NICE WEAK KAM METHODS IN NICE 2-7 FEBRUARY 2009

Ezequiel Maderna

Universidad de la Repblica, Uruguay

On the dynamics of free time minimizers of the Newtonian N body problem (joint work with Adriana Da Luz)

Abstract

In the classical Lagrangian formulation of the Newtonian N body problem, motions are characterized by the local minimization property of the Lagrangian action. In this talk we will study the dynamics of a very special class of motions which satisfy a strong global minimization property. More precisely, if the bodies evolve in an Euclidean space E, then we say that a curve $x:[t_0,+\infty)\to E^N$ is a free time minimizer if for any $t>t_0$ the action of $x|_{[t_0,t]}$ is less than or equal to the action of any curve binding $x(t_0)$ to x(t). A simple example of free time minimizer is a parabolic homothetical motion by a minimal central configuration. The existence of a large amount of nontrivial free time minimizers can be deduced from the weak KAM theorem. In particular, there is at least one satisfying $x(t_0)=x_0$ for any choice $x_0 \in E^N$.

In this talk we will prove that such motions are completely parabolic and asymptotic to a central configuration. This means that the motion has critical energy, the moment of inertia grows like $I(t) \sim t^{4/3}$ and that the normalized configuration $u(t) = I(t)^{-1/2}x(t)$ converges to a central configuration.