: λ0 = 1. In local coordinates, the Hamiltonian H (defined in (2.2)) takes
the following form:

H(x, p) =
1
2

m∑
i=1

(
p · fi(x)

)2 = max
u∈IRm

{ m∑
i=1

uip · fi(x)−
1
2

m∑
i=1

u2
i

}
(5.9)

for all (x, p) ∈ V × (IRn)∗. Then the following result holds.

Proposition 5.4. Equality (5.8) with λ0 = 1 yields the existence of an arc p : [0, 1] −→
(IRn)∗ in W 1,2, with p(1) = λ

2 , such that the pair (γ = γx,uγ , p) satisfies{
γ̇(t) = ∂H

∂p (γ(t), p(t)) =
∑m

i=1 [p(t) · fi(γ(t))] fi(γ(t))
ṗ(t) = −∂H

∂x (γ(t), p(t)) = −
∑m

i=1 [p(t) · fi(γ(t))] p(t) · dfi(γ(t))
(5.10)

for a.e. t ∈ [0, 1] and

uγ
i (t) = p(t) · fi(γ(t)) for a.e. t ∈ [0, 1], ∀i = 1, . . . ,m. (5.11)

In particular, the path γ is smooth on [0, 1]. The curve γ and the control uγ are called
normal.

Proof. The differential of C : L2([0, 1], IRm) → IR at uγ is given by

dC(uγ)(v) = 2〈uγ , v〉L2 ∀v ∈ L2([0, 1], IRm).

Moreover, the differential of Ex at uγ is given by

dEx(uγ)(v) = S(1)
∫ 1

0
S(t)−1B(t)v(t)dt ∀v ∈ L2([0, 1], IRm), (5.12)

where the functions A,B, S were defined in the proof of Proposition 5.3. Hence (5.8)
yields ∫ 1

0

[
λ · S(1)S(t)−1B(t)− 2uγ(t)∗

]
v(t)dt = 0 ∀v ∈ L2([0, 1], IRm).

which implies

uγ(t) =
1
2

(
λ · S(1)S(t)−1B(t)

)∗ for a.e. t ∈ [0, 1].

Let us define p : [0, 1] → (IRn)∗ by

p(t) :=
1
2
λ · S(1)S(t)−1 ∀t ∈ [0, 1].

By construction, for a.e. t ∈ [0, 1] we have uγ(t)∗ = p(t) ·B(t), which means that (5.11)
is satisfied. Furthermore, as in the proof of Proposition 5.3, we have ṗ(t) = −p(t) ·A(t)
for a.e. t ∈ [0, 1]. This means that (5.10) is satisfied for a.e. t.
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The curve ψ : [0, 1] → T ∗M given by ψ(t) = (γ(t), p(t)) for every t ∈ [0, 1] is a
normal extremal whose the projection is γ and which satisfies ψ(1) = (y, λ

2 ). We say
that ψ is a normal extremal lift of γ. We also say that γ is a normal minimizing geodesic.

To summarize, we proved that the minimizing geodesic (or equivalently the mini-
mizing control uγ) is either abnormal or normal. Note that it could be both normal
and abnormal. For decades the prevailing wisdom was that every sub-Riemannian min-
imizing geodesic is normal, meaning that it admits a normal extremal lift. In 1991,
Montgomery found the first counterexample to this assertion (see [28, 29]).

5.4 The sub-Riemannian exponential mapping

Let x ∈M be fixed. The sub-Riemannian exponential mapping from x is defined by

expx : T ∗xM −→ M
p 7−→ ψ(1),

where ψ is the normal extremal so that ψ(0) = (x, p) in local coordinates. Note that
H(ψ(t)) is constant along a normal extremal ψ, hence we have

energyg(π(ψ)) =
(
lengthg(π(ψ))

)2 = 2H(ψ(0)).

The exponential mapping is not necessarily onto. However, since (M,dSR) is complete,
the following result holds (see [33]).

Proposition 5.5. For every x ∈M , the set expx(T ∗xM) is dense in M .

The above result is a straightforward consequence of Proposition A.1 together with
the following:

Proposition 5.6. Let y ∈M be such that there is a function φ : M → IR differentiable
at y such that

φ(y) = d2
SR(x, y) and d2

SR(x, z) ≥ φ(z) ∀z ∈M.

Then there is a unique minimizing geodesic between x and y, and it is the projection
of normal extremal ψ : [0, 1] → T ∗M satisfying ψ(1) = (y, 1

2dφ(y)). In particular
x = expy(−1

2dφ(y)).

Proof. Since eSR(x, z) = d2
SR(x, z) for any z ∈ M , the assumption of the proposition

implies that there is a neighborhood U of y in M such that

eSR(x, z) ≥ φ(z) ∀z ∈ U and eSR(x, y) = φ(y). (5.13)

Since (M,dSR) is complete, there exists a minimizing geodesic γ : [0, 1] → M between
x and y. As before, we can parametrize the distribution ∆ by a orthonormal family of
smooth vector fields f1, . . . , fm in a neighborhood V of γ([0, 1]), and we denote by uγ

the control corresponding to γ. By construction, it minimizes the quantity

C(u) =
∫ 1

0

m∑
i=1

ui(t)2dt,
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among all the controls u ∈ L2([0, 1], IRm) which are admissible with respect to x and
V and which satisfy the constraint Ex(u) = y. Let u ∈ L2([0, 1], IRm) be a control
admissible with respect to x and V such that Ex(u) ∈ U . By (5.13) one has

C(u) ≥ eSR(x,Ex(u)) ≥ φ(Ex(u)).

Moreover
C(uγ) = eSR(x, y) = φ(y) = φ(Ex(uγ)).

Hence we deduce that the control uγ minimizes the functional D : L2([0, 1], IRm) → IR
defined as

D(u) := C(u)− φ(Ex(u))

over the set of controls u ∈ L2([0, 1], IRm) such that Ex(u) ∈ U . This means that uγ is
a critical point of D. Setting λ = dφ(y), we obtain

λ · dEx(uγ)− dC(uγ) = 0.

By Proposition 5.4, the path γ admits a normal extremal lift ψ : [0, 1] → T ∗M satisfying
ψ(1) = (y, 1

2dφ(y)). By the Cauchy-Lipschitz Theorem, such a normal extremal is
unique.

5.5 The horizontal eikonal equation

As in the Riemannian case, the sub-Riemannian distance function from a given point
satisfies a Hamilton-Jacobi equation. For the definition of viscosity solution, see Para-
graph A.1.

Proposition 5.7. For every x ∈M , the function f(·) = dSR(x, ·) is a viscosity solution
of the Hamilton-Jacobi equation

H(y, df(y)) =
1
2

∀y ∈M \ {x}. (5.14)

Proof. Recall that the sub-Riemannian distance is continuous on M ×M . Hence, the
function f is continuous on M . Let us first prove that f is a viscosity subsolution of
(5.14) on M \ {x}. Let φ : M → IR be a C1 function satisfying φ ≥ f and such that
φ(y) = f(y) for some y ∈ M \ {x}. Let γ : [0, L] → M be a piecewise C1 horizontal
path joining x to y such that gγ(t)(γ̇(t), γ̇(t)) = 1 for a.e. t ∈ [0, L]. Since dSR satisfies
the triangle inequality, we have for every t ∈ [0, L],

f(y) ≤ f(γ(t)) + t ≤ φ(γ(t)) + t.

Hence letting t tend to L, we obtain

dφ(y) · γ̇(L) = lim
t↑L

φ(γ(L))− φ(γ(t))
t

≤ 1.

But for any v ∈ ∆(y) with gy(v, v) = 1 there is a piecewise C1 horizontal path with
unit speed joining x to y such that γ̇(L) = v. Hence we deduce that

H(y, dφ(y)) ≤ 1
2
.
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To prove now that f is a viscosity supersolution, let ψ : M → IR be a C1 function
satisfying ψ ≤ f and such that ψ(y) = f(y) for some y ∈ M \ {x}. Since (M,dSR)
is assumed to be complete, there is a minimizing geodesic γ : [0, 1] → M between
x and y. Up to reparameterize γ, we can assume that γ is defined on the interval
[0, L = lengthg(γ)] and has unit speed. For every t ∈ (0, L), the horizontal curve γ
minimizes the length between the points x and γ(t). Hence we have

ψ(γ(t)) ≤ f(γ(t)) = f(y)− t = ψ(y)− t.

Hence letting t tend to L, we obtain

dψ(y) · γ̇(L) = lim
t↑L

ψ(γ(L))− ψ(γ(t))
t

≥ 1.

The conclusion follows.

5.6 Compactness of minimizing geodesics

The compactness of minimizing curves is crucial to prove regularity properties of the
sub-Riemannian distance. Let us denote by W 1,2

∆ ([0, 1],M) the set of horizontal paths
γ : [0, 1] → M endowed with the W 1,2-topology. For every γ ∈ W 1,2

∆ ([0, 1],M), the
energy of γ with respect to g, denoted by energyg(γ). is well-defined. The classical
compactness result taken from Agrachev [1] reads as follows:

Proposition 5.8. For every compact K ⊂M , the set

K :=
{
γ ∈W 1,2

∆ ([0, 1],M) | ∃x, y ∈ K with eSR(x, y) = energyg(γ)
}

is a compact subset of W 1,2([0, 1],M).

Proof. First we note that, since (M,dSR) is complete, the set K is a bounded subset
of W 1,2([0, 1],M). Thus we can find a sequence {γk} ⊂ K that weakly converges to
γ ∈ W 1,2([0, 1],M), and such that the sequence {‖γk‖W 1,2} converges to some N ≥ 0.
By the lower semicontinuity of the norm under weak convergence, we immediately
deduce that.

‖γ‖W 1,2 ≤ N. (5.15)

Moreover it is not difficult to see that the constraint to be a horizontal path is closed
under weak convergence, and so γ is horizontal with respect to ∆. Hence, by continuity
of the energy on M ×M , we obtain

N2 = lim
k→∞

‖γk‖2
W 1,2 = lim

k→∞
eSR(γk(0), γk(1)) = eSR(γ(0), γ(1)) ≤ ‖γ‖2

W 1,2 .

Combining this with (5.15), we deduce that ‖γ‖W 1,2 = N . This implies that the
sequence {γk} converges to γ in the strong topology of W 1,2.
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5.7 Local semiconcavity of the sub-Riemannian distance

As we said in Section 2, the sub-Riemannian distance can be shown to be locally
Hölder continuous on M ×M . But in general, it has no reason to be more regular.
Within the next sections, we are going to show that, under appropriate assumptions
on the sub-Riemannian structure, dSR enjoyes more regularity properties such as local
semiconcavity or locally Lipschitz regularity.

Recall that D denotes the diagonal of M ×M , that is, the set of all pairs of the
form (x, x) with x ∈M . Thanks to Proposition 5.8, the following result holds:

Theorem 5.9. Let Ω be an open subset of M ×M such that for every pair (x, y) ∈ Ω
with x 6= y, any minimizing geodesic between x and y is nonsingular. Then, the distance
function dSR (or equivalently d2

SR) is locally semiconcave on Ω \D.

Proof. For sake of simplicity, we are just going to sketch the proof, and we refer the
reader to [12, 32] for more details. Let us fix (x, y) ∈ Ω \ D and show that dSR is
semiconcave in a neighborhood of (x, y) in M ×M \D. Let Ux and Uy be two compact
neighborhoods of x and y such that Ux×Uy ⊂ Ω\D. Denote by K the set of minimizing
horizontal paths γ in W 1,2

∆ ([0, 1], IRm) such that γ(0) ∈ Ux and γ(1) ∈ Uy. Thanks to
Proposition 5.8, K is a compact subset of W 1,2([0, 1],M). Let (x′, y′) ∈ Ux×Uy be fixed.
Since (M,dSR) is assumed to be complete, there exists a sub-Riemannian minimizing
geodesic γx′,y′ between x′ and y′. Moreover by assumption, it is nonsingular. As before,
we can parametrize ∆ b y a family of smooth orthonormal vector fields along γx′,y′ , and
we denote by ux′,y′ the control in L2([0, 1], IRm) corresponding to γx′,y′ . Since ux′,y′ is
nonsingular, there are n linearly independent controls vx′,y′

1 , . . . vx′,y′
n in L2([0, 1], IRm)

such that the linear operator

Ex′,y′ : IRn −→ IRn

α 7−→
∑m

i=1 αidEx′

(
ux′,y′

) (
vx′,y′

i

)
is invertible. Set

Fx′,y′ : IRn × IRn −→ IRn × IRn

(z, α) 7−→
(
z,Ez

(
ux′,y′ +

∑m
i=1 αiv

x′,y′

i

))
This mapping is well-defined and smooth in a neighborhood of (x′, 0), satisfies

Fx′,y′(x′, 0) = (x′, y′),

and its differential at (x′, 0) is invertible. Hence by the Inverse Function Theorem, there
are an open ball Bx′,y′ centered at (x′, y′) in IRn × IRn and a function Gx′,y′ : Bx′,y′ →
IRn × IRn such that

Fx′,y′ ◦ Gx′,y′(z, w) = (z, w) ∀(z, w) ∈ Bx′,y′ .

Denote by
(
αx′,y′

)−1
the second component of Gx′,y′ . From the definition of the sub-

Riemannian energy between two points, we infer that for any (z, w) ∈ Bx′,y′ we have

eSR(z, w) ≤

∥∥∥∥∥ux′,y′ +
m∑

i=1

((
αx′,y′

)−1
(z, w)

)
i

vx′,y′

i

∥∥∥∥∥
2

L2

.
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Set

φx′,y′(z, w) :=

∥∥∥∥∥ux′,y′ +
m∑

i=1

((
αx′,y′

)−1
(z, w)

)
i

∥∥∥∥∥
L2

∀(z, w) ∈ Bx′,y′ .

We conclude that, for every (x′, y′) ∈ Ux×Uy, there is a smooth function φx′,y′ such that
dSR(z, w) ≤ φx′,y′(z, w) for any (z, w) in Bx′,y′ . By compactness of K and thanks to a
quantitative version of the Inverse Function Theorem, the C1,1 norms of the functions
φx′,y′ are uniformly bounded and the radii of the balls Bx′,y′ are uniformly bounded
from below by a positive constant for x′, y′ in Ux×Uy. The result follows from Lemma
A.2.

5.8 Sub-Riemannian cut locus

For every x ∈ M , the singular set of dSR(x, ·), denoted by Σ (dSR(x, ·)), is defined as
the set of points y 6= x ∈ M where dSR(x, ·) (or equivalently d2

SR) is not continuously
differentiable. The cut-locus of x is defined as

CutSR(x) := Σ (dSR(x, ·))

and the global cut-locus of M as

CutSR(M) := {(x, y) ∈M | y ∈ CutSR(x)} .

The next result highlights a major difference between Riemannian and sub-Riemannian
geometries (we refer the reader to [1] for its proof):

Proposition 5.10. For every x ∈M , x ∈ CutSR(x), or equivalently D ⊂ CutSR(M).

A covector p ∈ T ∗xM is said to be conjugate with respect to x ∈M , if the mapping
expx is singular at p, that is if dexpx(p) is singular. For every x ∈ M , we denote by
Conjmin(x) the set of points y ∈M \{x} for which there is p ∈ T ∗xM which is conjugate
with respect to x and such that

expx(p) = y and eSR(x, y) = 2H(x, p).

The following result holds:

Proposition 5.11. Let Ω be an open subset of M × M . Assume that Ω is totally
geodesically convex and that the sub-Riemannian distance is locally semiconcave on
Ω \D. Then, for every x ∈M , we have(

{x} × CutSR(x)
)
∩ Ω =

(
{x} × (Σ (dSR(x, ·)) ∪ Conjmin(x) ∪ {x})

)
∩ Ω.

Moreover, the set ({x} × CutSR(x)) ∩ Ω has Hausdorff dimension ≤ n − 1, and the
function dSR is of class C∞ on the open set Ω \ CutSR(M).
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Proof. We already know that x belongs to CutSR(x). We are first going to prove that
the inclusion(

{x} ×
(
CutSR(x) \ {x}

))
∩ Ω ⊂

(
{x} ×

(
Σ (dSR(x, ·)) ∪ Conjmin(x)

))
∩ Ω

holds. In fact, we are going to show that(
{x} ×

(
Σ (dSR(x, ·)) \ (Σ (dSR(x, ·)) ∪ {x})

))
∩ Ω ⊂

(
{x} × Conjmin(x)

)
∩ Ω,

which gives the result. Set f(·) := dSR(x, ·). We need the following lemma (see Para-
graph A.2 for the definition of ∂Lf).

Lemma 5.12. For every y ∈ M \ {x} and every ζ ∈ ∂Lf(y), there exists a normal
extremal ψ(·) : [0, 1] → T ∗M whose projection γ = π(ψ) is minimizing between x and
y, and such that ψ(1) = (x, f(y)ζ) in local coordinates.

Proof of Lemma 5.12. By definition of the limiting subdifferential, there exists a
sequence {yk} of points in M converging to y and a sequence {ζk} ∈ D−f(yk) such that
lim ζk = ζ. For each integer k, denote by γk : [0, 1] →M a minimizing geodesic joining
x to yk. From Proposition 5.6, for each k , the horizontal path γk admits a normal
extremal lift ψk : [0, 1] → T ∗M satisfying ψk(1) = (yk, f(yk)ζk). Since the sequence
{ψk(1)} is bounded, up to a subsequence the sequence {ψk} converges uniformly to-
wards a normal extremal ψ : [0, 1] → T ∗M . The projection of ψ given by γ = π(ψ) is
a sub-Riemannian minimizing geodesic between x and y as the limit in W 1,2([0, 1],M)
of a sequence of minimizing horizontal paths between x and yk. �

Let us return to the proof of Proposition 5.11 and show that(
{x} ×

(
Σ(f) \ (Σ(f) ∪ {x})

))
∩ Ω ⊂

(
{x} × Conjmin(x)

)
∩ Ω.

Let us fix y ∈M such that (x, y) ∈
(
{x} ×

(
Σ(f) \ (Σ(f) ∪ {x})

))
∩Ω. Since y does not

belong to the singular set of f , and f is locally semiconcave in a neighborhood of (x, y),
there is ζ ∈ T ∗yM such that ∂Lf(y) = D−f(y) = {ζ}. By Proposition 5.6, there is a
normal extremal ψ : [0, 1] → T ∗M whose projection is minimizing between x and y and
such that ψ(1) = (y, f(y)ζ). On the other hand, since y belongs to the closure of Σ(f),
there is a sequence {yk} of points in Σ(f) which converges to y. For every integer k, the
limiting subdifferential ∂Lf(yk) admits at least two elements ζ1

k 6= ζ2
k . Hence, by the

lemma above, for each k there are two normal extremals ψ1
k, ψ

2
k : [0, 1] → T ∗M whose

projections γ1
k = π(ψ1

k), γ
2
k = π(ψ2

k) are minimizing between x and yk, and such that
ψ1

k(1) = (yk, f(yk)ζ1
k) and ψ2

k(1) = (yk, f(yk)ζ2
k). Since ∂Lf(y) = {ζ}, the sequences

{ψ1
k(1)} and {ψ2

k(1)} both converge to (y, f(y)ζ) = ψ(1). Hence, the two sequences
{ψ1

k}, {ψ2
k} converge uniformly to ψ. This proves that for k large, ψ1

k(0) = (x, p1
k) and

ψ2
k(0) = (x, p2

k) are close to ψ(0) = (x, p) in T ∗xM and satisfy expx(p1
k) = expx(p2

k).
This shows that the exponential mapping from x cannot be injective in a neighborhood
of p (which satisfies expx(p) = y and eSR(x, y) = 2H(x, p)). This concludes the proof
of the inclusion.

Let us now show the other inclusion. We need the following result.
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Lemma 5.13. The function f is of class C1,1
loc on the open set

Ox := {y ∈M | (x, y) ∈ Ω} \ Σ(f).

Proof of Lemma 5.13. Let ωx be the open subset of M defined by

ωx := {y ∈M | (x, y) ∈ Ω}.

Since by assumption we already know that f is locally semiconcave on ωx \ {x}, we are
going to show that −f is locally semiconcave on ωx \Σ(f). Then Proposition A.6 will
yield the result. Let y ∈ ωx \ Σ(f) be fixed. Since ωx \ Σ(f) is open, there is an open
neighborhood V ⊂ ωx \ Σ(f) of y where f is C1. For every z ∈ V, denote by v(z) the
unique tangent vector in TzM satisfying

gz(v(z), v(z)) = 1 and H(z, df(z)) =
1
2

(df(z) · v(z))2 =
1
2

(it exists thanks to Proposition 5.7). Since f is C1 on V, the function z 7→ v(z) is a
continuous vector field on V. For every y′ ∈ V, denote by zy′ a solution to the Cauchy
problem ż(t) = v(z(t)), z(0) = y′ (by the Cauchy-Peano Theorem, there exists such a
solution defined on the interval [0, ε] for a certain ε > 0). By construction, we have for
every y′ ∈ V, f(zy′(t)) = f(y′) + t. Moreover, by the triangle inequality, we also have

f(z) ≥ f(zy′(ε))− dSR(z, zy′(ε)) ∀z ∈M

and
f(y′) = f(zy′(ε))− ε = f(zy′(ε))− dSR(y′, zy′(ε)).

Thus, for every y′ ∈ V, the function z 7→ f(zy′(ε))− dSR(z, zy′(ε)) touches f at y′ from
below. Furthermore, by assumption (Ω is assumed to be totally geodesically convex),
we know that the function z 7→ dSR(z, zy′(ε)) is locally semiconcave in a neighborhood
of y′. By Lemma A.2 applied to −f the result follows easily. �

We now return to the proof of Proposition 5.11 and we show that(
{x} × Conjmin(x)

)
⊂

(
{x} × Σ(f)

)
∩ Ω.

Let y ∈ Conjmin(x) be such that (x, y) ∈ Ω. We argue by contradiction. If y does not
belong to Σ(f), then f is C1,1

loc in a neighborhood V of y. Define

Ψ : V −→ T ∗x̄M
y 7−→ ψ(0),

where ψ : [0, 1] → TM is the normal extremal satisfying ψ(1) = (y, f(y)df(y)). This
mapping is locally Lipschitz on V. Moreover by construction, Ψ is an inverse of the
exponential mapping. This proves that p0 := Ψ(x) is not conjugate with respect to x.
We obtain a contradiction.

The second part of Proposition 5.11 follows from the fact that the set Σ(f) ∩ ωx is
of Hausdorff dimension lower than or equal to n − 1 (see Theorem A.8), and the fact
that the set Conjmin(x) is contained in the set

Conj(x) := {y ∈M | ∃ p ∈ T ∗xM conjugate w.r.t. x s.t. expx(p) = y} ,
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which has Hausdorff dimension lower than or equal to n− 1 thanks to Sard’s Theorem
(see [21, Theorem 3.4.3]).

It remains to prove that dSR is of class C∞ on the open set Ω̂ := Ω\CutSR(M). Let
us first show that Ω̂ is open or equivalently that CutSR(M)∩Ω is a closed subset of Ω.
Let (x, y) ∈ Ω be such that there is a sequence {(xk, yk)} ∈ CutSR(M) ∩ Ω converging
to (x, y) as k tends to infinity. If x = y, then we know that (x, y) ∈ CutSR(M), so
we may assume that x 6= y. Moreover, by Proposition 5.11 together with a diagonal
process, we may as well assume that for each k, there are two elements ζ1

k 6= ζ2
k ∈ T ∗yk

M
such that

ζk
1 , ζ

k
2 ∈ ∂Lfk(yk),

where fk is defined as fk(z) := dSR(xk, z) for any z ∈ M . By Lemma 5.12 for
each k there are two normal extremals ψ1

k, ψ
2
k : [0, 1] → T ∗M whose projections

γ1
k = π(ψ1

k), γ
2
k = π(ψ2

k) are minimizing between xk and yk and such that ψ1
k(1) =

(yk, fk(yk)ζ1
k) and ψ2

k(1) = (yk, fk(yk)ζ2
k). Without loss of generality, we can assume

that both sequences {ψ1
k}, {ψ2

k} converge respectively to ψ1 and ψ2. Two cases appear.
As before, we denote by f the function dSR(x, ·).
First case: ψ1(1) 6= ψ2(1). Then, this means that the limiting subdifferential of f at y
contains two elements. This proves that (x, y) ∈ CutSR(M).
Second case: ψ1(1) = ψ2(1). This implies that for k large, ψ1

k(0) = (xk, p
1
k) and

ψ2
k(0) = (xk, p

2
k) are close to ψ(0) = (x, p) in T ∗M and satisfy expxk

(p1
k) = expxk

(p2
k).

This show that the exponential mapping from x cannot be injective in a neighborhood
of p (which, by construction, satisfies expx(p) = y and eSR(x, y) = 2H(x, p)). By the
first part of the proposition, we deduce that (x, y) belongs to the global cut-locus of
M .
So, we proved that the set Ω̂ is an open subset of Ω. Let us now explain why dSR is
smooth on that set.
Let (x, y) ∈ Ω\CutSR(M), and let p be such that expx(p) = y and eSR(x, y) = 2H(x, p).
Since p is not conjugate with respect to x, the exponential mapping is a (smooth) local
diffeomorphism from a neighborhood of p into a neighborhood of y. In fact, since the
sub-Riemannian distance function is C1 in a neighborhood of (x, y), for every x′ in a
neighborhood of x and every y′ in a neighborhood of y, we have

dSR(x′, y′) =
√

2H (x′, (expx′)−1(y′)).

This proves that dSR is of class C∞ in Ω \ CutSR(M).

From the proof of Lemma 5.13, it follows easily that for every y ∈ M \ {x} such
that (x, y) ∈ Ω, if we denote by γ : [0, 1] → M a sub-Riemannian geodesic between x
and y, then

γ(t) ∈M \ Σ (dSR(x, ·)) ∀t ∈ (0, 1),

which means that, for every t ∈ (0, 1), there is only one sub-Riemannian minimizing
geodesic between x and γ(t). A priori, it could happen that γ(t) belongs to CutSR(x)
on a subinterval of the form [t, 1). In fact, under an additional assumption on the
sub-Riemannian structure, we can show that this situation cannot occur.
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Let x ∈ M . A point y ∈ M is not a cut point with respect to x if there exists a
horizontal path γ : [0, L] → M with unit speed such that dSR(x, γ(L)) = lengthSR(γ)
and y = γ(t) for some t ∈ (0, L), that is there exists a sub-Riemannian minimizing
path joining x to y which is the strict restriction of a minimizing path starting from x.
Denote by L(x) the set of cut points with respect to x. The following result is proved
in [35].

Lemma 5.14. Assume that any nontrivial sub-Riemannian geodesic is nonsingular.
Then, for every x ∈M , one has

Conjmin(x) ⊂ L(x).

Consequently, like in the Riemannian case, the following result holds.

Proposition 5.15. Assume that any nontrivial sub-Riemannian geodesic is nonsingu-
lar. If γ is a minimizing horizontal curve between x 6= y, then we have

γ(t) /∈ CutSR(x) ∪ CutSR(y) ∀t ∈ (0, 1).

An important property of the Riemannian distance function is that it fails to be
semiconvex at the cut locus (see [18, Proposition 2.5]. This property plays a key role in
the proof of the differentiability of the transport map. We do not know if that property
holds in the sub-Riemannian case:

Open problem. Assume that dSR is locally semiconcave on M ×M \ D. Let
x, y ∈M be such that there is a function φ : M → IR twice differentiable at y such that

φ(y) = dSR(x, y) and d2
SR(x, z) ≥ φ(z) ∀z ∈M.

Is it true that y /∈ CutSR(x)?

5.9 Locally lipschitz regularity of the sub-Riemannian distance

Since any locally semiconcave function is locally Lipschitz, Theorem 5.9 above gives
a sufficient condition that insures the Lipschitz regularity of d2

SR out of the diagonal.
In [2], Agrachev and Lee demonstrates that, under some stronger assumption, one can
prove global Lipschitz regularity. A horizontal path γ : [0, 1] →M will be called a Goh
path if it admits an abnormal lift ψ : [0, 1] → ∆⊥ which annihilates [∆,∆], that is, for
every t ∈ [0, 1] and every local parametrization of ∆ by smooth vector fields f1, . . . , fm

in a neighborhood of γ(t), we have

ψ(t) ·
(
[fi, fj ](γ(t))

)
= 0 ∀i, j = 1, . . . ,m.

Note that if the path γ is constant on [0, 1], it is a Goh path if and only if there is a
differential form p ∈ T ∗γ(0)M satisfying

p · fi(γ(0)) = p · [fi, fj ](γ(0)) = 0 ∀i, j = 1, . . . ,m,

where f1, . . . , fm is as above a parametrization of ∆ in a neighborhood of γ(0). Agrachev
and Lee proved the following result (see [2, Theorem 5.5]):

Theorem 5.16. Let Ω be an open subset of M ×M such that any sub-Riemannian
minimizing geodesic joining two points of Ω is not a Goh path. Then, the function d2

SR

is locally Lipschitz on Ω× Ω.
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6 Proofs of the results

6.1 Proof of Theorem 3.2

Let us first prove (i). We easily see that Mφ coincides with the set

{x ∈M | φ(x) + φc(x) < 0}.

Thus, since both φ and φc are continuous, Mφ is open. Let us now prove that φ is locally
semiconcave (resp. locally Lipschitz) in an open neighborhood of Mφ ∩ supp(µ). Let
x ∈Mφ∩supp(µ) be fixed. Since x 6∈ ∂cφ(x), there is r > 0 such that dSR(x, y) > r for
any y ∈ ∂cφ(x). In addition, since the set ∂cφ is closed in M×M and supp(µ×ν) ⊂ Ω,
there exists a neighborhood Vx of x which is included in Mφ ∩ π1(Ω) and such that

dSR(x,w) > r ∀z ∈ Vx, ∀w ∈ ∂cφ(z).

Let φx,r : M → IR be the function defined by

φx,r(z) := inf
{
d2

SR(z, y)− φc(y) | y ∈ supp(ν), dSR(z, y) > r
}
.

We recall that supp(µ × ν) ⊂ Ω and that d2
SR is locally semiconcave (resp. locally

Lipschitz) in Ω \ D. Thus, up to considering a smaller Vx, we easily get that the
function φx,r is locally semiconcave (resp. locally Lipschitz) in Vx. Since φ = φx,r in
Vx, (i) is proved.

To prove (ii), we observe that it suffices to prove the result for x belonging to
an open set V ⊂ M on which the horizontal distribution ∆(x) is parametrized by a
orthonormal family a smooth vector fields {f1, . . . , fm}. Moreover, up to working in
charts, we can assume that V is a subset of IRn.

First of all we remark that, since all functions z 7→ d2
SR(z, y) − φc(y) are locally

uniformly Lipschitz with respect to the sub-Riemannian distance when y varies in
a compact set, also φ is locally Lipschitz with respect to dSR. Up to a change of
coordinates in IRn, we can assume that the vector fields fi are of the form

fi =
∂

∂xi
+

n∑
j=m+1

aij(x)
∂

∂xj
∀i = 1, . . . ,m,

with aij ∈ C∞(IRn). Therefore, thanks to [30, Theorem 3.2], for a.e. x ∈ V, φ is
differentiable with respect to all vector fields fi, and

φ(y)− φ(x)−
m∑

i=1

fiφ(x)(yi − xi) = o
(
dSR(x, y)

)
∀y ∈ V. (6.1)

Recalling that µ is absolutely continuous, we get that (6.1) holds at µ-a.e. x ∈ V. Thus
it suffices to prove that ∂cφ(x) = {x} for all such points.

Let us fix such an x. We claim that

fiφ(x) = 0 ∀i = 1, · · ·m. (6.2)
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Indeed, fix i ∈ {1, · · · ,m} and denote by γx
i (t) : (−ε, ε) →M the integral curve of the

vector field fi starting from x, i.e.{
γ̇x

i (t) = fi(γx
i (t)) ∀t ∈ (−ε, ε)

γx
i (0) = x.

By the assumption on x, there is a real number li such that

lim
t→0

φ(γx
i (t))− φ(x)

t
= li.

By construction, the curve γx
i is horizontal with respect to ∆. Thus, since g(γ̇x

i (t), γ̇x
i (t)) =

1 for any t, we have
dSR(x, γx

i (t)) ≤ |t| ∀t ∈ (−ε, ε).

This gives
φ(γx

i (t)) ≤ φ(x) + d2
SR(γx

i (t), x) ≤ φ(x) + t2,

which implies that li = 0 and proves the claim.
Assume now by contradiction that there exists a point y ∈ ∂cφ(x) \ {x}, with

(x, y) ∈ Ω. Then the function

z 7→ φ(z)− d2
SR(z, y) ≤ φc(x)

attains a maximum at x. Let γx,y : [0, 1] → M denotes a minimizing geodesic from x
to y. Then

φ(γx,y(t))− d2
SR(γx,y(t), y) ≤ φ(x)− d2

SR(x, y) ∀t ∈ [0, 1],

or equivalently

φ(γx,y(t))− φ(x) ≤ d2
SR(γx,y(t), y)− d2

SR(x, y) ∀t ∈ [0, 1].

Observe now that, by (6.1) together with (6.2), we have

φ(γx,y(t))− φ(x) = o
(
dSR(γx,y(t), x)

)
= o

(
tdSR(x, y)

)
.

On the other hand, d2
SR(γx,y(t), y) = (1− t)2d2

SR(x, y). Combining all together, for all
t ∈ [0, 1] we have

o
(
tdSR(x, y)

)
= φ(γx,y(t))− φ(x) ≤ d2

SR(γx,y(t), y)− d2
SR(x, y)

= −2td2
SR(x, y) + o

(
tdSR(x, y)

)
,

that is
2td2

SR(x, y) ≤ o
(
tdSR(x, y)

)
∀t ∈ [0, 1].

As x 6= y, this is absurd for t small enough, and the proof of (ii) is completed.
Since supp(µ×ν) ⊂ Ω, we immediately have that any optimal plan γ is concentrated

on ∂cφ ∩ Ω. Moreover, combining (i) and (ii), we obtain that ∂cφ(x)) ∩ supp(ν) is
a singleton for µ-a.e. x. This easily gives existence and uniqueness of the optimal
transport map.
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To prove the formula for T (x), we have to show that

∂cφ(x) ∩ supp(ν) = expx

(
−1

2
dφ(x)

)
for all x ∈Mφ∩supp(µ) where φ is differentiable. This is a consequence of Proposition
5.6 applied to the function z 7→ φ(z) + φc(y) at the point x. Moreover, again by
Proposition 5.6, the geodesic from x to T (x) is unique for µ-a.e. x ∈ Mφ ∩ supp(µ).
Since T (x) = x for x ∈ Sφ ∩ supp(µ), the geodesic is clearly unique also in this case.

6.2 Proof of Theorem 3.3

We will prove only (ii), as all the rest follows as in the proof of Theorem 3.2.
Let us consider the “bad” set defined by

B :=
{
x ∈ Sφ ∩ supp(µ) | (∂cφ(x) \ {x}) ∩ supp(ν) 6= ∅

}
.

We have to show that B is µ-negligible. For each k ∈ IN, we consider the sequence of
function constructed as follows:

φk(x) := inf
{
d2

SR(x, y)− φc(y) | y ∈ supp(ν), dSR(x, y) > 1/k
}
.

Since supp(µ × ν) ⊂ Ω and d2
SR is locally semiconcave in Ω \D, the functions φk are

locally semiconcave in a neighborhood of B.
Thus, by Theorem A.8 and the assumptions on µ, there exists a Borel set G, with

µ(G) = 1, such that all φk are differentiable in G. Since for any x ∈ B there exists
y ∈ ∂cφ(x) \ {x} such that dSR(y, x) > 1/k for some k, we deduce that⋃

k∈IN

{φ = φk} = B.

This gives that, up to set of µ-measure zero, B coincides with ∪k∈INAk, where

Ak := B ∩ {φ = φk} ∩G.

Thus, to conclude the proof, it suffices to show that µ(Ak) = 0 for all k ∈ IN.
Let x ∈ Ak. Then, if y ∈ ∂cφ(x) and dSR(x, y) > 1/k, the function

z 7→ φk(z)− d2
SR(z, y) ≤ φc(x) (6.3)

attains a maximum at x. Therefore, if we show that dφk(x) = 0 for µ-a.e. x ∈ Ak,
equation (6.3) together with the semiconcavity of d2

SR(z, y) for z close to x would im-
ply that d2

SR(·, y) is differentiable at x, and its differential is equal to 0. This would
contradict Proposition 5.7, concluding the proof. Therefore we just need to show that
dφk(x) = 0 µ-a.e. in Ak.

Let X be a smooth section of ∆ such that gx(X(x), X(x)) = 1 for any x ∈M . We
claim the following:
Claim 1: for µ-a.e. x ∈ Ak, dφk(x) ·X(x) ≤ 0.
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Since we can apply Claim 1 with a countable set of vector fields {Xl} so that {Xl(x)}
is dense in ∆(x) for all x ∈ supp(µ), Claim 1 clearly implies that dφk(x) = 0 µ-a.e. in
Ak. Let us prove the claim.

Let dg denote the Riemannian distance associated to the Riemannian metric g, and
θ(x, t) denote the flow of X, that is the function θ : M × IR →M satisfying

d

dt
θ(x, t) = X(θ(x, t)), θ(x, 0) = x.

Fix ε > 0 small, and consider the “cone” around the curve t 7→ θ(x, t) given by

Cε
x :=

{
y ∈ Ω | ∃ t ∈ [0, ε] such that dg

(
θ(x, t), y

)
≤ εt

}
.

Moreover we define

Rε :=
{
x ∈ supp(µ) ∩Ak | Ak ∩ Cε

x = {x}
}
.

Claim 2: Rε is countably (n− 1)-rectifiable for any ε > 0.
Indeed, since the statement is local, we can assume that we are in IRn, Moreover,
since X is smooth, we can assume that there exists v̄ ∈ IRn such that Cε

x contains the
“euclidean cone”

C̄ε/2
x :=

{
y ∈ Ω | ∃ t ∈ [0,

ε

2
] such that |x+ tv̄ − y| ≤ ε

2
t
}
.

Thus it suffices to prove that

R̄ε/2 :=
{
x ∈ supp(µ) ∩Ak | Ak ∩ C̄ε/2

x = {x}
}

is (n− 1)-rectifiable for any ε > 0.
Assume now that z, z′ ∈ R̄ε/2, with z 6= z′. Then, since z 6∈ C̄ε/2

z′ , we have

|z′ + tv̄ − z| > ε

2
t ∀t ∈ [0, ε/2],

or equivalently
|z − tv̄ − z′| > ε

2
t ∀t ∈ [0, ε/2].

This implies that

z′ 6∈ C̄ε/2,−
z :=

{
y ∈ Ω | ∃ t ∈ [0,

ε

2
] such that |x− tv̄ − y| ≤ ε

2
t
}
.

Since z, z′ ∈ R̄ε/2 where arbitrary, we have proved that for all z ∈ R̄ε/2,

R̄ε/2 ∩
(
C̄ε/2

z ∪ C̄ε/2,−
z

)
= {z}.

By [13, Theorem 4.1.6] R̄ε is countably (n− 1)-rectifiable for any ε > 0, and this con-
cludes the proof of Claim 2.

Let us come back to the proof of Claim 1. Thanks to Claim 2 we just need to show
that

x ∈
(
supp(µ) ∩Ak) \

(
∪jR1/j

)
=⇒ dφk(x) ·X(x) ≤ 0.
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Let x ∈
(
supp(µ) ∩ Ak) \

(
∪jR1/j

)
. Then φ(x) = φk(x), and there exists a sequence

of points {xj} such that xj 6= x and xj ∈ Ak ∩ C
1/j
x for all j ∈ IN. In particular

φ(xj) = φk(xj) for all j ∈ IN. Since x ∈ Sφ, we have x ∈ ∂cφ(x), and so

φ(z)− φ(x) ≤ d2
SR(z, x) ∀z ∈M.

Let tj ∈ [0, 1
j ] be such that dg

(
θ(x, tj), xj

)
≤ 1

j tj . Then, since d2
SR is locally Lipschitz,

we get

φk(xj)− φk(x) = φ(xj)− φ(x) ≤ d2
SR(xj , x)

≤ 2d2
SR

(
θ(x, tj), xj

)
+2d2

SR

(
θ(x, tj), x

)
≤ Cdg

(
θ(x, tj), xj

)
+2d2

SR

(
θ(x, tj), x

)
≤ C

j
tj + 2d2

SR

(
θ(x, tj), x

)
.

We now observe that, since X is a unitary horizontal vector field, dSR

(
θ(x, tj), x

)
≤ tj .

Moreover tj = dg(xj , x) + o
(
dg(xj , x)

)
as j → ∞. Therefore, up to subsequences, one

easily gets (looking everything in charts)

lim
j→+∞

xj − x

dg(xj , x)
= X(x),

which implies
dφk(x) ·X(x) ≤ 0,

as wanted.

6.3 Proof of Theorem 3.5

Let us first prove the uniqueness of the Wasserstein geodesic. A basic representation
theorem (see [38, Corollary 7.22]) states that any Wasserstein geodesic necessarily takes
the form µt = (et)#Π, where Π is a probability measure on the set Γ of minimizing
geodesics [0, 1] → M , and et : Γ → M is the evaluation at time t: et(γ) := γ(t). Thus
uniqueness follows easily from Theorem 3.2.

The proof of the absolute continuity of µt is done as follows. Fix t ∈ (0, 1), and
define the function

φ1−t(x) := inf
y∈supp(ν)

{
d2

SR(x, y)
1− t

− φc(y)
}
,

φc
t(y) := inf

x∈supp(µ)

{
d2

SR(x, y)
t

− φ(x)
}
.

It is not difficult to see that

d2
SR(x, z)
t

+
dSR(z, y)2

1− t
≥ d2

SR(x, y) ∀x, y, z ∈M. (6.4)

Indeed, for all ε > 0,

d2
SR(x, y) ≤

(
dSR(x, z) + dSR(z, y)

)2 ≤ (1 + ε)d2
SR(x, z) +

(
1 +

1
ε

)
d2

SR(z, y).
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Choosing ε > 0 so that 1 + ε = 1/t, (6.4) follows. Since φ(x) + φc(y) ≤ d2
SR(x, y) for

all x ∈ supp(µ) and y ∈ supp(ν), by (6.4) we get[dSR(z, y)2

1− t
− φc(y)

]
+

[d2
SR(x, z)
t

− φ(x)
]
≥ 0 ∀x ∈ supp(µ), y ∈ supp(ν), z ∈M.

This implies
φ1−t(z) + φc

t(z) ≥ 0 ∀z ∈M. (6.5)

We now remark that (6.4) becomes an equality if and only if there exists a geodesic
γ : [0, 1] → M joining x to y such that z = γ(t). Thus, by the definition of Tt(x) we
get

dSR(x, Tt(x))2

t
+
dSR(Tt(x), T (x))2

1− t
= d2

SR(x, T (x)) for µ-a.e. x. (6.6)

Moreover, since

φ(x) + φc(T (x)) = d2
SR(x, T (x)) for µ-a.e. x,

we obtain
φ1−t(Tt(x)) + φc

t(Tt(x)) = 0 for µ-a.e. x,

or equivalently
φ1−t(z) + φc

t(z) = 0 for µt-a.e. z. (6.7)

Let us now decompose the set Mφ ∩ supp(µ) as

Ak := {x ∈Mφ ∩ supp(µ) | dSR(x, y) > 1/k ∀y ∈ ∂cφ(x)}.

Since Tt(x) = x on Sφ ∩ supp(µ), defining µk
t := µtbTt(Ak) we have

µt =
(
∪kµ

k
t

)
∪ µb

(
Sφ ∩ supp(µ)

)
∀t ∈ [0, 1].

Thus it suffices to prove that µk
t is absolutely continuous for each k ∈ IN.

We consider the functions

φk,1−t(x) := inf
{
d2

SR(x, y)
1− t

− φc(y) | y ∈ supp(ν), dSR(x, y) > (1− t)/k
}
.

φc
k,t(y) := inf

{
d2

SR(x, y)
t

− φ(x) | y ∈ supp(ν), dSR(x, y) > t/k

}
.

Since dSR(x, T (x)) > 1/k for x ∈ Ak, they coincide respectively with φ1−t and φc
t inside

Tt(Ak). Thus, thanks to (6.5) and (6.7), we have

φk,1−t(z) + φc
k,t(z) ≥ φ1−t(z) + φc

t(z) ≥ 0 ∀z ∈M,

with equality µt-a.e. on Tt(Ak).
Observe now that, by the compactness of the supports of µ and ν, and the fact

that Ω is totally geodesically convex, supp(µ× µt) and supp(µt × ν) are compact and
contained in Ω. Thus, since d2

SR is locally semiconcave on Ω \D, both functions φk,1−t
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and φc
k,t are locally semiconcave in a neighborhood of Tt(Ak). It follows from [20,

Theorem A.19] that both differentials dφk,t(z), dφc
k,1−t(z) exist and are equal for µ-a.e.

z ∈ Ts(Ak). Moreover, again by [20, Theorem A.19], the map z 7→ dφk,t(z) = dφc
k,1−t(z)

is locally Lipschitz on Ts(Ak). Since for x ∈ Ak we have

φk,t(·) ≤
dSR(x, ·)2

t
− φ(x) on {z | dSR(x, z) > t/k}

with equality at Tt(x) for µ-a.e. x ∈ Ak, by Proposition 5.7 we get

x = expTt(x)(−1
2dφk,t(Tt(x))) for µ-a.e. x ∈ Ak.

Denoting by Φt : T ∗M → T ∗M the Euler-Lagrange flow (i.e. the flow of the Hamilto-
nian vector field

−→
H ), we see that the map

Ft,k(z) := expz(−1
2dφk,t(z)) = Φt(z,−1

2dφk,t(z))

is locally Lipschitz on supp(µt) ∩ Tt(Ak). Therefore it is clear that µk
t cannot have

a singular part with respect to the volume measure, since otherwise the same would
be true for (Ft,k)#(µk

t ) = µbAk. This concludes the proof of the absolute continuity
property.

6.4 Proof of Theorem 3.7

We recall that, by Theorem 3.2, the function φ is locally semiconcave in a neighborhood
of Mφ ∩ supp(µ). Thus, since µ is absolutely continuous with respect to the volume
measure, by Theorem A.9 dφ(x) is differentiable for µ-a.e. x ∈ Mφ ∩ supp(µ). By
Theorem 3.2, for µ-a.e. x there exists a unique minimizing geodesic between x and
T (x). Thanks to our assumptions this implies that T (x) = expx(−1

2dφ(x)) do not
belongs to CutSR(x) for µ-a.e. x ∈ Mφ ∩ supp(µ). Thus, by Proposition 5.11, the
function

(z, w) 7→ d2
SR(z, w)

is smooth near (x, T (x)). Exactly as in the Riemannian case, this implies that the
map x 7→ expx(−1

2dφ(x)) is differentiable for µ-a.e. x, and its differential is given by
Y (x)

(
H(x)− 1

2Hess 2
xφ

)
(see [18, Proposition 4.1]). On the other hand, since T (x) = x

for x ∈ Sφ ∩ supp(µ), it is clear by Definition 3.6 that T is approximately differentiable
µ-a.e. in Sφ ∩ supp(µ), and that its approximate differential is given by the identity
matrix I. This proves the first part of the theorem.

To prove the change of variable formula, we first remark that, since both µ and ν
are absolutely continuous, there exists also an optimal transport map S from ν to µ,
and it is well-known that S is an inverse for T a.e., that is

S ◦ T = Id µ-a.e., T ◦ S = Id ν-a.e.

(see for instance [6, Remark 6.2.11]). This gives in particular that T is a.e. injective.
Applying [6, Lemma 5.5.3] (whose proof is in the Euclidean case, but still works on
a manifold) we deduce that |det(d̃T (x))| > 0 µ-a.e., and that the Jacobian identity
holds.
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A Elements of nonsmooth analysis

The aim of this section is to recall some classical tools of nonsmooth analysis. Recall
that throughout this section, M denotes a smooth connected manifold of dimension n.

A.1 Viscosity solutions of Hamilton-Jacobi equations

Let F : T ∗M × IR → IR be a given continuous function, and let U an open subset of
M . A continuous function u : U → IR is said to be a viscosity subsolution on U of the
Hamilton-Jacobi equation

F (x, du(x), u(x)) = 0 (A.1)

if and only if, for every C1 function φ : U → IR satisfying φ ≥ u we have

∀x ∈ U, φ(x) = u(x) =⇒ F (x, dφ(x), u(x)) ≤ 0.

Similarly, a continuous function u : U → IR is said to be a viscosity supersolution of
(A.1) on U if and only if, for every C1 function ψ : U → IR satisfying ψ ≤ u we have,

∀x ∈ U, ψ(x) = u(x) =⇒ F (x, dψ(x), u(x)) ≥ 0.

A continuous function u : U → IR is called a viscosity solution of (A.1) on U if it is
both a viscosity subsolution and a viscosity supersolution of (A.1) on U .

A.2 Generalized differentials

Let u : U → IR be a continuous function on an open set U ⊂ M . The viscosity
subdifferential of u at x ∈ U is the convex subset of T ∗xM defined by

D−u(x) :=
{
dψ(x) | ψ ∈ C1(U) and u− ψ attains a global minimum at x

}
.

Similarly, the viscosity superdifferential of u at x is the convex subset of T ∗xM defined
by

D+u(x) :=
{
dφ(x) | φ ∈ C1(U) and u− φ attains a global maximum at x

}
.

Note that if u is differentiable at x ∈ U , then D−u(x) = D+u(x) = {du(x)}. The no-
tions of sub and superdifferentials allow to give another characterization of the viscosity
sub and supersolutions. A continuous function u : U → IR is a viscosity subsolution of
(A.1) on U if and only if the following property is satisfied:

F (x, ζ, u(x)) ≤ 0 ∀x ∈ U, ∀ζ ∈ D+u(x).

In the same way, a continuous function u : U → IR is a viscosity supersolution of (A.1)
on U if and only if

F (x, ζ, u(x)) ≥ 0 ∀x ∈ U, ∀ζ ∈ D−u(x).

The following result is classical (see [13, 32]).
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Proposition A.1. Let u : U → IR be a continuous function on an open set U ⊂ M .
The viscosity subdifferential (resp. superdifferential) of u is nonempty on a dense subset
of U .

The limiting subdifferential of u at x ∈ U is the subset of T ∗xM defined by

∂Lu(x) :=
{

lim
k→∞

ζk | ζk ∈ D−u(xk), xk → x

}
.

By construction, the graph of the limiting subdifferential is closed in T ∗M . Moreover,
the function u is locally Lipschitz on its domain if and only if the graph of the limiting
subdifferential of u is locally bounded (see [17, 32]).

Let u : U → IR be a locally Lipschitz function. The Clarke generalized subdifferential
of u at the point x ∈ U is the nonempty compact convex subset of T ∗xM defined by

∂u(x) := conv (∂Lu(x)) ,

that is, the convex hull of the limiting differential of u at x. Notice that, for every
x ∈ U ,

D−u(x) ⊂ ∂Lu(x) ⊂ ∂u(x) and D+u(x) ⊂ ∂u(x).

It can be shown that, if ∂u(x) is a singleton, then u is differentiable at x and ∂u(x) =
{du(x)}. The converse result is false.

A.3 Locally semiconcave functions

For an introduction to semiconcavity, we refer the reader to [13] and [20, Appendix A].
A function u : U → IR, defined on the open set U ⊂M , is called locally semiconcave on
U if for every x ∈ U there exist a neighborhood Ux of x and a smooth diffeomorphism
ϕx : Ux → ϕx(Ux) ⊂ IRn such that f ◦ ϕ−1

x is locally semiconcave on the open subset
Ũx = ϕx(Ux) ⊂ IRn. We recall that the function u : U → IR, defined on the open set
U ⊂ IRn, is locally semiconcave on U if for every x̄ ∈ U there exist C, δ > 0 such that

µu(y) + (1− µ)u(x)− u(µx+ (1− µ)y) ≤ µ(1− µ)C|x− y|2, (A.2)

for all x, y in the ball Bδ(x̄) and every µ ∈ [0, 1]. This is equivalent to say that the
function u can be written locally as

u(x) =
(
u(x)− C|x|2

)
+ C|x|2 ∀x ∈ Bδ(x̄),

with u(x) − C|x|2 concave. Note that every locally semiconcave function is locally
Lipschitz on its domain, and thus, by Rademacher’s Theorem, it is differentiable almost
everywhere on its domain (in fact a better result holds, see Theorem A.8). The following
result will be useful in the proof of our theorems.

Lemma A.2. Let u : U → IR be a function defined on an open set U ⊂ IRn. Assume
that for every x̄ ∈ U there exist a neighborhood V ⊂ U of x̄ and a positive real number
σ such that, for every x ∈ V, there is px ∈ IRn such that

u(y) ≤ u(x) + 〈px, y − x〉+ σ|y − x|2 ∀y ∈ V. (A.3)

Then the function u is locally semiconcave on U .
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Proof. Let x̄ ∈ U be fixed and V be the neighborhood given by assumption. Without
loss of generality, we can assume that V is an open ball B. Let x, y ∈ B and µ ∈ [0, 1].
The point x̂ := µx+ (1 − µ)y belongs to B. By assumption, there exists p̂ ∈ IRn such
that

u(z) ≤ u(x̂) + 〈p̂, z − x̂〉+ σ|z − x̂|2 ∀z ∈ B.
Hence we easily get

µu(y) + (1− µ)u(x) ≤ u(x̂) + µσ|x− x̂|2 + (1− µ)σ|y − x̂|2

≤ u(x̂) +
(
µ(1− µ)2σ + (1− µ)µ2σ

)
|x− y|2

≤ u(x̂) + 2µ(1− µ)σ|x− y|2,

and the conclusion follows.

The converse result can be stated as follows (its proof is left to the reader).

Proposition A.3. Let U be an open and convex subset of IRn and u : U → IR be a
function which is C-semiconcave on U , that is, which satisfies

µu(y) + (1− µ)u(x)− u(µx+ (1− µ)y) ≤ µ(1− µ)C|x− y|2, (A.4)

for every x, y ∈ U . Then, for every x ∈ U and every p ∈ D+u(x), we have

u(y) ≤ u(x) + 〈p, y − x〉+
C

2
|y − x|2 ∀y ∈ U, (A.5)

In particular, D+u(x) = ∂u(x) for every x ∈ U .

Remark A.4. As a consequence (see [13, 32]) we obtain that, if a function u : U → IR
is locally semiconcave on an open set U ⊂M , then, for every x ∈ U ,

∂Lu(x) =
{

lim
k→∞

du(xk) | xk ∈ Du, xk → x

}
,

where Du denotes the set of points of U at which u is differentiable.

The following result is useful to obtain several characterization of the singular set
of a given locally semiconcave function (we refer the reader to [13, 32] for its proof):

Proposition A.5. Let U be an open subset of M and u : U → IR be a function which
is locally semiconcave on U . Then, for every x ∈ U , u is differentiable at x if and only
if ∂u(x) is a singleton.

Another useful result is the following (see [13, Corollary 3.3.8]):

Proposition A.6. Let u : U → IR be a function defined on an open set U ⊂ M . If
both functions u and −u are locally semiconcave on U , then u is of class C1,1

loc on U .

Fathi generalized the proposition above as follows (see [19] or [20, Theorem A.19]):

Proposition A.7. Let U be an open subset of M and u1, u2 : U → IR be two functions
with u1 and −u2 locally semiconcave on U . Assume that u1(x) ≤ u2(x) for any x ∈ U .
If we define E = {x ∈ U | u1(x) = u2(x)}, then both u1 and u2 are differentiable at each
x ∈ E with du1(x) = du2(x) at such a point. Moreover, the map x 7→ du1(x) = du2(x)
is locally Lipschitz on E.
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A.4 Singular sets of semiconcave functions

Let u : U → IR be a function which is locally semiconcave on the open set U ⊂M . We
recall that, since such a function is locally Lipschitz on U , its limiting subdifferential
is always nonempty on U . We define the singular set of u as the subset of U

Σ(u) := {x ∈ U | u is not differentiable at x}
= {x ∈ U | ∂u(x) is not a singleton}
= {x ∈ U | ∂Lu(x) is not a singleton} .

From Rademacher’s theorem, Σ(u) has Lebesgue measure zero. In fact, the following
result holds (see [13, 32]):

Theorem A.8. Let U be an open subset of M . The singular set of a locally semiconcave
function u : U → IR is countably (n − 1)-rectifiable, i.e., is contained in a countable
union of locally Lipschitz hypersurfaces of M .

A.5 Alexandrov’s second differentiability theorem

As shown by Alexandrov (see [38]), locally semiconcave functions are two times differ-
entiable almost everywhere.

Theorem A.9. Let U be an open subset of IRn and u : U → IR be a function which is
locally semiconcave on U . Then, for a.e. x ∈ U , u is differentiable at x and there exists
a symmetric operator A(x) : IRn → IRn such that the following property is satisfied:

lim
t↓0

u(x+ tv)− u(x)− tdu(x) · v − t2

2 〈A(x) · v, v〉
t2

= 0 ∀v ∈ IRn.

Moreover, du(x) is differentiable a.e. in U , and its differential is given by A(x).

B Proofs of auxiliary results

B.1 Proof of Proposition 4.4

The first part of the proposition is just a corollary of Proposition 4.8 for n = 3. Let us
prove the second part of the proposition. Let γ : [0, 1] → M be a nontrivial singular
horizontal path. Our aim is to show that, for every t ∈ [0, 1], the point γ(t) belongs
to Σ∆. Fix t̄ ∈ [0, 1] and parametrize the distribution by two smooth vector fields
f1, f2 in an open neighborhood V of γ(t̄). Let u ∈ L2([0, 1], IR2), and let I be an open
subinterval of [0, 1] containing t̄ such that

γ̇(t) = u1(t)f1(γ(t)) + u2(t)f2(γ(t)) for a.e. t ∈ I.

Note that since γ is assumed to be nontrivial, we can assume that u is not identically
zero in any neighborhood of t̄. From Proposition 5.3, there is an arc p : [0, 1] −→
(IR3)∗ \ {0} in W 1,2 such that

ṗ(t) = −u1(t)p(t) · df1(γ(t))− u2(t)p(t) · df2(γ(t)),
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for almost every t ∈ I and

p(t) · f1(γ(t)) = p(t) · f2(γ(t)) = 0 ∀t ∈ I.

Let us take the derivative of the quantity p(t)·f1(γ(t)) (which is absolutely continuous).
We have for almost every t ∈ I,

0 =
d

dt
[p(t) · f1(γ(t))]

= ṗ(t) · f1(γ(t)) + p(t) · df1(γ(t)) · γ̇(t)

= −
∑
i=1,2

ui(t)p(t) · dfi(γ(t)) · f1(γ(t)) +
∑
i=1,2

ui(t)p(t) · df1(γ(t)) · fi(γ(t))

= −u2(t)p(t) · [f1, f2](γ(t)).

In the same way, if we differentiate the quantity p(t) · f2(γ(t)), we obtain

0 =
d

dt
[p(t) · f2(γ(t))] = u1(t) · [f1, f2](γ(t)).

Therefore, since u is not identically zero in any neighborhood of t̄, thanks to the con-
tinuity of the mapping t 7→ p(t) · [f1, f2](γ(t)), we deduce that

p(t̄) · [f1, f2](γ(t̄) = 0.

But we already know that p(t) · f1(γ(t̄)) = p(t) · f2(γ(t̄)) = 0 where the two vec-
tors f1(γ(t̄)), f2(γ(t̄)) are linearly independent. Therefore, since p(t̄) 6= 0, we con-
clude that the Lie bracket [f1, f2](γ(t̄)) belongs to the linear subspace spanned by
f1(γ(t̄)), f2(γ(t̄)), which means that γ(t̄) belongs to Σ∆. Let us now prove that any
horizontal path included in Σ∆ is singular. Let γ such a path be fixed, set γ(0) = x,
and consider a parametrization of ∆ by two vector fields f1, f2 in a neighborhood V of
x. Let δ > 0 be small enough so that γ(t) ∈ V for any t ∈ [0, δ], in such a way that
there is u ∈ L2([0, δ], IR2) satisfying

γ̇(t) = u1(t)f1(γ(t)) + u2(t)f2(γ(t)) for a.e. t ∈ [0, δ].

Let p ∈ (IR3)∗ be such that p0 · f1(x) = p · f2(x) = 0 and p : [0, δ] → (IR3)∗ be the
solution to the Cauchy problem

ṗ(t) = −
∑
i=1,2

ui(t)p(t) · dfi(γ(t)) for a.e. t ∈ [0, δ], p(0) = p0.

Define two absolutely continuous function h1, h2 : [0, δ] → IR by

hi(t) = p(t) · fi(γ(t)) ∀t ∈ [0, δ], ∀i = 1, 2.

As above, for every t ∈ [0, δ] we have

ḣ1(t) =
d

dt
[p(t) · f1(γ(t))] = −u2(t)p(t) · [f1, f2](γ(t))
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and
ḣ2(t) = u1(t)p(t) · [f1, f2](γ(t)).

But since γ(t) ∈ Σ∆ for every t, there are two continuous functions λ1, λ2 : [0, δ] → IR
such that

[f1, f2](γ(t)) = λ1(t)f1(γ(t)) + λ2(t)f2(γ(t)), ∀t ∈ [0, δ].

This implies that the pair (h1, h2) is a solution of the linear differential system{
ḣ1(t) = −u2(t)λ1(t)h1(t)− u2(t)λ2(t)h2(t)
ḣ2(t) = u1(t)λ1(t)h1(t) + u1(t)λ2(t)h2(t).

Since h1(0) = h2(0) = 0 by construction, we deduce by the Cauchy-Lipschitz Theorem,
that h1(t) = h2(t) = 0 for any t ∈ [0, δ]. In that way, we have constructed an abnormal
lift of γ on the interval [0, δ]. We can in fact repeat this construction on a new interval
of the form [δ, 2δ] (with initial condition p(δ)) and finally obtain an abnormal lift of γ
on [0, 1]. By Proposition 5.2, we conclude that γ is singular.

B.2 Proof of Proposition 4.8

The fact that Σ∆ is a closed subset of M is obvious. Let us prove that it is countably
(n − 1)-rectifiable. Since it suffices to prove the result locally, we can assume that we
have

∆(x) = Span{f1(x), . . . , fn−1(x)} ∀x ∈ V,

where V is an open neighborhood of the origin in IRn. Moreover, doing a change of
coordinates if necessary, we can also assume that

fi =
∂

∂xi
+ αi(x)

∂

∂xn
∀i = 1, . . . , n− 1,

where each αi : V −→ IR is a C∞ function satisfying αi(0) = 0. Hence, for any
i, j ∈ {1, . . . n− 1}, we have

[fi, fj ] =
[(

∂αj

∂xi
− ∂αi

∂xj

)
+

(
∂αj

∂xn
αi −

∂αi

∂xn
αj

)]
∂

∂xn
,

and so

Σ∆ =
{
x ∈ V |

(
∂αj

∂xi
− ∂αi

∂xj

)
+

(
∂αj

∂xn
αi −

∂αi

∂xn
αj

)
= 0 ∀i, j ∈ {1, . . . , n− 1}

}
.

For every tuple I = (i1, . . . , ik) ∈ {1, . . . , n − 1}k we denote by fI the C∞ vector field
constructed by Lie brackets of f1, f2, . . . , fn−1 as follows,

fI = [fi1 , [fi2 , . . . , [fik−1
, fik ] . . .]].

We call k = length(I) the length of the Lie bracket fI . Since ∆ is nonholonomic, there
is some positive integer r such that

IRn = Span {fI(x) | length(I) ≤ r} ∀x ∈ V.
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It is easy to see that, for every I such that length(I) ≥ 2, there is a C∞ function
gI : V → IR such that

fI(x) = gI(x)
∂

∂xn
∀x ∈ V.

Defining the sets Ak as

Ak := {x ∈ V | gI(x) = 0 ∀I such that length(I) ≤ k} ,

we have

Σ∆ =
r⋃

k=2

(Ak \Ak+1) .

By the Implicit Function Theorem, it is easy to see that each set Ak \ Ak+1 can be
covered by a countable union of smooth hypersurfaces. Indeed assume that some given
x belongs to Ak \ Ak+1. This implies that there is some J = (j1, . . . , jk+1) of length
k + 1 such that gJ(x) 6= 0. Set I = (j2, . . . , jk+1). Since gI(x) = 0, we have

gJ(x) =
(
∂gI

∂xj1

(x) +
∂gI

∂xn
(x)αj1(x)

)
∂

∂xn
6= 0.

Hence, either ∂gI
∂xj1

(x) 6= 0 or ∂gI
∂xn

(x) 6= 0.
Consequently, we deduce that we have the following inclusion

Ak \Ak+1 ⊂
⋃

length(I)=k

{
x ∈ V | ∃ i ∈ {1, . . . , n} such that

∂gI

∂xi
(x) 6= 0

}
.

We conclude easily.
The fact that any Goh path is contained in Σ∆ is obvious.
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