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Abstract

We address the question of transport from a maximizing probability to another. Consider the shift
σ acting on the Bernoulli space Σ = {1, 2, ..., n}N. We denote Σ̂ = {1, 2, ..., n}Z. We analyze several
properties of the maximizing probability µ∞,A of a Holder potential A : Σ→ R. Associated to A(x), via
the involution kernel, W : Σ̂ → R, it is known that can we get the dual potential A∗(y), where (x, y) ∈
Σ̂. We assume here that the maximizing probability µ∞,A is unique. Consider µ∞,A∗ a maximizing
probability for A∗. We also analyze the analogous problem for expanding transformations on the circle.

We would like to consider the transport problem from µ∞,A to µ∞,A∗ . In this case, it is natural
to consider the cost function c(x, y) = I(x) −W (x, y) + γ, where I is the deviation function for µ∞,A,
as the limit of Gibbs probabilities µβA for the potential βA when β → ∞. The value γ is a constant
which depends on A. We could also take c = −W above. We denote by K = K(µ∞,A, µ∞,A∗) the set of
probabilities η̂(x, y) on Σ̂, such that π∗x(η̂) = µ∞,A, and π∗y(η̂) = µ∞,A∗ .

We have a dynamical characterization of the solution µ̂ of the Kantorovich Transport Problem, that
is, the solution of

inf
η̂∈K

∫ ∫
c(x, y) d η̂ = − max

η̂∈K

∫ ∫
(W (x, y)− γ) d η̂.

The pair of functions for the Kantorovich Transport dual Problem are given by (−V,−V ∗), where we
denote the two calibrated sub-actions by V and V ∗, respectively, for A and A∗. For a certain class of
potentials A we show that the W kernel satisfies a twist condition and, finally, we analyze, in this case,
if the support Σ̂ of the probability µ̂ is a graph. We also analyze the question of finding an explicit
expression for the function f : Σ→ R whose c−subderivative determines the graph.
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