NICE WEAK KAM METHODS IN NICE 2-7 FEBRUARY 2009

Artur O. Lopes

Universidade Federal do Rio Grande do Sul, Brazil

The Dual Potential, the involution kernel and transport in Ergodic Optimization

(joint work with Elismar O. Oliveira and Ph. Thieullen)

Abstract

We address the question of transport from a maximizing probability to another. Consider the shift σ acting on the Bernoulli space $\Sigma = \{1, 2, ..., n\}^{\mathbb{N}}$. We denote $\hat{\Sigma} = \{1, 2, ..., n\}^{\mathbb{Z}}$. We analyze several properties of the maximizing probability $\mu_{\infty,A}$ of a Holder potential $A: \Sigma \to \mathbb{R}$. Associated to A(x), via the involution kernel, $W: \hat{\Sigma} \to \mathbb{R}$, it is known that can we get the dual potential $A^*(y)$, where $(x,y) \in \hat{\Sigma}$. We assume here that the maximizing probability $\mu_{\infty,A}$ is unique. Consider μ_{∞,A^*} a maximizing probability for A^* . We also analyze the analogous problem for expanding transformations on the circle.

We would like to consider the transport problem from $\mu_{\infty,A}$ to μ_{∞,A^*} . In this case, it is natural to consider the cost function $c(x,y) = I(x) - W(x,y) + \gamma$, where I is the deviation function for $\mu_{\infty,A}$, as the limit of Gibbs probabilities $\mu_{\beta A}$ for the potential βA when $\beta \to \infty$. The value γ is a constant which depends on A. We could also take c = -W above. We denote by $\mathcal{K} = \mathcal{K}(\mu_{\infty,A},\mu_{\infty,A^*})$ the set of probabilities $\hat{\eta}(x,y)$ on $\hat{\Sigma}$, such that $\pi_x^*(\hat{\eta}) = \mu_{\infty,A}$, and $\pi_y^*(\hat{\eta}) = \mu_{\infty,A^*}$.

We have a dynamical characterization of the solution $\dot{\tilde{\mu}}$ of the Kantorovich Transport Problem, that is, the solution of

$$\inf_{\hat{\eta} \in \mathcal{K}} \int \int c(x,y) \, d\, \hat{\eta} = \, - \, \max_{\hat{\eta} \in \mathcal{K}} \int \int (W(x,y) - \gamma) \, d\, \hat{\eta}.$$

The pair of functions for the Kantorovich Transport dual Problem are given by $(-V, -V^*)$, where we denote the two calibrated sub-actions by V and V^* , respectively, for A and A^* . For a certain class of potentials A we show that the W kernel satisfies a twist condition and, finally, we analyze, in this case, if the support $\hat{\Sigma}$ of the probability $\hat{\mu}$ is a graph. We also analyze the question of finding an explicit expression for the function $f: \Sigma \to \mathbb{R}$ whose c-subderivative determines the graph.